

# **TFA9873\_SDS**

高效D类音频放大器

版本: 1.1

发布日期: 2020-10-22



# 目录

| 1 简介                         | 1  |
|------------------------------|----|
| 2 产品特性                       | 2  |
| 3 应用场景                       | 3  |
| 4 快速参考数据                     | 4  |
| 5 订购信息                       |    |
|                              |    |
| 6 系统框图                       | 7  |
| 7 引脚信息                       | 8  |
| 7.1 引脚说明                     |    |
| 8 功能描述                       | 10 |
| 9 I <sup>2</sup> C总线接口和寄存器设置 | 11 |
| 10 绝对最大额定值                   |    |
|                              |    |
| 11 热特性                       |    |
| 12 电气特性                      | 14 |
| 12.1 DC特性                    |    |
| 12.2 AC特性                    |    |
| 12.3 TDM时序特性                 |    |
| 12.4 I <sup>2</sup> C时序特性    |    |
| 13 产品应用                      |    |
| 13.1 应用示意图                   |    |
| 14 封装尺寸图                     | 23 |
| 15 WLCSP贴片焊接                 | 25 |
| 15.1 简介                      |    |
| 15.2 WLCSP电路板安装              |    |
| 15.3 回流焊接                    |    |
| 15.3.1 焊点高度                  |    |
| 15.3.2 焊点质量<br>15.3.3 返修     |    |
| 15.3.4 清洁                    |    |
| 16 法律和联系信息                   |    |
|                              |    |
| 17 修订记录                      | 29 |



### 1 简介

TFA9873是一款高效升压D类音频放大器,可在供电电压为4.0 V(THD = 1%)时向6 Ω扬声器提供平均4.5 W的输出功率。该放大器内部集成自适应DC-DC转换器,可提高供电电压,大幅提升音质。

内部的自适应DC-DC转换可提升供电轨电压,为音频放大器提供更高的裕量和功率输出,供电电压仅在必要时升高,从而限制D类音频放大器的静态功耗,并最大限度地提升输出功率。

TFA9873可嵌入免提扬声器平台和接收器扬声器平台,驱动免提扬声器( $4\,\Omega\sim8\,\Omega$ )或听筒扬声器(高达32  $\Omega$ )播放音频。在手机听筒通话场景下,最大输出功率和噪声水平低于免提通话场景。

TFA9873集成了电池保护功能: 当电池电压较低时,通过限制电源电流,防止音频系统从电池吸取过量的负载电流,从而避免系统处于欠压状态。通过防止从电池吸取过量电流、避免器件意外关闭,该电路设计将电池电压下降的影响降至最低。

由于TFA9873的数字输入接口对时钟抖动不敏感,该款芯片受射频干扰低。D类音频放大器采用二阶闭环架构,能够提供出色的音频性能,以及高供电电压纹波抑制比。TFA9873采用TDM作为音频输入口,通过I<sup>2</sup>C总线接口传输控制信息。

TFA9873采用拥有30个锡球的晶圆级芯片封装(WLCSP),锡球间距为400 μm。



### 2 产品特性

- 高输出功率:
  - 。 为6 Ω负载提供4.5 W (均值)功率 (4.0 V供电电压, THD = 1%)
  - 。 为8 Ω负载提供3.5 W(均值)功率(4.0 V供电电压, THD = 1%)
- 支持对听筒  $(16\Omega$ 或32 $\Omega$ ) 和免提  $(4\Omega$ 至8 $\Omega$ ) 扬声器进行配置
- 高效、低功率损耗和低噪音的扬声器驱动器
- 在固定升压模式和自适应升压模式之间切换时,自适应DC-DC转换器可平稳提升供电电压,防止大电 池电压尖峰并限制静态功耗
- 宽电源电压范围 (2.7 V 5.5 V可全面工作)
- 超低的噪声输出电压: 9 μV
- 低电池功耗: 低至120 mA (平均音乐播放功率P<sub>0</sub> = 380 mW)
- I<sup>2</sup>C总线控制接口(400 kHz)
- 通过TDM总线对扬声器电流和电压进行监控,实现主机回声消除(AEC)
- 支持16 kHz/32 kHz/44.1 kHz/48 kHz采样频率
- 支持超声波(运行频率: 96 kHz, 音频接口: TDM)
- 通过专用中断引脚实现编程中断控制
- 低射频干扰
- 热折返和过温保护



# 3 应用场景

- 手机和平板电脑
- 便携式导航设备 (PND)



# 4 快速参考数据

表 4-1 快速参考数据

| 符号                           | 参数            | 条件                                                   | 最小值                                        | 典型值 | 最大值                                                       | 单位 |  |
|------------------------------|---------------|------------------------------------------------------|--------------------------------------------|-----|-----------------------------------------------------------|----|--|
|                              | + M, /# + + F | 位于VBAT引脚, 在实际应用                                      | 2.7                                        |     |                                                           | ., |  |
| V <sub>BAT</sub>             | 电池供电电压        | 中,V <sub>BAT</sub> 不得低于V <sub>DDD</sub>              | 2.7                                        | -   | 版入値<br>5.5<br>1.95<br>3.6<br>38<br>-<br>-<br>-<br>-<br>19 | V  |  |
| V <sub>DDD</sub>             | 数字供电电压        | 位于VDDD引脚                                             | 1.65                                       | 1.8 | 1.95                                                      | V  |  |
| V <sub>DD(IO)</sub>          | I/O接口供电电压     | 位于VDD(IO)引脚                                          | 1.65                                       | -   | 3.6                                                       | V  |  |
| R <sub>L</sub>               | 负载电阻          |                                                      | 3.2                                        | -   | 38                                                        | Ω  |  |
|                              |               | 常规电量模式; 工作模式: 负                                      |                                            |     |                                                           |    |  |
| 符号 VBAT VDDD VDD(IO) RL IBAT |               | 载电阻R <sub>L</sub> =6Ω,平均音乐播放                         |                                            |     |                                                           |    |  |
|                              |               | 功率P <sub>o</sub> = 380 mW,V <sub>BAT</sub> = 4.0     | -                                          | 120 | -                                                         | mA |  |
|                              |               | $V$ , $V_{BST} = 8 V$ , $V_{DD(IO)} = V_{DDD} =$     |                                            |     |                                                           |    |  |
|                              |               | 1.8 V                                                |                                            |     |                                                           |    |  |
|                              |               | 低功耗模式; 开启音频放大器                                       |                                            |     |                                                           |    |  |
| _                            | 1.31 /// 1.32 | 转换输入信号检测功能, Po=                                      | 1.65                                       |     |                                                           |    |  |
| 'BAT                         | 电池供电电流        | $0 \text{ mW}, V_{BAT} = 4.0 \text{ V}, V_{BST} = 8$ | -                                          | 3.8 | -                                                         | mA |  |
|                              |               | $V, V_{DD(IO)} = V_{DDD} = 1.8 V$                    |                                            |     |                                                           |    |  |
|                              |               | 空闲模式; 开启音频放大器接收                                      |                                            |     |                                                           |    |  |
|                              |               | 信号功能、输入信号检测功能;                                       | 信号功能、输入信号检测功能; - 55 - $P_0 = 0 \text{ mW}$ | μΑ  |                                                           |    |  |
|                              |               | P <sub>o</sub> = 0 mW                                |                                            |     |                                                           |    |  |
|                              |               | 掉电状态;位于VBAT引脚;DC-                                    |                                            | 4   |                                                           |    |  |
|                              |               | DC处于关闭状态 <sub>;</sub> T <sub>j</sub> = 25℃           | -                                          | 1   | -                                                         | μΑ |  |
|                              |               | 常规电量模式; 工作模式: 负                                      |                                            |     |                                                           |    |  |
|                              |               | 载电阻R <sub>L</sub> =6Ω,平均音乐播放                         |                                            |     |                                                           |    |  |
| BAT F                        |               | 功率P <sub>o</sub> = 380 mW,V <sub>BAT</sub> = 4.0     | -                                          | 6.6 | -                                                         | mA |  |
|                              |               | $V$ , $V_{BST} = 8 V$ , $V_{DD(IO)} = V_{DDD} =$     |                                            |     |                                                           |    |  |
|                              |               | 1.8 V                                                |                                            |     |                                                           |    |  |
|                              |               | 低功耗模式, 开启音频放大器                                       |                                            |     |                                                           |    |  |
| I <sub>DDD</sub>             | 数字供电电流        | 转换输入信号检测功能; Po=                                      |                                            | F 4 |                                                           |    |  |
|                              |               | $0 \text{ mW}, V_{BAT} = 4.0 \text{ V}, V_{BST} = 8$ | -                                          | 5.1 | -                                                         | mA |  |
|                              |               | $V, V_{DD(IO)} = V_{DDD} = 1.8 V$                    |                                            |     |                                                           |    |  |
|                              |               | 空闲模式, 开启音频放大器接收                                      |                                            |     |                                                           |    |  |
|                              |               | 信号功能、输入信号检测功能;                                       | -                                          | 3   | -                                                         | mA |  |
|                              |               | P <sub>o</sub> = 0 mW                                |                                            |     |                                                           |    |  |
|                              |               | 掉电状态                                                 | -                                          | 1.5 | 19                                                        | μΑ |  |



| 符号                 | 参数           | 条件                                            | 最小值 | 典型值 | 最大值 | 单位 |
|--------------------|--------------|-----------------------------------------------|-----|-----|-----|----|
|                    |              | THD+N = 1% ( $R_L = 8 \Omega$ , $L_L = 44$    |     |     |     |    |
|                    |              | $\mu H)$ , $V_{BST}=8.0V,\ V_{BAT}=4.0$       | 3.3 | 3.5 | -   | W  |
|                    |              | $V_{PDD(IO)} = V_{DDD} = 1.8 V$               |     |     |     |    |
|                    | o(AV) 平均输出功率 | THD+N = 1% ( $R_L = 6 \Omega$ , $L_L = 32$    |     |     |     |    |
| P <sub>o(AV)</sub> |              | $\mu H)$ , $V_{BST}$ = 8.0 V, $V_{BAT}$ = 4.0 | 4.2 | 4.5 | -   | W  |
|                    |              | $V_{PD}(IO) = V_{DDD} = 1.8 V$                |     |     |     |    |
|                    |              | THD+N = 1% ( $R_L = 4 \Omega$ , $L_L = 22$    |     |     |     |    |
|                    |              | $\mu H)$ , $V_{BST}$ = 7.0 V, $V_{BAT}$ = 4.0 | -   | 4.7 | -   | W  |
|                    |              | $V_{,} V_{DD(IO)} = V_{DDD} = 1.8 V$          |     |     |     |    |



# 5 订购信息

#### 表 5-1 订购信息

| 型号            | 封装      |                                                                      |           |  |  |  |  |
|---------------|---------|----------------------------------------------------------------------|-----------|--|--|--|--|
| 至亏            | 名称      | 说明                                                                   | 版本        |  |  |  |  |
| TFA9873DUK/N1 | WLCSP30 | 晶圆级芯片封装: 30个锡球,间距: 0.4 mm; 主体尺寸: 2.42 mm x 2.18 mm x 0.5 mm; 无背面涂层   | SOT1443-6 |  |  |  |  |
| TFA9873EUK/N1 | WLCSP30 | 晶圆级芯片封装: 30个锡球,间距: 0.4 mm; 主体尺寸: 2.42 mm x 2.18 mm x 0.525 mm; 含背面涂层 | SOT1443-7 |  |  |  |  |



## 6 系统框图

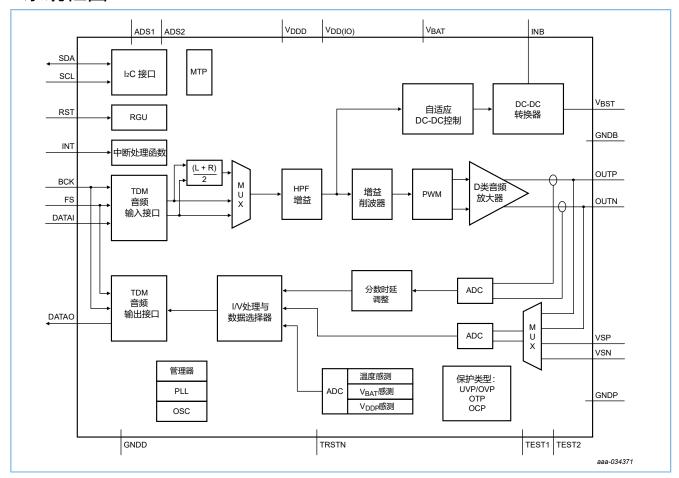



图 6-1 系统框图



### 7 引脚信息

## 7.1 引脚说明

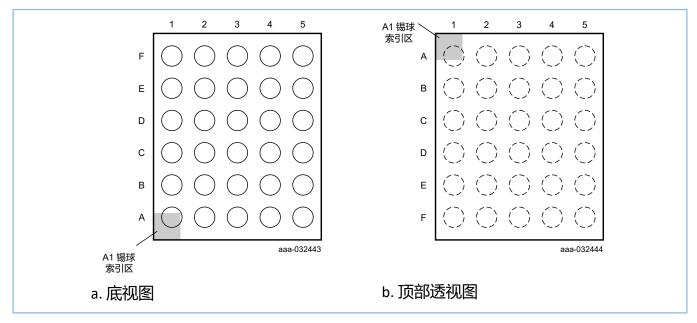



图 7-1 球形引脚排列图



图 7-2 球形引脚 - 顶部透视图

表 7-1 引脚说明

| 符号    | 引脚 | 类型 | 说明              |
|-------|----|----|-----------------|
| DATAI | A1 | I  | TDM接口的数字音频数据输入  |
| вск   | A2 | I  | TDM接口的数字音频位时钟输入 |
| FS    | А3 | I  | TDM接口的数字音频帧同步输入 |
| GNDP  | A4 | Р  | 电源接地            |
| OUTN  | A5 | 0  | 反相输出            |
| DATAO | B1 | 0  | TDM接口的数字音频数据输出  |
| RST   | B2 | I  | 复位输入            |
| INT   | В3 | 0  | 数字中断输出          |
| GNDP  | B4 | Р  | 电源接地            |
| VBST  | В5 | Р  | 升压供电电压输出        |

TFA9873 SDS



| 符号      | 引脚 | 类型  | 说明                       |
|---------|----|-----|--------------------------|
| GNDD    | C1 | Р   | 数字接地                     |
| GNDD    | C2 | Р   | 数字接地                     |
| VSN     | С3 | I   | 电压感测负输入                  |
| TEST1   | C4 | 1/0 | 测试信号输入1, 仅用于测试, 连接到PCB接地 |
| OUTP    | C5 | 0   | 非反向输出                    |
| VDDD    | D1 | Р   | 数字供电电压                   |
| ADS1    | D2 | 1   | 数字地址选择输入1                |
| VSP     | D3 | 1   | 电压感应正输入                  |
| TEST2   | D4 | 1/0 | 测试信号输入2; 仅用于测试; 连接到PCB接地 |
| VBST    | D5 | Р   | 升压供电电压输出                 |
| VDD(IO) | E1 | Р   | I/O接口供电电压                |
| ADS2    | E2 | I   | 数字地址选择输入2                |
| TRSTN   | E3 | I   | 测试复位输入,仅用于测试: 连接到PCB接地   |
| GNDB    | E4 | Р   | 升压接地                     |
| INB     | E5 | Р   | DC-DC升压转换器输入             |
| SCL     | F1 | I   | 数字I <sup>2</sup> C总线时钟输入 |
| SDA     | F2 | 1/0 | 数字I <sup>2</sup> C总线数据输入 |
| VBAT    | F3 | Р   | 电池供电电压                   |
| GNDB    | F4 | Р   | 升压接地                     |
| INB     | F5 | Р   | DC-DC升压转换器输入             |



## 8 功能描述

如图 6-1所示,TFA9873是一款高效桥式负载(BTL)D类音频放大器。

TFA9873提供TDM输入/输出接口,可实现与音频主机通信:支持为扬声器提供超声波路径。

电池电压低且启用电池防护时,经TDM接口输出到扬声器的增益会自动降低,以限制电池电流。

数字音频流被转换为两个脉冲宽度调制(PWM)信号,并注入到D类音频放大器中。三电平PWM方案支持无滤波扬声器驱动。

自适应DC-DC转换器会将输出电压升至D类放大器要求的水平。



# 9 I2C总线接口和寄存器设置

TFA9873支持400 kHz  $I^2$ C总线微控制器接口模式标准。 $I^2$ C总线负责控制TFA9873并收发数据。TFA9873仅可在 $I^2$ C从模式下,作为从属接收器或发送器运行。



## 10 绝对最大额定值

#### 表 10-1 绝对最大额定值

符合绝对最大额定值系统(IEC 60134)。

| 符号                  | 参数                  | 条件              |                                                                         | 最小值   | 典型值 | 最大值             | 单位 |
|---------------------|---------------------|-----------------|-------------------------------------------------------------------------|-------|-----|-----------------|----|
| V <sub>BAT</sub>    | 电池供电电压              | 位于VBAT引脚        |                                                                         | - 0.3 | -   | +6              | V  |
| V <sub>BST</sub>    | 升压器输出电压             | 位于VBST引脚        | [1]                                                                     | - 0.3 | -   | +9.6            | V  |
| V <sub>INB</sub>    | 升压器输入电压             | 位于INB引脚         | [1]                                                                     | - 0.3 | -   | +9.6            | V  |
| V                   | 输出电压                | 位于扬声器连接         | [1]                                                                     | - 0.2 |     | +9.6            | V  |
| V <sub>O</sub>      | <b>制</b> 山 <b>七</b> | 处,OUTP、OUTN引脚   |                                                                         | - 0.3 | -   | <del>+9.0</del> | V  |
| V <sub>DDD</sub>    | 数字电源电压              | 位于VDDD引脚        |                                                                         | - 0.3 | -   | +2.5            | V  |
| V <sub>DD(IO)</sub> | I/O接口供电电压           | 位于VDD(IO)引脚     |                                                                         | - 0.3 | -   | +4.6            | V  |
| V <sub>low</sub>    | 低电压                 | 位于TEST1/TEST2引脚 |                                                                         | - 0.3 | -   | +2.5            | V  |
| Tj                  | 结温                  |                 |                                                                         | -     | -   | 125             | °C |
| T <sub>stg</sub>    | 存储温度                |                 |                                                                         | - 55  | -   | +150            | °C |
| T <sub>amb</sub>    | 环境温度                |                 |                                                                         | - 40  | -   | +85             | °C |
| V <sub>ESD</sub>    | 静电放电电压              | 人体模型(HBM)       |                                                                         | - 2   | -   | +2              | kV |
| ▼ ESD               | HT 电从电电压            | 充电器件模型(CDM)     | - 0.3  [1] - 0.3  [1] - 0.3  [1] - 0.3  - 0.3  - 0.3  - 0.3  - 55  - 40 | - 500 | -   | +500            | V  |

<sup>[1]</sup> 如果使用Goodix演示板,且INB引脚有1 mm长的线材/PCB走线,则可观察到 - 6 V ~ +12 V的AC脉冲,且设备不会受损,这是因为这些电压峰值并非出现在实际设备内。



# 11 热特性

#### 表 11-1 热特性

| 符号            | 参数          | 条件    | 典型值 | 最大值 | 单位  |
|---------------|-------------|-------|-----|-----|-----|
| $R_{th(j-a)}$ | 从结温到环境温度的热阻 | 4层应用板 | 60  | -   | K/W |



## 12 电气特性

### 12.1 DC特性

#### 表 12-1 DC特性

所有参数的测试条件为:  $V_{BAT}=4.0\,V,\ V_{DD(IO)}=V_{DDD}=1.8\,V:$  自适应升压模式下, $V_{BST}=8.0\,V,\ L_{BST}=1$  μH<sup>[1]</sup>,  $R_L=8\,\Omega^{[1]},\ L_L=44\,\mu\text{H}^{[1]},\ f_i=1\,k\text{Hz},\ f_s=48\,k\text{Hz},\ T_{amb}=25\,^{\circ}\text{C}$ 。以上为默认设置,如无特殊说明则无更改。

| 符号                  | 参数                                           | 条件                                                          | 最小值                       | 典型值 | 最大值                 | 单位 |
|---------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------|-----|---------------------|----|
| $V_{BAT}$           | 电池供电电压                                       | 位于V <sub>BAT</sub> 引脚;在实际应用                                 | 2.7                       | -   | 5.5                 | V  |
|                     |                                              | 中,V <sub>BAT</sub> 不得低于V <sub>DDD</sub>                     |                           |     |                     |    |
| UBAT 电池供电           |                                              | 常规功耗模式; 工作模式: 负载                                            |                           |     |                     |    |
|                     |                                              | 电阻 $R_L$ = 6 $\Omega$ ,平均音乐播放功                              | -                         | 120 | -                   | mA |
|                     |                                              | 率P <sub>o</sub> = 380 mW                                    |                           |     |                     |    |
|                     |                                              | 低功耗模式, 开启音频放大器转                                             |                           |     |                     |    |
|                     |                                              | 换、输入信号检测功能; Po=0                                            | -                         | 3.2 | -                   | mA |
| lo . <del>.</del>   | 由油供由由流                                       | mW                                                          |                           |     |                     |    |
| 'BAI                | TIE/C TIME                                   | 空闲模式; 开启音频放大器接                                              |                           |     |                     |    |
|                     |                                              | 收信号功能、输入信号检测功                                               | -                         | 55  | -                   | μΑ |
|                     |                                              | 能,Po=0 mW                                                   |                           |     |                     |    |
|                     |                                              | 掉电模式,位于VBAT引脚, DC-                                          |                           |     |                     |    |
|                     | 数字供电电压                                       | DC处于关闭状态 <sub>;</sub> T <sub>j</sub> = 25 °C <sub>;</sub> 无 | -                         | 1   | -                   | μΑ |
|                     |                                              | 时钟                                                          |                           |     |                     |    |
| $V_{DDD}$           | 数字供电电压                                       | 位于VDDD引脚                                                    | 1.65                      | 1.8 | 1.95                | V  |
|                     |                                              | 常规功耗模式;工作模式:负载                                              |                           |     |                     |    |
|                     | 数字供电电压                                       | 电阻R <sub>L</sub> =6Ω,平均音乐播放功                                | -                         | 5.5 | -                   | mA |
|                     |                                              | 率P <sub>o</sub> = 380 mW                                    |                           |     |                     |    |
|                     |                                              | 低功耗模式; 开启音频放大器转                                             |                           |     |                     |    |
|                     | ***                                          | 换、输入信号检测功能; Po=0                                            | - 120                     | mA  |                     |    |
| I <sub>DDD</sub>    | <b>一                                    </b> | mW                                                          |                           |     | - 1.95 19 3.6       |    |
|                     |                                              | 空闲模式; 开启音频放大器接收                                             |                           |     |                     |    |
|                     |                                              | 信号功能、输入信号检测功能;                                              | -                         | 2.6 | -                   | mA |
|                     |                                              | P <sub>o</sub> = 0 mW                                       |                           |     |                     |    |
|                     |                                              | 掉电状态                                                        | -                         | 1.5 | 19                  | μΑ |
| V <sub>DD(IO)</sub> | I/O接口供电电压                                    | 位于VDD(IO)引脚                                                 | 1.65                      | -   | 3.6                 | V  |
| SCL与SDA             | 引脚                                           |                                                             | '                         |     |                     | ,  |
| V <sub>IH</sub>     | 高电平输入电压                                      |                                                             | 0.7 × V <sub>DD(IO)</sub> | -   | V <sub>DD(IO)</sub> | V  |
|                     |                                              |                                                             |                           |     |                     |    |



| 符号                        | 参数                     | 条件                                 |     | 最小值                        | 典型值 | 最大值                 | 单位       |
|---------------------------|------------------------|------------------------------------|-----|----------------------------|-----|---------------------|----------|
| V <sub>IL</sub>           | 低电平输入电压                |                                    |     | -                          | -   | 0.3 x               | V        |
| V IL                      | 100年1111177年上          |                                    |     |                            |     | V <sub>DD(IO)</sub> | •        |
| FS、BCK、I                  | DATAI、ADS1、ADS2、RST    | 引脚                                 |     |                            |     |                     |          |
| $V_{IH}$                  | 高电平输入电压                |                                    |     | 0.65 × V <sub>DD(IO)</sub> | -   | V <sub>DD(IO)</sub> | V        |
| $V_{IL}$                  | 低电平输入电压                |                                    |     | _                          | _   | 0.35 ×              | V        |
| - 10                      | IKC LI TIMO C LIZE     |                                    |     |                            |     | V <sub>DD(IO)</sub> | -        |
| C <sub>in</sub>           | 输入电容                   |                                    | [2] | -                          | -   | 5                   | pF       |
|                           |                        | 输入引脚FS、BCK、DATAI、                  |     |                            |     |                     |          |
|                           |                        | ADS1、ADS2、SCL和SDA上电压               |     | -                          | -   | 0.12                | μΑ       |
|                           |                        | 为1.8 V                             |     |                            |     |                     |          |
| I <sub>LI</sub>           | 输入漏电流                  | 输入引脚TRSTN上电压为1.8 V,                |     | _                          | 20  | _                   | μА       |
|                           |                        | 下拉电流                               |     |                            |     |                     | <b>P</b> |
|                           |                        | 输入引脚RST上电压为1.8 V,下                 |     | _                          | 90  | =                   | μА       |
|                           |                        | 拉电流                                |     |                            | 30  | _                   | μ/ (     |
| DATAO . IN                | T引脚,推挽输出级              |                                    |     |                            |     |                     |          |
| $V_{OH}$                  | 高电平输出电压                |                                    |     | V <sub>DD(IO)</sub> - 0.4  | -   | -                   | V        |
| $V_{OL}$                  | 低电平输出电压                |                                    |     | -                          | -   | 400                 | mV       |
| SDA引脚,                    | 开漏输出,外部电阻( <b>10</b> l | κ <b>Ω</b> )连接至V <sub>DD(IO)</sub> |     |                            |     |                     |          |
| V <sub>OH</sub>           | 高电平输出电压                |                                    |     | V <sub>DD(IO)</sub> - 0.4  | -   | -                   | V        |
| V <sub>OL</sub>           | 低电平输出电压                | I <sub>OL</sub> = 4 mA             |     | -                          | -   | 400                 | mV       |
| OUTP与OU                   | TN引脚                   |                                    |     |                            |     |                     |          |
| R <sub>DSon</sub>         | 漏源导通电阻                 | PMOS晶体管 + NMOS晶体管                  |     | -                          | 400 | 500                 | mΩ       |
| 保护                        |                        |                                    |     |                            |     |                     | ,        |
| T <sub>act(th_prot)</sub> | 热保护激活温度                |                                    |     | 130                        | -   | -                   | °C       |
| V <sub>ovp(VBST)</sub>    | VBST引脚的过压保护            |                                    |     | 9.0                        | -   | 9.6                 | V        |
| V <sub>uvp(VBAT)</sub>    | VBAT引脚的欠压保护            |                                    |     | 2.3                        | -   | 2.7                 | V        |
| I <sub>O(ocp)</sub>       | 过流保护输出电流               |                                    |     | 2.2                        | -   | -                   | Α        |
| DC-DC转换                   | 器                      |                                    |     |                            | ,   |                     | ,        |
| $V_{BST}$                 | VBST引脚电压               | DCVOS = 101111, 升压模式(校正后)          | [3] | 7.9                        | 8   | 8.1                 | v        |

<sup>[1]</sup>  $L_{BST} = \mathcal{H}$ 压转换器电感, $R_L = \mathcal{H}$  负载电阻, $L_L = \mathcal{H}$  负载电感(扬声器)。 [2] 生产期间未测试该参数,该数值在设计中有效,并已通过产品验证检查。 [3]  $\mathcal{H}$  升压开关频率 = 2  $\mathcal{H}$  MHz( $\mathcal{H}$  PWM模式)。



## 12.2 AC特性

#### 表 12-2 AC特性

所有参数的测试条件为:  $V_{BAT} = 4.0 \text{ V}$ ,  $V_{DD(IO)} = V_{DDD} = 1.8 \text{ V}$ : 自适应升压模式下, $V_{DDP} = V_{BST} = 8.0 \text{ V}$ ,  $L_{BST} = 1 \mu H^{[1]}$ ;  $R_L = 8 \Omega^{[1]}$ ;  $L_L = 44 \mu H^{[1]}$ ;  $f_i = 1 \text{ kHz}$ ;  $f_s = 48 \text{ kHz}$ ;  $f_{pwm} = 384 \text{ kHz}$ ;  $T_{amb} = 25 ^{\circ}\text{C}$ 。以上为默认设置,如无特殊说明则无更改。

| 符号                              | 参数             | 条件                                                                              |     | 最小值 | 典型值 | 最大值  | 单位   |
|---------------------------------|----------------|---------------------------------------------------------------------------------|-----|-----|-----|------|------|
| 放大器输出工                          | 力率             |                                                                                 |     |     |     |      |      |
|                                 |                | 免提扬声器; THD + N = 1%; V <sub>DDD</sub> = 1.8 V                                   |     |     |     |      |      |
|                                 |                | $R_L = 8 \Omega_{\odot} L_L = 44 \mu H$                                         |     | 3.3 | 3.5 | -    | W    |
|                                 |                | $R_L = 6 \Omega_{\odot} L_L = 32 \mu H$                                         |     | 4.2 | 4.5 | -    | W    |
| P <sub>o(AV)</sub>              | 平均输出功率         | $R_L = 4 \Omega_{\odot} L_L = 22 \mu H_{\odot} V_{BST} = 7.0 V$                 |     | -   | 4.7 | -    | W    |
|                                 |                | 听筒扬声器; THD+N=1%; V <sub>BST</sub> =8.0 V                                        |     |     |     |      |      |
| 放大器输出等<br> Vo(offset) <br>放大器性能 |                | R <sub>L</sub> = 32 Ω, 语音模式                                                     |     | -   | 0.2 | -    | W    |
|                                 |                | R <sub>L</sub> = 32 Ω,音频模式                                                      |     | -   | 0.9 | -    | W    |
| 放大器输出                           | 引脚(OUTP和OUTN)  |                                                                                 |     | 1   | '   | '    |      |
| V <sub>O</sub> (offset)         | <b>松山伯</b> 移由厅 | 绝对值,已校正 <sub>;</sub> $V_{DDP}$ = 3.4 $V \sim 8.0$                               |     |     | _   | 1.0  | ma\/ |
|                                 | 输出偏移电压         | V, $V_{BAT}$ = 3.4 V $\sim$ 5 V                                                 |     | -   |     | 1.0  | mV   |
| 放大器性能                           |                |                                                                                 |     |     |     |      |      |
|                                 |                | 位于V <sub>BAT</sub> 引脚,工作模式:负载电                                                  |     |     |     |      |      |
|                                 |                | 阻 $R_L$ = 6 $\Omega$ ,平均音乐播放功率 $P_o$ = 380                                      | [2] | -   | 80  | -    | %    |
|                                 |                | $mW$ , $f_{sw} = 768 \text{ kHz}$                                               |     |     |     |      |      |
|                                 |                | 位于V <sub>BAT</sub> 引脚;工作模式:负载电阻R <sub>L</sub> =                                 | [2] | _   | 82  | _    | %    |
|                                 |                | 6 Ω,平均音乐播放功率P <sub>o</sub> = 380 mW                                             |     |     | OZ. |      | 70   |
| η <sub>po</sub>                 | 输出功率效率         | 位于VBAT引脚;输入: 100 Hz正弦                                                           | [2] | _   | 91  | _    | %    |
| · po                            | illg ログナル十     | 波; R <sub>L</sub> = 8 Ω、L <sub>L</sub> = 44 μH、P <sub>o</sub> = 700 mW          |     |     | J-  |      | ,0   |
|                                 |                | 位于VBAT引脚;输入: 100 Hz正                                                            |     |     |     |      |      |
|                                 |                | 弦波 <sub>;</sub> R <sub>L</sub> = 8 Ω、L <sub>L</sub> = 44 μH、P <sub>o</sub> = 3  | [2] | -   | 82  | -    | %    |
|                                 |                | W、 f <sub>pwm</sub> = 768 kHz                                                   |     |     |     |      |      |
|                                 |                | 位于V <sub>BAT</sub> 引脚;输入: 100 Hz正弦                                              | [2] | _   | 89  | _    | %    |
|                                 |                | 波 <sub>;</sub> R <sub>L</sub> = 8 Ω、L <sub>L</sub> = 44 μH、P <sub>o</sub> = 3 W |     |     |     |      |      |
| THD+N                           | 总谐波失真加噪声       | $P_0 = 2.0 \text{ W}, R_L = 8 \Omega, L_L = 44 \mu\text{H}$                     | [1] | -   | -   | 0.05 | %    |
|                                 | 心阳极八共州木广       | $P_0 = 2.0 \text{ W}, R_L = 4 \Omega, L_L = 20 \mu\text{H}$                     | [1] | -   | -   | 0.09 | %    |



| 符号                     | 参数       | 条件                                                                       |     | 最小值   | 典型值 | 最大值  | 单位 |
|------------------------|----------|--------------------------------------------------------------------------|-----|-------|-----|------|----|
|                        |          | A加权,无输入信号,正常模式; f <sub>pwm</sub>                                         |     |       |     |      |    |
|                        |          | = 768 kHz; f <sub>s</sub> = 16 kHz、32 kHz、44.1                           | [2] | -     | 25  | -    | μV |
|                        |          | kHz、48 kHz、96 kHz                                                        |     |       |     |      |    |
|                        |          | A加权,无输入信号,低噪声模                                                           |     |       |     |      |    |
|                        |          | 式; $f_{pwm} = 768 \text{ kHz}$ ; $f_s = 16 \text{ kHz}$ 、 32             | [2] | -     | 9   | 14   | μV |
|                        |          | kHz、44.1 kHz、48 kHz、96 kHz                                               |     |       |     |      |    |
| V <sub>n(o)</sub>      | 输出噪声电压   | A加权,无输入信号,正常模式, f <sub>s</sub> = 16                                      | [2] |       |     |      |    |
|                        |          | kHz、32 kHz、44.1 kHz、48 kHz、96 kHz                                        | [2] | -     | 40  | 50   | μV |
|                        |          | A加权,无输入信号,低噪声模式; fs=                                                     |     |       |     |      |    |
|                        |          | 16 kHz、32 kHz、44.1 kHz、48 kHz、96                                         | [2] | -     | 10  | 15   | μV |
|                        |          | kHz                                                                      |     |       |     |      |    |
| DR<br>S/N              |          | A加权,无输入信号,空闲模式; f <sub>s</sub> = 16                                      | [2] |       |     |      |    |
|                        |          | kHz、32 kHz、44.1 kHz、48 kHz、96 kHz                                        | [2] | -     | 1   | -    | μV |
|                        |          | A加权; V <sub>BAT</sub> = 3.4 V ~ 5 V; THD = 1                             |     |       |     |      |    |
| DR                     | 动态范围     | %时,S/N信号达最大值;输出噪声电压                                                      | [2] | 109   | 113 | -    | dB |
|                        |          | (V <sub>n(o)</sub> );未施加信号                                               |     |       |     |      |    |
|                        |          | A加权,V <sub>BAT</sub> = 3.4 V <sup>-</sup> 5 V,THD = 1                    |     |       |     |      |    |
| S/N                    | 信噪比      | %时,S/N信号达最大值                                                             | [2] | 98    | -   | -    | dB |
|                        |          | 来自V <sub>BAT</sub> ;                                                     |     |       |     |      |    |
|                        |          | 升压器(跟随模式,V <sub>DDP</sub> = V <sub>BAT</sub> ),方                         |     |       |     |      |    |
|                        |          | 波f <sub>ripple</sub> = 217 Hz,V <sub>ripple</sub> = 50 mV <sub>(p-</sub> |     | 70    | 85  | -    | dB |
|                        |          | <sub>p)</sub> , V <sub>BAT</sub> = 4.0 V                                 |     |       |     |      |    |
|                        |          | 来自V <sub>BAT</sub> ;                                                     |     |       |     |      |    |
|                        |          | 升压器(跟随模式,V <sub>DDP</sub> = V <sub>BAT</sub> ),正                         |     |       |     |      |    |
| PSRR                   | 电源抑制比    | 弦波 $f_{ripple}$ = 20 Hz $\sim$ 1 kHz, $V_{ripple}$ = 200                 |     | 70    | 90  | -    | dB |
|                        |          | mV (RMS),V <sub>BAT</sub> = 3.4 V ~ 5.0 V <sub>1</sub> 低功耗               |     |       |     |      |    |
|                        |          | 模式、低噪声模式已开启                                                              |     |       |     |      |    |
|                        |          | 来自V <sub>BAT</sub> ;                                                     |     |       |     |      |    |
|                        |          | 升压器(跟随模式,V <sub>DDP</sub> = V <sub>BAT</sub> ),正                         |     |       |     |      |    |
|                        |          | 弦波 $f_{ripple}$ = 1 Hz $\sim$ 20 kHz, $V_{ripple}$ = 200                 |     | 55    | 60  | -    | dB |
|                        |          | mV (RMS), $V_{BAT} = 3.4 \text{ V} \sim 5.0 \text{ V}$                   |     |       |     |      |    |
| ∆ <b>G/</b> ∆ <b>f</b> | 增益随频率的变化 | BW = 20 Hz $\sim$ 15 kHz, $V_{BAT}$ = 3.4 V $\sim$ 5 V                   |     | - 0.1 | -   | +0.7 | dB |
| V <sub>POP</sub>       | POP音电压   | 发生在模式转换与增益改变时                                                            |     | -     | -   | 2    | mV |
| R <sub>L</sub>         | 负载电阻     |                                                                          |     | 3.2   | 8   | 38   | Ω  |
| C <sub>L</sub>         | 负载电容     |                                                                          |     | _     | _   | 1    | nF |



| 符号                            | 参数                                          | 条件                                               |        | 最小值   | 典型值 | 最大值  | 单位  |
|-------------------------------|---------------------------------------------|--------------------------------------------------|--------|-------|-----|------|-----|
| f <sub>sw</sub>               | 开关频率                                        | 直接与TDM输入频率相关联                                    |        | 352.8 | -   | 768  | kHz |
| G <sub>(TDM-VO)</sub>         | TDM至Vo之间的增益                                 | INPLEV = 0 dB                                    |        | 6     | -   | 21   | dB  |
| 放大器上电                         | .、掉电和传输时延                                   | '                                                |        | ,     |     | '    |     |
| t <sub>d(on)PLL</sub>         | PLL开启时延时间                                   | BCK上PLL锁定,f <sub>s</sub> = 48 kHz                |        | -     | 2   | -    | ms  |
| t <sub>d(on)amp</sub>         | 放大器开启时延时间                                   | f <sub>s</sub> = 48 kHz                          |        | -     | 55  | -    | μs  |
| t <sub>d(off)</sub>           | 关闭时延时间                                      |                                                  |        | -     | 32  | -    | μs  |
| t <sub>d(alarm)</sub>         | 报警时延时间                                      |                                                  |        | -     | 200 | -    | ms  |
|                               |                                             | 立体声应用中左右声道之间的传输时延                                | 延差 = 1 |       |     |      |     |
|                               | 传输时延                                        | f <sub>s</sub> = 16 kHz                          |        | -     | -   | 1    | ms  |
|                               |                                             | f <sub>s</sub> = 32 kHz                          |        | -     | -   | 750  | μs  |
| t <sub>PD</sub>               |                                             | f <sub>s</sub> = 44.1 kHz                        |        | -     | -   | 710  | μs  |
|                               |                                             | f <sub>s</sub> = 48 kHz                          |        | -     | -   | 700  | μs  |
|                               |                                             | f <sub>s</sub> = 96 kHz                          |        | -     | -   | 600  | μs  |
| 升压器电感                         | ţ                                           |                                                  |        |       |     |      |     |
| L <sub>bst</sub>              | 升压电感                                        |                                                  |        | 0.33  | 1   | 1.2  | μН  |
| 电压和电流                         | 医感测性能                                       |                                                  |        |       |     |      |     |
| S/N                           | 信噪比                                         | I <sub>O</sub> = 1.1 A(峰值) <sub>;</sub> A加权      |        | 62    | 65  | -    | dB  |
| $\Delta$ V <sub>sense</sub> / | V <sub>sense</sub> /I <sub>sense</sub> 比率失配 | 导频音—40 dBFS                                      | [3]    | -     | 2   | -    | %   |
| THD+N                         | 总谐波失真加噪声                                    | $f_i$ = 20 Hz $\sim$ 20 kHz, $V_i$ = $-$ 12 dBFS |        | -     | -   | 0.75 | %   |

- [1]  $L_{BST} =$  升压转换器电感, $R_L =$  负载电阻, $L_L =$  负载电感(扬声器)。
- [2] 生产期间未测试该参数,该数值在设计中有效,并已通过产品验证检查。 [3] 用于扬声器保护。如果配合使用Goodix扬声器保护,扬声器温度精度可达±10°C。

### 12.3 TDM时序特性

#### 表 12-3 TDM总线接口特性

所有参数的测试条件为: V<sub>BAT</sub> = 4.0 V<sub>1</sub>, V<sub>DDD</sub> = 1.8 V: 自适应升压模式下, V<sub>DDP</sub> = V<sub>BST</sub> = 8.0 V<sub>1</sub>, L<sub>BST</sub> = 1  $\mu$ H<sup>[1]</sup>: R<sub>L</sub> = 8  $\Omega$ <sup>[1]</sup>: L<sub>L</sub> = 44  $\mu$ H<sup>[1]</sup>: f<sub>i</sub> = 1 kHz: f<sub>s</sub> = 48 kHz: T<sub>amb</sub> = 25°C。以上为默认设置,如无特殊说明则无更改。

| 符号               | 参数   | 条件                 |     | 最小值              | 典型值 | 最大值               | 单位  |
|------------------|------|--------------------|-----|------------------|-----|-------------------|-----|
| f <sub>s</sub>   | 采样频率 | 位于WS引脚,音频模式        | [2] | 16               | -   | 48                | kHz |
|                  |      | 位于WS引脚,超声模式        |     | -                | -   | 96                | kHz |
| f <sub>clk</sub> | 时钟频率 | 位于BCK引脚,音频模式       | [2] | 32f <sub>s</sub> | -   | 384f <sub>s</sub> | kHz |
|                  |      | 位于BCK引脚,超声模式       |     | -                | -   | 96f <sub>s</sub>  | MHz |
| t <sub>su</sub>  | 设置时间 | 从WS(FS)信号边沿到BCK高电平 | [3] | 10               | -   | -                 | ns  |



| 符号               | 参数                    | 条件               |     | 最小值 | 典型值 | 最大值 | 单位 |
|------------------|-----------------------|------------------|-----|-----|-----|-----|----|
|                  |                       | 从DATA信号边沿到BCK高电平 |     | 10  | -   | -   | ns |
| t <sub>h</sub> 伤 | 保持时间                  | 从BCK高电平到WS(FS)边沿 | [3] | 10  | -   | -   | ns |
|                  |                       | 从BCK高电平到DATA信号边沿 |     | 10  | -   | -   | ns |
| tı               | 外部时钟抖动                | BCK上PLL锁定        | [4] | -   | 1   | 2   | ns |
|                  | <b>グルロかれ 44.14-47</b> | FS上PLL锁定         | [5] | -   | -   | 20  | ns |

- [1]  $L_{BST} =$  升压转换器电感, $R_L =$  负载电阻, $L_L =$  负载电感(扬声器)。
- [2] 将TDM位时钟(BCK)的输入用作放大器和DC-DC转换器的时钟输入。为确保时钟正常运行,须具备BCK和WS两种信号。 [3] 生产期间未测试该参数,该数值在设计中有效,并已通过产品验证检查。
- [4] 当BCK上PLL锁定时,若时钟抖动时间大于1 ns,则放大器输出噪声会更强,为保证放大器性能,抖动时间不超过2 ns。
- [5] 当FS上PLL锁定时,系统对抖动的敏感度较低。

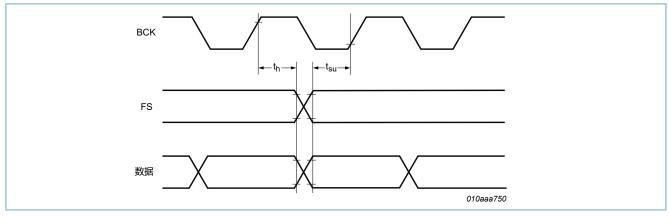



图 12-1 TDM时序

## 12.4 I<sup>2</sup>C时序特性

#### 表 12-4 I<sup>2</sup>C总线接口特性

所有参数的测试条件为: V<sub>BAT</sub> = 3.6 V<sub>1</sub> V<sub>DDD</sub> = 1.8 V<sub>2</sub> 自适应升压模式下, V<sub>DDP</sub> = V<sub>BST</sub> = 8.0 V<sub>1</sub> L<sub>BST</sub> = 1  $μH^{[1]}$ .  $R_I = 8 Ω^{[1]}$ .  $L_L = 44 μH^{[1]}$ .  $f_i = 1 kHz$ .  $f_s = 48 kHz$ .  $T_{amb} = 25 °C$ 。以上为默认设置,如无特殊说明则无更改。

| ۸۱۱ ; ۱۱ <u>۱</u>   | 312; EL 41 MIT; II I KITE; 15 | Tallib 25 Co | •/  | JMIN ON COLLET         | 74.75147 | 1.90 /4/14/2 | .,,. |
|---------------------|-------------------------------|--------------|-----|------------------------|----------|--------------|------|
| 符号                  | 参数                            | 条件           |     | 最小值                    | 典型值      | 最大值          | 单位   |
| $f_{SCL}$           | SCL时钟频率                       |              |     | -                      | -        | 400          | kHz  |
| t <sub>LOW</sub>    | SCL时钟的低电平周期                   |              |     | 1.3                    | -        | -            | μs   |
| t <sub>HIGH</sub>   | SCL时钟的高电平周期                   |              |     | 0.6                    | -        | -            | μs   |
| t <sub>r</sub>      | 上升时间                          | SDA信号和SCL信号  | [2] | 20 + 0.1C <sub>b</sub> | -        | -            | ns   |
| t <sub>f</sub>      | 下降时间                          | SDA信号和SCL信号  | [2] | 20 + 0.1C <sub>b</sub> | -        | -            | ns   |
| t <sub>HD;STA</sub> | (重复) 开始条件的保持时间                |              | [3] | 0.6                    | -        | -            | μs   |
| t <sub>SU;STA</sub> | 重复开始条件的设置时间                   |              |     | 0.6                    | -        | -            | μs   |
| t <sub>SU;STO</sub> | 停止条件的设置时间                     |              |     | 0.6                    | -        | -            | μs   |
| t <sub>BUF</sub>    | 停止和启动之间的总线空闲时间                |              |     | 1.3                    | -        | -            | μs   |



| 符号                  | 参数                   | 条件 |     | 最小值 | 典型值 | 最大值 | 单位 |
|---------------------|----------------------|----|-----|-----|-----|-----|----|
| t <sub>SU;DAT</sub> | 数据设置时间               |    |     | 100 | -   | -   | ns |
| t <sub>HD;DAT</sub> | 数据保持时间               |    |     | 0   | -   | -   | μs |
| t <sub>SP</sub>     | 须由输入滤波器抑制的尖峰脉冲宽<br>度 |    | [4] | 0   | -   | 50  | ns |
| C <sub>b</sub>      | 每条总线的电容负载            |    |     | -   | -   | 400 | pF |

- [1]  $L_{BST} =$  升压转换器电感, $R_L =$  负载电阻; $L_L =$  负载电感(扬声器)。 [2]  $C_b$  代表一条总线的总电容,单位:pF。每条总线的最大电容负载为400 pF。
- [3] 该周期结束后,产生第一个时钟脉冲。
- [4] 由输入滤波器抑制。

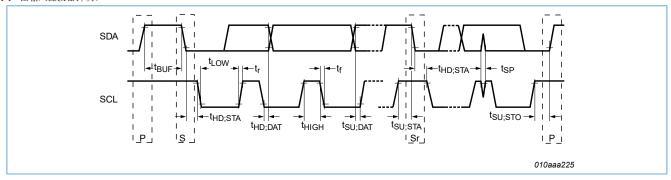



图 12-2 I<sup>2</sup>C时序



## 13 产品应用

# 13.1 应用示意图

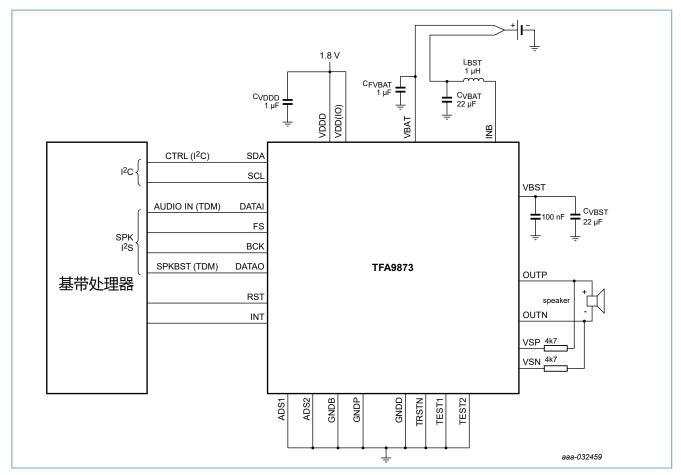



图 13-1 典型单声道应用



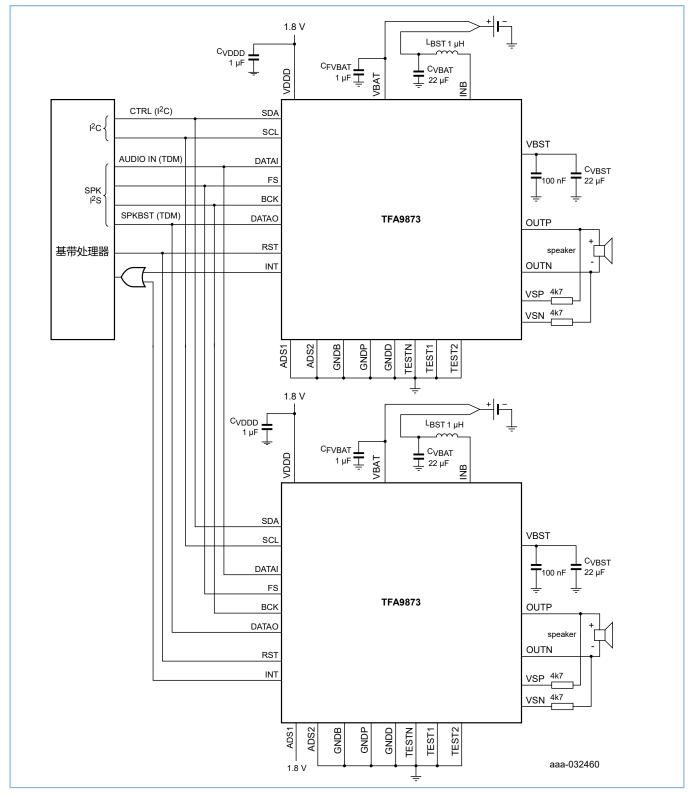



图 13-2 典型立体声应用



## 14 封装尺寸图

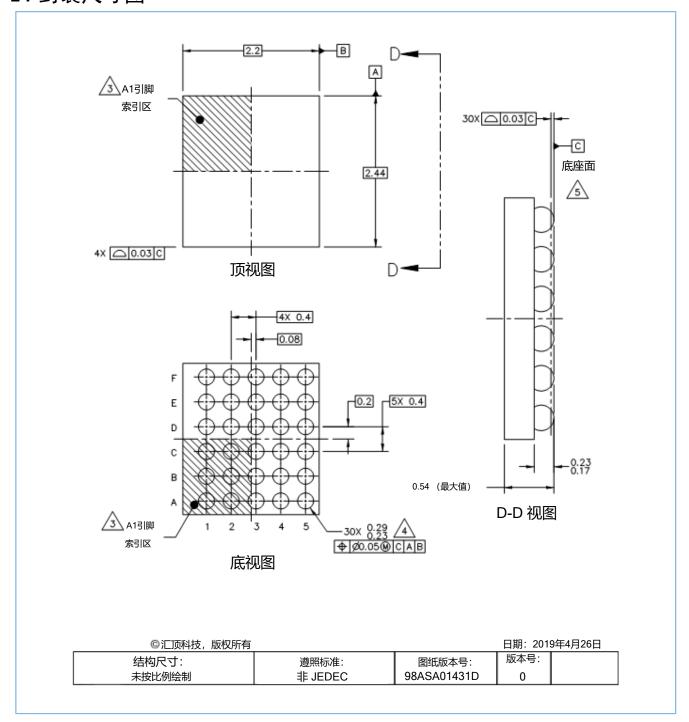



图 14-1 WLCSP30 (SOT1443-6) 封装外形图 (含背面涂层)



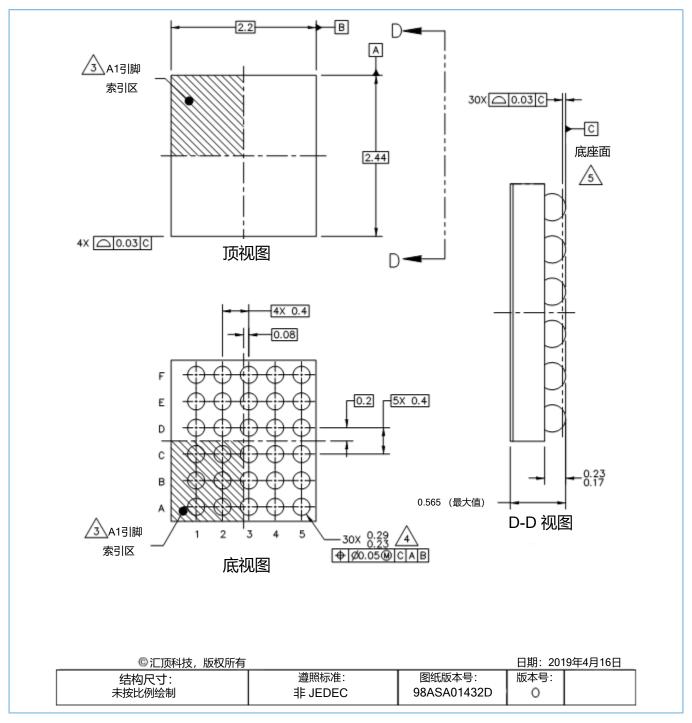



图 14-2 WLCSP30 (SOT1443-7) 封装外形图 (无背面涂层)



### 15 WLCSP贴片焊接

### 15.1 简介

本章简要介绍复杂的焊接技术。如需详细了解如何处理、包装、运输和焊接对湿气/回流焊敏感的表面贴装器件,请参考《IPC/JEDEC J-STD-033》和《IPC/JEDEC J-STD-020》。

波峰焊接不适用于此封装。

汇顶科技所采用的WLCSP封装均无铅。

### 15.2 WLCSP申.路板安装

将WLCSP封装安装到电路板上需完成以下步骤:

- 1. 在PCB板上印刷焊锡膏。
- 2. 使用贴片机贴装部件。
- 3. 回流焊接。

### 15.3 回流焊接

回流焊接的关键特性如下:

- 无铅焊接与锡铅焊接对比:相比于锡铅焊接工艺,采用无铅回流焊工艺时最低峰值温度(见图 15-1)通常更高,此时工艺窗口更小。
- 锡膏印刷:例如对电路板上各种尺寸的元件涂抹、释放锡膏以及调整工艺窗口。
- 回流焊接温度曲线:此曲线包括预热、回流焊(将电路板加热到峰值温度)和冷却的过程。用户须确保峰值温度足够高,使焊料能够形成可靠的焊点(锡膏特性),同时又不应过高,以免损坏封装和/或电路板。封装的峰值温度取决于封装厚度和体积,并根据表 15-1 中所述情况分为三类。

|           | 封装回流焊温度(℃) |             |         |  |  |  |  |
|-----------|------------|-------------|---------|--|--|--|--|
| 封装厚度(mm)  | 体积 (mm³)   |             |         |  |  |  |  |
|           | < 350      | 350 ∼ 2 000 | > 2 000 |  |  |  |  |
| < 1.6     | 260        | 260         | 260     |  |  |  |  |
| 1.6 ~ 2.5 | 260        | 250         | 245     |  |  |  |  |
| > 2.5     | 250        | 245         | 245     |  |  |  |  |

表 15-1 无铅工艺(遵循J-STD-020D标准)

用户须始终遵守包装上的防潮措施。

研究表明,在回流焊接过程中,较小封装的温度更高,如图 15-1所示。



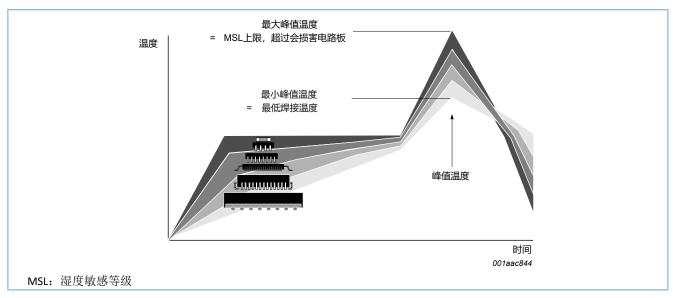



图 15-1 不同大小元件的温度曲线

更多回流焊接温度曲线的信息,请参考《IPC/JEDEC J-STD-033》和《IPC/JEDEC J-STD-020》。

### 15.3.1 焊点高度

基板和芯片之间的焊点高度受下列因素影响:

- 基板上的印刷焊料量
- 基板上的焊盘大小
- 芯片上的锡球高度

由于基板和芯片间的热膨胀系数(TEC)差异,因此二者间焊点高度越高,就越能更好地释放应力。

### 15.3.2 焊点质量

当整块焊盘都被锡球上的焊料润湿时,以形成倒装芯片焊点为佳。焊点表面须光滑且形状对称,且同一块芯片上的焊点须保持一致。对锡球进行回流焊时,在锡球直径与锡球高度之比较高的锡球(即直径大高度低的锡球)上会出现气孔。截至目前,尚未发现设备失效与此类气孔有关。回流焊后,可用X射线检查是否存在缺陷,如桥接、开路和气孔。

### 15.3.3 返修

一般情况下不建议返修。返修即为从基板上移除芯片并替换上新的芯片,而从基板上移除芯片会损坏芯片的多数焊球,因此不建议再使用被移除的芯片。

在移除芯片前,需加热基板直至所有焊点均已确认熔化,随后便可小心地将芯片从基板上移除,同时需避免损坏基板上的走线和焊盘。移除芯片时须使用塑料镊子。由于金属镊子会损坏硅,应避免使用。须仔细清洁基板表面,并清除所有焊料、助焊剂残留物和/或下填料。

将新的芯片放在基板上时,在焊盘上焊接时应使用助焊剂代替焊料。助焊剂应涂抹在芯片侧的锡球上以及基板上的焊盘上。在放置新的芯片时,应借助显微镜,确保芯片对准。回流焊接时,温度曲线遵循《IPC/JEDEC J-STD-033》和《IPC/JEDEC J-STD-020》的要求。



## 15.3.4 清洁

回流焊接完成后,即可开始进行清洁。



### 16 法律和联系信息

版权所有 © 2020 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

#### 商标声明

**GODiX** 和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

#### 免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应 用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

#### 深圳市汇顶科技股份有限公司

总部地址:深圳市福田保税区腾飞工业大厦B座2层、13层

电话: +86-755-33338828 传真: +86-755-33338830

网址: <a href="http://www.goodix.com">http://www.goodix.com</a>



# 17 修订记录

#### 表 17-1 修订记录

| 文档ID          | 发布日期         | 数据手册状态  | 修订通知 | 前一版本          |  |
|---------------|--------------|---------|------|---------------|--|
| TFA9873 v 1.1 | 2020-10-22   | 简版数据手册  | -    | TFA9873 v.1.0 |  |
| 修改说明:         |              |         |      |               |  |
| TFA9873 v 1.0 | 2020-02-14   | 简版数据手册  | -    | TFA9873 v.0.2 |  |
| 修改说明:         | • 基于Goodix模板 | 更新文档格式。 |      |               |  |
| TFA9873 v.0.2 | 2020-01-20   | 目标数据手册  | -    | -             |  |