G@WDIX

GProgrammer User Manual

Version: 2.3

Release Date: 2021-07-16

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

GCDD]X and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other

trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F.,, Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

GA@DIiX preface

Preface
Purpose

This document introduces how to install GProgrammer and operate its functional modules, enabling users to quickly

get started with GProgrammer.

Audience

This document is intended for:
. GR551x users
o GR551x developers

. GR551x testers

Release Notes

This document is the ninth release of GProgrammer User Manual, corresponding to GProgrammer V1.2.20.

Revision History
Version Date Description
1.5 2020-05-30 Initial release
* Updated sector-related description in "Chip Configuration".

¢ Added "GR551x_console.exe", introducing a command-line program to erase and download
1.6 2020-06-30 commands; added "GR551x_encrypt_signature.exe" and "User-defined Windows Scripts".

* Introduced the public key hashes to verify signatures, updated the file name extension for
encrypted and signed files, and introduced the firmware signing function in "Encrypt & Sign".
¢ Introduced the GR5515I0ND SoC for GR551x SoCs in "SoC/MCU Selection".

1.7 2020-08-30
¢ Changed icons for Delete and Startup in "Firmware".
1.8 2020-09-30 Added description on firmware download failure in "Download Firmware".
1.9 2020-11-26 Updated Ul figures for software version.
2.0 2021-01-05 Updated software Ul figures for SoC/MCU selection and firmware operations.
¢ Added file modification description to "eFuse Settings".
* Added file export description to "Import and Export".
2.1 2021-03-02 ¢ Updated descriptions concerning operations prior to viewing device logs in "Device Log".
¢ Added description of 10_LDO_SEL field to "eFuse Layout".
¢ Deleted the parameter of nvds in erase and download commands in "GR551x_console.exe".
2.2 2021-05-13 Deleted functionalities for GMF03x series.
2.3 2021-07-16 Updated software Ul figures for SoC selection.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. |

GA@DIiX Contents

Contents
=Y - ol |
L INErOAUCEHION.eeeeeiiieenieeniierrerre s s ss s s s s s ssssssssssss s e st e s s e s s assssssssasssssssssssssssssssssssssssssnnnnnnnnannassans 1
2 InStallation INSEIUCHIONS.....ueeeeeiiiiiiiiiiiii ettt s s e s s s s s s s s s e a s ansanaasas s e e s e ees 2
D2 A [13 = | =Y o o T =T [T =T g 1T o SR 2
D2 A 1 11 - | =T o T =T oL 2
3 Programming Flash With GProgrammer.........cc.iiiieeeiiiiiiiniiiiieiiieiienneeeetrennsesessesssesssensssessssnssssssssnsssssssnnsssssssnnnes 5
3.1 HardWare CONNECTION.ii ettt ettt ettt sttt e et e e ab et e s ab e s bt e e e be e e sabeesabee e nbeesabeesaneeesaneesabeeennes 5
I Yo T ORY] [=Tot o T OO PP PR PO PRPUPPOPPP 6
3.3 Main OpPeratioNal INteITaCE. ..uiii ittt e e e e e ettt e e e e e e e e st b baeeeeeeseesaneraaaeaeeeeessansraaneeaeens 7
R N @] oY aT=Totd o] o N\ F= T F= == 0 a = | PSP U PP PRSP PRPPPPI 8
T o 0 0V LT OO PP P PP PTPT P 10
3.5.1 DOWNIOAA FIFMWATE......eiiiiiiiiiieeitee ettt ettt et e sab e st e et e et e s bt e e ame e e s bt e e aneeesabeesabeeesnneesareeen 10
3.5.2 ACTION OFUEN ...ttt ettt e bttt e et e e s b et e e bb e e sabe e s abe e e sae e e s abeeeabeeesabee s beeesnneesabeeeane 12
S SR 1 T P PSSP PPTO PSPPI 13
3.6.1 INTEINQAI FIASH ...ttt e b et e ar e e s be e e nraee s 14
o I A o =T o T @ o1 T ={ U =1 d o o TR UURRINt 14
3.6.1.2 Eras@ FIASh....co ittt st sttt e s bt e s s neeeeaees 15
3.6.1.3 DOWNIOAA DaT..cuuiiiiiiieiiiiiiiie ettt ettt ettt ettt st et e et snr e e s bt e s be e san e snae e nreeereeennreas 17
ST R A D 1014 o o I D | - F 18
3.6.2 EXEEINAl FIASK....eiieiiii et ettt e et e et e et e s nae e nareenas 19
o A o =T o T @ o1 T ={ W =1 d o o TR UURURNt 19
3.6.2.2 External FIash Programming............ueeeeiiiiiiiiiiiiiieee et ee e e e e e e scatrre e e e e e e e s s snbaaeeeaeeeseennnnnsaaaeeeaeeenn 21
A =X T a7 o <Y = o VO UUUPRRRINE 22
3.7.0 EFUSE SEIEINES. .ttt e e e e e e s e s e e e e e e e e e e e e e e e eeeeeeaeaaaaaaaaaaaaaaaaeaeaaeaeaeaeeeeeeeeeeeeeeeeeeeeeraaanrrarrarnns 22
3.7.2 DOWNIOAM. .. ettt et ettt b e e h e sttt b e bt e Re e e e b et e bae e eabe e s bt e e re e e sabeesneeeane 24
. T =Y ol Y oL A YY1 o TSR PPRRRNE 25
R R =1 LU R = J =1Yo 1 FN 26
S I Yo oY o 7= (U= o o FO RPN 28
3.9.1 INIE NVDS AFBQ...eeiiiiiiiiiiieiee ettt et e s st e s s bt e e s et e s s mr et e e s sab et e e s e b et e e s ae e e saraees 30
3.9.2 REAM Al ettt ettt e e e e bt e s b et e h bt e s bt e e be e e et e e sb et e anbeesreeeareee s 30
S TR BT 4 (=TT PO PP PP ROPPP PRI 31
3.9.4 Add @ USEI ParameLer......coiiieiiiiiiiiieeiiee ettt sttt ettt sa e st e sae e e st e sbe e e smt e e s beeeaneeesabeesneeennes 32
3.9.5 MOify NVDS ParameLterS.....ucuieeiiieeiiiiiiieeeeeeeiiiiiiteeeeeeesseetbareeeeeseeessasssssaeeeseessasasssssessesesassanssssssessessannnses 34
3.9.6 REMOVE @ USEI Parameter.....ccooiuiiiiiiiiiieieitie ettt et e s s e s e e s 35
S A 4T o Yo fl=Y o I 254 o Yo T PR 36
3,00 DEVICE LOG..ceeiiiiiiiiiiiiiiiiiiiiiiiuittituttatuuua s ssaaaaasaaasasasasaasassasaeasesaasaaaaasaesaeeeeeeeeseeeeeeseeseesessesessessssesesnnmrnnnsnns 36
0 A @ 0 Yo s =Y Ve B 1T T o o = = o USRS 38
N O R € TN B e T K Yo] (=N =3 (-SSR 38

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1]

G@DIX Contents
3.11.2 GR551X_ENCIYPL_SIGNALUIE.EXE.uvveeeeiiiieeiiiitieee e e e eeeeiitte e e e e e s s ssbbar et e e e e s s s sssbbttaeeeeeesssssbbbaeeaaessssnssnnnens 40

3.11.3 User-defined WINAOWS SCIIPES...cciiuiiiiiiiiie e ceee e etes et e estre e s see e s eetee e e e sanaeesssnnteeeesnntaeeesnnaeeeesnnnneas 41

I - 11 [« OO O OO O T O O O PP TSRO PPTUUSRPPPRTPI 42

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.]

G@D]X Introduction

1 Introduction

GProgrammer supports programming of flash memories on GR551x SoCs. It runs on Windows only and provides the

following features.

o Connection via SWD and UART

o Firmware download

. Flash programming & erasing

o Inputting product information (ID, name, description, and value)
o Downloading files to eFuse

o Viewing eFuse contents

o Firmware encryption and signing

o Configuring Non-Volatile Data Storage (NVDS) parameters
. Displaying device logs

. Programming on GR551x_console

Figure 1-1 shows the Graphical User Interface (GUI) of GProgrammer.

@ GProgrammer

& Firmware @
a 0x010F FFFF ~ .
% Firmware File
& User App Firmware:
@ Image Info
| II Image Name: Run Address:
Unused Version: System Clock:
W VDS Size(Byte): XQSPI Speed:
g . Existed SPI Access Mode: Boot Delay:
Download CheckSum: Check Image:
o Delete Load Address: Code Copy Mode:
. QOverlapping Update
Update ble_app_hrs []
Unfinished Events
No Action Description
1 update Update ble_app_hrs image info
2 delete Delete ble_app_hts_

nload ble_app_ancs_fw.bir

3 add Add and d
4 add Add and download ble app bos

0x0100 2000 |

Refresh Add Delete Startup Commit

Figure 1-1 GProgrammer GUI

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1

G@Dix Installation Instructions

2 Installation Instructions

This chapter describes the environment requirements as well as installation steps for installing GProgrammer.

2.1 Installation Requirements

° Hardware environment

Table 2-1 Hardware environment

Name Description
CPU 1.6 GHz and faster
RAM 1 GB and larger

o Operating system
Table 2-2 Operating system

Name Description

Windows Windows 7/Windows 10 (32-bit/64-bit)

2.2 Installation Steps

GProgrammer runs on Windows only with an executable installation package: GProgrammer Setup Version.exe.

Users can follow the steps below when installing GProgrammer:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 2

v
G(DD]X Installation Instructions

1. Double-click GProgrammer Setup Version.exe, and follow the steps in the GProgrammer Setup wizard (see Figure
2-1).

:@:GProg rammer Setup !EI E

Welcome to GProgrammer Setup

Setup will guide you through the installation of
GProgrammer.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

Next = I Cancel

Figure 2-1 GProgrammer Setup installation wizard

Note:

Version indicates the GProgrammer software version number.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 3

v
G(DD]X Installation Instructions

2. Afterinstalling GProgrammer, you are prompted to install J-Link on demand. See Figure 2-2.

:@:GProg rammer Setup !E E

Completing GProgrammer Setup

GProgrammer has been installed on your computer,

Click Finish to dose Setup.

¥ Install JLink

= Back I Finish I Cancel

Figure 2-2 Prompt to install J-Link

- Tip:
For users who have installed J-Link on their PCs before installing GProgrammer, clear Install J-Link in the installation

wizard.

3. Afterinstalling J-Link, you can start the GProgrammer by clicking the GProgrammer shortcut on desktop or Start

menu.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

G@Dix Programming Flash with GProgrammer

3 Programming Flash with GProgrammer
This chapter elaborates on how to use functional modules of GProgrammer.
3.1 Hardware Connection

Before starting GProgrammer, make sure the host (PC) is correctly connected to the target board. You can establish the
connection in either SWD mode or UART mode.

. SWD mode

In SWD mode, users need a J-Link emulator with one end connecting to the host through a Micro USB cable and

the other end connecting to SoC pins of the target board through Dupont wire cables.

Host(PC)

Micro USB Cable

J-Link

Dupont Wire Cable

Figure 3-1 Host-target-board connection in SWD mode

The table below lists the mapping relations between J-Link emulator pins and SoC pins.

Table 3-1 Mapping relations between J-Link emulator pins and SoC pins

J-Link Emulator Pin GR551x SoC Pin
VCC VCC

GND GND

SWDIO GPIO_1

SWCLK GPIO_0

- Tip:

For target boards that have been integrated with J-Link emulator chips, you can connect the host to the target board
directly through a Micro USB cable.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 5

G@DIX Programming Flash with GProgrammer

. UART mode

In UART mode, users need a USB-to-serial converter with one end connecting to the host through a Micro USB
cable and the other end connecting to SoC pins of the target board through Dupont wire cables.

Host(PC)

Micro USB Cable USB-to-Serial

Converter

Dupont Wire Cable

Figure 3-2 Host-target-board connection in UART mode

The table below lists the mapping relations between USB-to-serial converter pins and SoC pins.

Table 3-2 Mapping relations between USB-to-serial converter pins and SoC pins

USB-to-Serial Converter Pin GR551x SoC Pin
vcC vcCe

GND GND

TX GPIO_1

RX GPIO_O

RTS CHIP_EN

- Tip:

For target boards that have been integrated with USB-to-serial converter chips, you can connect the host to the target
board directly through a Micro USB cable.

3.2 SoC Selection

Start GProgrammer. Prior to other operations, you are required to choose the SoC model on your target board and
click OK.

. Tip:

By default, GProgrammer opens the SoC selection interface when being started.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 6

G@D]X Programming Flash with GProgrammer

@ GProgrammer

Find Products

Y Filter Settings C
Products v
3 Part Number >
>
>
[&] Memory >
M Package > ltem list 5 items
< Peripheral 5 Part Number Core Frequency RAM Flash Package Peripherals
Kit N @ ‘GR3513IGND Cortex-M4F 64MHz 236KE 1024KE QFN36 2 xQSPI, 2x SPI, 2 x 12C, 2 x 125, 2 x UART, 1x ADC, 1 x ISO7816, & x PWM
its
GR3515RGBD Cortex-M4F 64MHz 256KB 1024KE BGAGS 2 xQSPI, 2xSPI, 2 x 12C, 2 x 125, 2 x UART, 1x ADC, 1x 1507816, 6 x PWM
GR3515GGBD Cortex-M4F 64MHz 256KB 1024KE BGASS 0x QSPI, 2xSPI, 2 x 12C, 2 x 125, 2 x UART, 1x ADC, 1x 1507816, 6 x PWM
GR3515I0ND Cortex-M4F 64MHz 256KB OKB QFN56 2 xQSPI, 2xSPI, 2 x 12C, 2 x 125, 2 x UART, 1x ADC, 1x 1507816, 6 x PWM
GR3513BEND Cortex-M4F 64MHz 128KE 512KB QFN40 1xQSPI, 2xSPI, 2 x 12C, 1x 125, 2 x UART, 1x ADC, 1x 1507816, 6 x PWM

oK

Figure 3-3 SoC selection interface

On the SoC selection interface, the left pane lists Products and Kits options, and the right pane shows the available
choices. You can select an SoC by defining its Part Number, Series, Core, Memory, Package, or Peripheral.

. Tip:
Peripherals listed on the SoC selection interface are only part of the peripherals of a SoC. For details of all peripherals,

see the datasheet corresponding to SoC series.

3.3 Main Operational Interface

After you choose a GR551x SoC, the main operational interface opens, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

G@DIX Programming Flash with GProgrammer

@ ‘GProgrammer

Firmware @ <o UaRT
SWD AR
] 0x010F FFFF
o Firmware File
% Device:
User App Firmware:
a Speed: 4000
@ Image Info
|I| Image Name: Run Address: Connect
Version: Size(Byte)
SPI Access Mode Boot Delay:
CheckSum: Check Image:
E Unused
Load Address:
o W nvDs

[E] unfinished Events

No. Action Description

Refresh Add Delete Startup

Figure 3-4 GProgrammer GUI (for GR551x series)

The GUI comprises a functional navigation bar on the left (see Table 3-3) and a function operational zone on the right.

Table 3-3 Options on the functional navigation bar

Icon Function Name Description

o | Firmware Displays firmware-related operations.

5] Flash Displays operations related to flash memory.

Encrypt & Sign Displays operations related to firmware encryption and signing.
B eFuse Layout Displays eFuse layout.

[| Chip Configuration Displays operations related to chip configurations.

a Device Log Displays device logs.

o] Help Displays help information.

3.4 Connection Management

GProgrammer helps users manage and control the connection between your host and target board.

Click © in the upper-right corner of the interface to open or hide the connection management window of

GProgrammer.

GProgrammer supports two connection modes: SWD and UART.
o SWD

Users need to configure Speed (data transfer rate) only and click Connect to connect the target board to the host.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 8

G@Dix Programming Flash with GProgrammer

Connect

Figure 3-5 GProgrammer SWD connection

U UART

Users need to configure Port (click Refresh and select a correct Port value) and Baudrate on demand. The default

configurations of other parameters (Parity, DataBits, StopBits, and FlowControl) cannot be modified.

After setting these parameters, click Connect to connect the target board to the host.

e Refresh Connect

Figure 3-6 GProgrammer UART connection

After the connection is successfully established, the connection management window automatically hides with the ©

button turning into @ , which indicates successful connection establishment.

To disconnect the host from the board, click @ to open the connection management window, and click Disconnect.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 9

G@Dix Programming Flash with GProgrammer

@ SWD UART

Disconnect

Figure 3-7 Clicking Disconnect on GProgrammer

3.5 Firmware

Click B on the left side of the main interface of GProgrammer to open the Firmware interface.

@ GProgrammer

bf Firmware @
a AR I% Firmware File
User App Firmware:

a @ Image Info
| II mage Name: ble Run Address:

Unused Version: Size(Byis)
W NvDs SPI Access Mode: Boot Delay:
g M xisted CheckSum: 90386 Check Image:

Download Load Address:

('}] Delete Update

W Overlapping
Unfinished Events

Update ble_app_hrs []
No. Action Description
1 add Add and download ble_app_ancs_c_fw.bin
2 add Add and download p_hts_fw.bin
3 startup Start up ble_app_hts_
0x0100 2000 | |
Refresh Add Delete Startup (BT

Figure 3-8 GProgrammer Firmware interface

You can download your application firmware to the contiguous space of flash memories, ranging from 0x01002000 to
OxO10FFFFF.

3.5.1 Download Firmware

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 10

G@Dix Programming Flash with GProgrammer

GProgrammer graphically displays the flash memory space layout occupied by firmware (see Figure 3-9), which helps
you easily learn the flash occupation status.

0x010F FFFF

Il Overlapping

Update ble_app_hrs @

0x0100 2000

Refresh Add Delete Startup

Figure 3-9 Flash firmware layout

. represents flash space to which data can be downloaded.

° M represents default NVDS area to which firmware cannot be downloaded.

o indicates space for storing to-be-deleted firmware. Example: ble_app_ancs.

° indicates space for storing to-be-downloaded firmware. Example: ble_app_hrs.

° M indicates space for storing downloaded firmware in flash memories. Example: ble_app_bps.

° ¥ indicates space overlapped by two pieces of firmware. Examples: ble_app_T3u and ble_app_hts.
Follow the steps below to download firmware to a flash memory by using GProgrammer:

1. Click Add to add a local firmware file to GProgrammer. GProgrammer presents details of the added firmware
such as firmware directory (User App Firmware) and Image Info.

2. Click Commit to download the firmware to flash memories.

After downloading, the color of the firmware turns from = to B, indicating the firmware has been successfully
downloaded.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 11

G@Djx Programming Flash with GProgrammer

I Note:
1. GProgrammer automatically reads firmware existing in the flash memories after being connected a target board.

2. If J-Link cannot be connected when you download firmware, connection/firmware download to the GR5515 SK
Board fails. At this moment, the GR551x SoC may be in sleep mode (the firmware keeps running in sleep mode).
You can press RESET on the GR5515 SK Board, wait for around one second, and re-download the firmware. If this

approach does not work, erase the flash and re-download the firmware.

3.5.2 Action Order

You can execute multiple actions at a time. For example, download multiple pieces of firmware to flash memories and
set one piece of firmware as Startup. The user-defined actions are executed by clicking Commit. The action orders are
displayed in Unfinished Events, as shown in Figure 3-10.

Unfinished Events

Figure 3-10 Action order

Executable actions for users are listed in the table below.

Table 3-4 Executable actions for users on GProgrammer

Name Button/lcon Description
Click Add to add a local firmware file to GProgrammer.
Alternatively, you can add a local firmware file to GProgrammer by directly dragging the file to
Add firmware Add GProgrammer from Windows/File Explorer.
Note:
Do not click Open after dragging the file to GProgrammer.
Click Refresh to obtain the information of firmware downloaded in the flash memories of a target
board.
Refresh firmware Refresh Unexecuted actions of flash firmware on the living target board in the Unfinished Events pane,
such as those labeled as startup or update are withdrawn with modified parameters being reset

to values before refresh.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 12

G@Djx Programming Flash with GProgrammer

Name Button/lcon Description
Click the Delete button to delete existing firmware in flash memories. Select firmware to be
deleted in the flash firmware layout, and click Delete. The firmware color turns to = . An action
Delete firmware Delete labelled as delete is added to the Unfinished Events.
Note: Delete operations result in deleting only image info of the selected firmware. The firmware
information stored in the area will not be deleted.

Set firmware as startup to run the firmware immediately. Select firmware in the flash firmware

layout, and click the Startup button. © displays on the right of the firmware. An action labelled
Start execution Startup

as startup is added to the Unfinished Events. The host automatically disconnects from the target

board after running the firmware.

Click the Update button to update the information of existing firmware in flash memories on

a target board. Select firmware to be updated in the flash firmware layout, and modify the

firmware information (the color of modified parameters turns tol E). Click Update, and the
Update firmware

dzskiiz icon displays on the right side of the firmware. An action labelled as update is added to the
information
Unfinished Events.
Execute update actions, and all parameters involved are locked. No editing is allowed. If
modification is required, withdraw the previous update action.
Note:
* Inthe action order list, you can withdraw an action by clicking - on the right side of the action.

. For two associated actions, withdrawal of the associated action may lead to automatic withdrawal of the
previous action. For example, add a firmware file to flash memories, and set it as startup. Withdrawal of Add

leads to withdrawal of Startup.

In addition, if there is overlapped space for firmware, Commit will not be available until the conflict is resolved.

Note:

For two pieces of firmware totally overlapping with each other, you can click the overlapping space to select one piece

of firmware and double-click the space to select the other.

3.6 Flash

Click B on the left side of the main interface of GProgrammer to open the Flash interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 13

GA@DIiX

Programming Flash with GProgrammer

@ GProgrammer

£+ Flash
a 0x010F FFFF - . B)
B Flash Configuration

& (® Internal Flash

External Flash Flash IDx: Flash Size:
111
Q Erase Flash

Erase Al
E Unused Erase Sector

M 5oct (® Erase Specified Area Ox | 01002000 to | Ox | OL02FFFF

0 W nvDs

Wi ble_app_bps
Firmware

é Download Data
File Path:

File Size(Byte): Download Address: | Ox

B Dump Data

Starting Address: Ox | 00000000 Size(Byte):

Figure 3-11 GProgrammer Flash interface

Config

Download

Dump

GProgrammer allows users to program internal and external flash memories of GR551x SoCs. Detailed programming

actions include Erase Flash, Download Data, and Dump Data.

Similar to the firmware layout, the Flash module presents the flash space occupation in a graphic manner.

o unused flash space

° M space for NVDS

° M Boot info space (0x01000000 to 0x01002000). The Boot info space is automatically loaded and displayed when

users choose internal flash memories.

° M space for storing downloaded firmware in flash memories. Example: ble_app_bps

o space to be operated, such as flash space to be erased

3.6.1 Internal Flash

3.6.1.1 Flash Configuration

Select Internal Flash in the Flash Configuration list to program internal flash memories.

The flash layout on the left side of the Flash interface automatically synchronizes with updated firmware layout

information to obtain the firmware, NVDS, and Boot info space.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

14

G@Dix Programming Flash with GProgrammer

@ GProgrammer

Flash @
ﬁ 0x010F FFFF) .
B Flash Configuration
a (® Internal Flash
Extemal Flash Flash ID: Flash Size: Config
111
E} Erase Flash
= Erase All
E Unused Erase Sector
. Boot @‘ Erase Specified Area Ox | 01002000 to | Ox OLO02FFFF Erase
0 Il VDS
ble_app_bps
Firmw: _
W Firmuare ¥, Download Data
L]
File Path: =3
File Size(Byte): Download Address: | Ox = 00000000 Download
B Dump Data
ble_dfu_boot
Starting Address: Ox | 00000000 Size(Byte): | 0 Dump
0x0100 0000

Figure 3-12 Selecting Internal Flash

3.6.1.2 Erase Flash

GProgrammer provides three flash erasing mechanisms: Erase All, Erase Sector, and Erase Specified Area.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 15

G@Dix Programming Flash with GProgrammer

o Erase All
The mechanism helps erase all flash space.

The Boot info and NVDS space is cleared with all firmware deleted.

@& GProgrammer

Flash e

a 0x010F FFFF

E\B Flash Configuration
(® Internal Flash

External Flash Flash ID: Flash Size: Config

E)! Erase Flash
- @® Erase All

E Unused Erase Sector

. Boot Erase Specified Area 0Ox to | Ox
o FT

M Firmware

é Download Erase all data in internal flash, are you sure to

continue?
Filz Path: =
File Size(Byte): 0K Cancel 00000000 o]

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): | 0 Dump
0x0100 0000

Figure 3-13 Erase All on GProgrammer

. Erase Sector

The mechanism helps erase a specified flash sector (size: 4 KB).

@ GProgrammer

O Flash @

ﬁ 0x010F FFFF

[\0 Flash Configuration
@® Internal Flash

External Flash Flash ID: Flash Size: Config

" Q Erase Flash

Erase All

E (®) Erase Sector 100

Unused
Erase Specified Area Ox to | Ox
o M Boot

W nvDs
‘ta Download Data
File Path: =
File Size(Byte): Download Address: |~ Ox | 00000000 Download

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): | 0 Dump
0x0100 0000

Figure 3-14 Erase Sector on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 16

G@Dix Programming Flash with GProgrammer

. Erase Specified Area

The mechanism helps erase an area within a specified address range, by sector.

@ GProgrammer

Flash @

OxQ10F FFFF

B Flash Configuration

(®) Internal Flash

5
(]

Externzl Flash Flash 1D: Flash Size: Config

E)! Erase Flash

Erase All

E Erase Sector

Unused
(®) Erase Specified Area Ox | 01010000 to | Ox | 01020000
0 W coot
W ~vos

d’; Download Data
Filz Path: =

File Size(Byte): Download Address: | Ox | 00000000 Download

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): 0 Dump
0x0100 0000

Figure 3-15 Erase Specified Area on GProgrammer

3.6.1.3 Download Data

When downloading data to flash memories on GProgrammer, users only need to view and add the BIN files of the
data, as well as set a starting address for downloading in Download Address.

@ GProgrammer

£+l Flash @

- P — @ open X
5] ponor e R+
o - > 4 « Desktop » GProgrammer v U Search GProgrammer »

ble_app_ancs (@) Inter™! Organize New folder = @

Extern & OneDiive A Name Date Type Config
] ble_spp_snes_fwbin
| ble_app_bps_fw.bin
] ble_dfu_bost_fw.bin

BIN File
EIN File
EIN File

111 8 This PC

P D Objects
Daily Record

I Desktop

Docurnent_publ

4 Documents
& Downloads
B Music

Erase

=] Pictures.

Software
é Dow B videos
File Pathd weekly report ¢ >
File name: | ble_spp_bps_fw.bin v| Image (*.bin) ~

==

File Size(B|

Download

B Dump Data

] Dump

Figure 3-16 Viewing and selecting a data file to be downloaded

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 17

GA@DIiX

Programming Flash with GProgrammer

A flash overflow error occurs when the downloaded file size is excessively large or the starting address is out of range.

@ GProgrammer

bf Flash
7] 0x010F FFFF
111
g Unused
. Boot
o Il nvDs
Firmwa
ble_dfu_boot
Ox0100 0000

E\t Flash Configuration
(® Internal Flash

External Flash Flash ID:

Flash Size:
D Erase Flash

Erase Al Failed x
(® Erase Sector 0

Erase Specified Ant

Out of range.

OK

d’; Download Data
File Path: FABAF=RAFT £0\GRProgrammerflilifi\ble_app_T3u_fw.bin

File Size(Byte): Download Address: | Ox | O10EFFFF

B Dump Data

Size(Byte): | 0

Starting Address: Ox

Figure 3-17 Flash overflow error

Config

Erase

=

Dump

- Tip:

Users are allowed to forcibly download data to the Boot info space in SWD connection mode only. In UART mode,

force download to the Boot info space is prohibited.

3.6.1.4 Dump Data

Users can dump any data in flash memories to a local file by specifying a starting dump address and the data size.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

18

G@Dix Programming Flash with GProgrammer

IE. GProgrammer
L+ Flash @
ﬁ B save as *
EP: Flas A s ThisPC » Desktop » GProgrammer v & | Search GProgrammer r
& bie_app_ancs @® Intern{ Organize » New folder E- @
Extern B This PC A Name Date Type 5| Config
|I I B 30 Objects |] ble_spp_anes_fwbin BIM File
Daily Record [1 ble_app_bps.fwbin BIM File
E} Erad B Desk || ble_dfu_boot_fw.bin BIM File
Q Dacument_publ
(®} Erase 2‘ Dcurments
E u - & Downloads
B Music
| RS Erase = Pictures b
B nvos softunare
Videos
B Firmwa + B . ¥ >
D
=~ File narme: || -.-|
File Path: Save astype | Image (*in) » &
File Size(B Download
TTE A Hide Folders Eacd
B Dump Data
Starting Address: Ox | OV10AFFFF Size(Byte): | 150000

Figure 3-18 Dump Data on GProgrammer

3.6.2 External Flash

3.6.2.1 Flash Configuration

Select External Flash in the Flash Configuration list to program external flash memories. Click Config to configure the
SPI Type and pins based on actual demands.

Click Apply to complete the configuration.

External Flash Configuration x |
SPI Type: (@) SFI QSPI0
GPIO Type GPIO PIN PIN MUX

C5: NORMAL GPIO_0 MUX_0

CLK: NORMAL GPIO_3 MUX_2

MOSE | NORMAL GPIO_4 MUX_2

MISO: | NORMAL GPIO_S MUX_2

Apply Cancel

Figure 3-19 SPI configurations

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 19

G@DIX Programming Flash with GProgrammer
External Flash Configuration x

SPI Type SPI (® QSPIO
GPIO Type GPIO PIN PIN MUX

CS: AON AON_GPIO_1 MUX_5

CLK NORMAL GPIC_24 MUX_5

100: NORMAL GPIO_Z25 MUX_5

101: NORMAL GPIC_16 MUX_5

102 NORMAL GPIO_17 MUX_5 i
:

103 NORMAL GPIC_31 MUX_5

Apply Cancel

Figure 3-20 QSPIO configurations

. Configure Flash Size

After users apply the pin configurations, GProgrammer reads and displays the external Flash ID based on which the
Flash Size is automatically set.

- Tip:
Before clicking Apply, make sure external flash memories are correctly connected to the target board in accordance

with pin configurations. Incorrect connections lead to failures in communications between external flash and the
board.

Users need to manually set the Flash Size when GProgrammer fails to get the flash size based on the accessed flash ID.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 20

GA@DIiX

Programming Flash with GProgrammer

@ GProgrammer

u Flash

0x000F FFF

> Q

171

0x0000 0000

E} Erase Fla

Erase All

E\o Flash Configuration
Internal Flash

(® External Flash Flash ID: Flash Size:

o Unknown flash ID and you need to config flash size.

®) Erase Secto oK
v o v,
Download Data
File Path F\GRProgrammerififizi\ble_app_T3u_fw.bin

File Size(Byte): Download Address: = 0x

B Dump Data

Starting Address: Ox QLOAFFFF Size(Byte):

Config
Erase
=3
01009000 Download
150000 Dump

3.6.2.2 External Flash Programming

Figure 3-21 Unknown flash ID

GProgrammer allows users to program flash memories (erase flash, download data to flash, and dump data to a local

file) within a valid address range.

@ GProgrammer

£+ Flash

0x003F FFFF

e Q

171

0 Unused

00000 0000

m Flash Configuration
Internal Flash

@® External Flash Flash ID: Flash Size:

D Erase Flash

Erase Al
(®) Erase Sector 10
Erase Specified Area Ox to | Ox

‘b Download Data
File Path: F\GRProgrammeriifiz\ble_app_T3u_fw.bin

Filz Size(Byte): Download Address: Ox

B Dump Data

Starting Address: Ox | O10AFFFF Size(Byte):

4 M Config

Erase

150000 Dump

Figure 3-22 Download Data to external flash on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

21

G@DIX Programming Flash with GProgrammer

- Tip:

No operation on external flash is allowed before completing pin configurations.

3.7 Encrypt & Sign

Click B on the left side of the main interface of GProgrammer to open the Encrypt & Sign interface.

@ GProgrammer

Encrypt & Sign @
a eFuse Settings
1D:
& (® Using Random Key Select Key
Security Mode: (® Open Close SWD: (® Open Close
171
Batch eFuse:
Download
E =7
o =
o ad t u
Encrypt and Sign
Product Info: .
'@:‘ Using Random Number Select Number
A =
Encrypt Encrypt and Sign

Figure 3-23 GProgrammer Encrypt & Sign interface

GR551x SoCs support Security Mode and Non-security Mode. The mode is determined by the security mode of the
product written in eFuse. When Security Mode is enabled, only firmware that has been encrypted and signed can be

downloaded to flash memories.

3.7.1 eFuse Settings
eFuse is a one-time programmable (OTP) memory with random access interfaces on GR551x SoCs. The eFuse stores
product configurations, security mode control information, and keys for encryption and signing.

When using GProgrammer, users can generate eFuse files by specifying product names, IDs, and firmware keys, and by

configuring security mode and SWD interfaces.

eFuse Settings

Name: test D: 1
Firmware Key: Using Random Key (®) Select Key FAGR551X update\tools\GProgrammer\test\firmware.key =
Security Mode: (®) Open Close SWD: (® Open Close

Batch eFuse: 3
Only Data Key is different between batch eFuse files
Generate efuse File

Figure 3-24 Setting eFuse parameters

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 22

G@Djx Programming Flash with GProgrammer

Note:
o Firmware keys can be random keys generated by GProgrammer. Users can also add key files on demand.

. When Security Mode is enabled, users can choose to Open or Close the SWD interface.

GProgrammer allows users to generate multiple Encrypt_key_info.bin files in batches by checking Batch eFuse.
The generated files are unique, meeting requirements of scenarios demanding one key for one device. For
example, when users input “3” in the Batch eFuse box, GProgrammer generates three Encrypt_key_info.bin files:

Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin.

Generated files are listed in the figure below:

|| 2_Encrypt_key_info.bin
|| 3 Encrypt_key info.bin
@) efuse son

|| Encrypt_keey info.bin
|| firmware. key

| | Mede_control.bin

@ productjson

=| Public_key hash.be

|| sign.key

|| sign_pub.key

Figure 3-25 Generated files

o efuse.json: a temporary file

o Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin: files to be downloaded to eFuse,
covering information on products, encryption, and signing. These files shall be downloaded to and stored in

eFuse.
e firmware.key: a private key for encrypting firmware

. Mode_control.bin: an eFuse file covering information on security mode and SWD. This file shall be downloaded

to and stored in eFuse.

o product.json: a product information file. This file shall be imported to a GProgrammer when encrypting or signing

firmware.
. sign.key: a private key to generate signatures
. sign_pub.key: a public key to verify signatures
. Public_key_hash.txt: a public key hash file to verify signatures

To make files download to eFuse or firmware encryption and signing user-friendly, GProgrammer automatically loads
the paths of the Encrypt_key_info.bin file and the Mode_control.bin file to the Download area, and the path of the
product.json file to the Product Info pane in the Encrypt and Sign area, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 23

GA@DIiX

Programming Flash with GProgrammer

@ GProgrammer

£+l Encrypt & Sign

sing Random Key

(®) Open Close

ferent between batch eFuse files.

a eFuse Settings
Name:
& Firmware Key:
Security Mode:
111
Batch eFuse:
Only Data Key i erer
E Download

Encrypt Key Info:

o Mode Control:

Encrypt and Sign
Product Info:

Random Number:

Firmware:

C\eFuse\Encrypt_key_info.bin

C\eFuse\Mode_control.bin

C\eFuse\product.json

(® Using Random Number

Figure 3-26 Paths for automatically loaded files

V]

Complete to generate efuse file.

OK

Select Number

Generate eFuse File

=

i

Encrypt Encrypt and Sign

L. Note:

No modification of eFuse-generated files is allowed because any modification may lead to firmware encryption and

signing failures.

3.7.2 Download

For users who have clicked Generate eFuse File to generate Encrypt_key_info.bin and Mode_control.bin files in the

eFuse Settings pane, select Encrypt Key Info and Mode Control in the Download pane, and click Download to eFuse
to download the files to eFuse.

Otherwise, users need to manually add Encrypt_key_info.bin and Mode_control.bin files before downloading the files

to eFuse.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

24

G@Dix Programming Flash with GProgrammer

@ GProgrammer

£+l Encrypt & Sign @
a eFuse Settings

Name: test 1D: 1111
& Firmware Key: sing Random Key Select Key

Security Mode: (®) Open Close SWD: (® Open Close
111
Batch eFuse: 3
Only Data Key is different between batch efuse files,
Generate eFuse File
E Download
Encrypt Key Info: C\eFuse\Encrypt_key_info.bin =
o Mode Control: C\eFuse\Mode_control.bin =]
Download to eFuse
Encrypt and Sign
Product Info: C:\eFuse\product.json =
Random Number: (E) Using Random Number Select Number
Firmware: =
4
Encrypt Encrypt and Sign
Figure 3-27 Downloading files to eFuse
LI Note:

eFuse information cannot be repeatedly downloaded to firmware.

3.7.3 Encrypt & Sign

When Security Mode is enabled, only firmware that has been encrypted and signed can be downloaded to flash
memories. GProgrammer allows users to encrypt and sign, or to sign multiple firmware files by using one set of
product information (Product Info) and one random number (Random Number).

The Random Number can be manually set by users or generated by GProgrammer.

When adding more than one firmware file, separate each file path with a semicolon (;), as shown in Figure 3-28.

Encrypt and Sign

Product Info: C\eFuse\productjson =
Random Number: (E) Using Random Number Select Number
Firmware: CA\firmware\ble_app_ancs_fw.bin:C:\firmware\ble_app_bps_fw.bin:C\firmware\ble_app_hrs_fw.bin:C:\firmware\ble_app_hts_fw.bin =

- -~

Encrypt Encrypt and Sign

Figure 3-28 Adding more than one firmware file

To encrypt and sign the firmware, check the Encrypt box, and the button changes from Sign to Encrypt and Sign; to
sign the firmware only, uncheck the Encrypt box, and the button changes back to Sign. Choose the directory to save

the (encrypted and) signed firmware, and click Encrypt and Sign/Sign.

Files after being encrypted and signed are listed below:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

25

G@Dix Programming Flash with GProgrammer

|| ble_app_ancs_fw_encryptandsign.bin
|| ble_app_bps_fw_encryptandsign.bin
|| ble_app_hrs_fw_encryptandsign.bin
| | ble_app_hts_fw_encryptandsign.bin

|| random.bin
Figure 3-29 GProgrammer-generated files after encryption and signing

Files after being signed are listed below:

|] ble_ app_ancs_fw _sign.bin
[| ble app_bps fw_sign.bin
[| ble_ app_hrs_fw _sign.bin
[| ble app_hts_fw_sign.bin
[] random.bin

Figure 3-30 GProgrammer-generated files after signing

| Note:

The random number generated by GProgrammer is for encryption algorithms. After users perform encryption and
signing of firmware files, the random.bin file is stored in the same directory as encrypted and signed firmware files.
Users can view and add the random.bin file to GProgrammer next time they use the random number for firmware

encryption and signing.

3.8 eFuse Layout

Click B on the left side of the main interface of GProgrammer to open the eFuse Layout interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 26

G@DIX Programming Flash with GProgrammer

@ GProgrammer

& eFuse Layout @
a Name Value Length Comments
Product ID 2 product identity
& 0x0158 Chip ID 00 00 00 00 00 00 6 chip identity
EncMode 0000 2 encrypted or not
171
SWDDisable 2 enable SWD or not
Config 00 00 00 00 4 chip configuration
Chip UID 54 534D 14 04 50 52 58 57 34 38 30 30 08 6F 22 16
E 0x012A X0 00 00 2 xo offset
o 0x0124 BT_MAC 000000 00 00 00 6
. . 5GGBD, 3:GR5515IGND,
0 Package Type 00 1 - . U
R5515BEND, 7:GR5513BENDU
Ox 10_LDO_SEL 08 1
Name Value Comments Operate
10_PWR_SRC 0: Internal, 1: External Write

Refresh

Figure 3-31 eFuse Layout interface

GProgrammer presents users with eFuse layout information: Offset, Value, Length, and Comments of fields including
but not limited to Product ID, Chip ID, EncMode, SWDDisable, Config, and I0_LDO_SEL. Among them, the Config and
10_LDO_SEL fields contain multiple bit fields.

Click Refresh to obtain the values of all fields or bit fields.

Click * before Offset of Config or 10_LDO_SEL to expand the detailed bits, as shown in the figure below. Click - or
double-click Config or 10_LDO_SEL to collapse the detailed bits.

You can change the I0_PWR_SRC value in the 10_LDO_SEL field to set the power source of peripherals.

L. Note:

You can only change the I0_PWR_SRC value from "0" to "1". The contrary direction is not allowed.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 27

Programming Flash with GProgrammer

& eFuse Layout

Firmware Offset Name

0x015E Product ID

& 0x0158 Chip ID

0x0152 EncMode

SWDDisable

0x014C Config
0 upgrade_disable

E 1 boot_clk
o 4 dpad_while_disable

5 m_sample_delay
flash_power_up_delay
11 spi_mode

13 clk_fls_ctrl

Name Value

Value Length Comments

00 00 2 product identity
00 00 00 00 00 00 6 chip identity

0000 2 encrypted or not
00 00 2 enable SWD or not

00000000 4 chip configuration

0: PLL-64MHz 1: PLL-48MHz, 2: XO-16MHz, 3: PLL-24MHz, 4:

000 3
PLL-16MHz, 5: PLL-32MHz
00 2
0000 4
00 2 mode 0, 1,2, 3
0000 4 0: 64MHz, 1: 48MHz, 2: 32MHz, 3: 24MHz 4: 16MHz, 5 16MHz
Comments Operate
Q: Internal, 1: External Write

Refresh

Figure 3-32 Expanded Offset

L. Note:

The fields and bit fields listed in the interface are stored in the efuse_config.json file in the config folder. Information

stored in eFuse is more than just the listed fields and bit fields.

3.9 Chip Configuration

Click K on the left side of the main interface of GProgrammer to open the Chip Configuration interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 28

G@Dix Programming Flash with GProgrammer

@ GProgrammer

£+l Chip Configuration = @
a Init NVDS Area
Start Address: | Ox | O10FF000 Sectors: | 1
& Parameters
A D Parameter Name Description Length(Byte) Value Value In Chip
111 +
ROM Paramaters
5.67.80:A8
0K

M Unfinished Import Export Write Read All

Figure 3-33 GProgrammer Chip Configuration interface
GProgrammer allows users to set the parameters (including USER Parameters and ROM Parameters) stored in the
NVDS area.
. USER Parameters: user-defined parameters that can be added, deleted, and modified

o ROM Parameters: ROM parameters stored on GR551x SoCs, which can be modified only by users. Neither

parameter addition nor deletion is allowed.

| Note:

. The default ROM parameters listed in the interface are stored in the nvds_config.json file in the config folder.
The parameters are not results accessed in real time from the NVDS area. For more information about ROM

parameters, see Table 3-5.

° Click == in the upper-right corner of the Chip Configuration interface to enable display of complete value

contents of a parameter.

o Look up parameters quickly by using the screening box in the upper-right corner of the interface.

Table 3-5 NVDS ROM parameters

ID Parameter Name Description

0xC001 BD_ADDRESS This parameter sets the Bluetooth device address.

0xC002 DEVICE_NAME This parameter sets the device name.

0xC007 LPCLK_DRIFT This parameter sets the Sleep Clock Accuracy (SCA); range: 10 ppm to 500 ppm
0xC085 CODED_PHY_500 This parameter sets the default Coded PHY value; Value 0: 125 kbps; Value 1: 500 kbps

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

29

G@Dix Programming Flash with GProgrammer

ID Parameter Name Description

0xCoB1 RF_XO_OFFSET This parameter sets the clock calibration byte; range: 0x000 to Ox1FF

3.9.1 Init NVDS Area

Prior to configuring NVDS parameters, users need to specify a starting address (4 KB aligned) and the number of

occupied sectors in the NVDS area.

Init NVDS Area

Start Address: | 0x | Q10FFQO0 Sectors: | 1

Figure 3-34 Setting the starting address and sector quantity in the NVDS area

NVDS initialization fails when the configured NVDS area overlaps with the existing firmware area.

@ GProgrammer

Chip Configuration = @
— Init NVDS Area
7]
Start Address: | Ox | 010FF000 Sectors: | 1
& Parameters
111
0 Can not init NVDS in the area firmware exists. +
ROM Parameters
OK
B Unfinished Import Export Write Read All
Figure 3-35 NVDS initialization failure
3.9.2 Read All

GProgrammer can read all parameters in the current NVDS area and display them in the Parameters pane.
To prevent operation failures in user applications due to parameter overlapping in the NVDS area, users are

recommended to click Read All after connecting the target board to the host.

GProgrammer provides three parameter states: Unfinished, Same, and Different, which help you quickly identify the

parameter state in the current NVDS. Details are listed below:

o Unfinished: Parameters in unfinished state are presented in black. These parameters are either new ones
different from the default listed parameters after users click Read All (example: 0x4000 in Figure 3-36) or ones
that have been listed in the NVDS area but with a different parameter length (example: 0x4001 in Figure 3-36).

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 30

GA@DIiX

Programming Flash with GProgrammer

. Same: Parameters in same state are presented in green, indicating the parameters already exist in the NVDS area

and have the same length and value as those in the default list (example: 0x4002 in Figure 3-36)

o Different: Parameters in different state are presented in orange, indicating the parameters already exist in the
NVDS area and have the same length as but a different value from default listed parameters (example: 0x4003 in
Figure 3-36)

@ GProgrammer

hf Chip Configuration
a Init NVDS Area
Start Address: | Ox
& Parameters
All i}
III USER Parameters
04001
04003
0x4000
E 0x4002
ROM Parameters
o 0xC001
0xC002
0xC007
0xC085
0xCOB1
M Unfinished M Same
.
3.9.3 Write

Select parameters to be written to NVDS, and click Write.

10ff000

Parameter Name

test3

test2

BD_ADDRESS
DEVICE_NAME
LPCLK_DRIFT
CODED_PHY_500

RF_XO_OFFSET

M Different

Description

test3

test2

Device Address
Device Name

Sleep Clock Accuracy
Prefer LE Coded PHY 500K

XO offset

01:23:45:67:8%:A8
name

500

0x00

0x0100

Import

Figure 3-36 Read All interface

dl

Sectors: | 1

Value In Chip

N/A
N/A
NAA
N/A

0x008c

Export Write

Read All

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

31

GA@DIiX

Programming Flash with GProgrammer

@ GProgrammer

hf Chip Configuration

Init NVDS Area

o
Start Address: | Ox | 10ff000
& Parameters
All D Parameter Name
1T ;
USER Parameters
: 04001 testl
0x4003 test3
0x4000

E 04002 test?

ROM Parameters

o 0xC001 BD_ADDRESS
0xC002 DEVICE_NAME
0xC007 LPCLK_DRIFT
0xC085 CODED_PHY_500
0xC0B1 RF_XO_OFFSET

M Unfinished M Same M Different

The following value will be writen in chip:

o 0xC002 : name

Are you sure to continue?

OK Cancel
Device Address 6 01:23:45:67:8%:AB
Device Name 4 name
Sleep Clock Accuracy 2 500
Prefer LE Coded PHY 500K 1 0x00
XO offset 2 0x0100

Import

Figure 3-37 Write parameters to NVDS

Ul

Sectors: | 1

Value In Chip

N/A
N/A
N/A
N/A

0x008c

Export Write

Read All

- Tip:

o Parameters in unfinished state cannot be written to NVDS directly.

* You can select more than one parameter to implement a batch write.

o When an unfinished parameter is selected, Write is unavailable.

3.9.4 Add a User Parameter

Follow the steps below to add a user parameter to NVDS.

1. Click % to open the Add USER Parameter window.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

32

G@Dix Programming Flash with GProgrammer

2. Specify the ID, Parameter Name, Description, Type, Length(Byte), Value, and data presentation format (dec or
hex).
Add USER Parameter x
D Ox
Parameter Name
Description
Type Unsigned Integer
Length(Byte) 0
Value
(® dec hex
OK Cancel
Figure 3-38 Adding a user parameter to NVDS
3. Click OK to complete the adding.
-/ Note:

You cannot input a parameter ID that is identical with those listed in the Parameters pane. Otherwise, a warning
dialog box pops up, as shown in Figure 3-39.

If the added ID is different from those existing in the NVDS, the added parameter is directly written to NVDS.

If the ID of a to-be-added parameter already exists in NVDS and the two parameters with the same ID are of the
same length, the to-be-added parameter is written to NVDS.

If the ID of a to-be-added parameter already exists in NVDS but the two parameters with the same ID are of
different lengths, the to-be-added parameter is not written to NVDS. Users need to modify the parameter length
before writing it to NVDS.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 33

G@DIX Programming Flash with GProgrammer

USER Parameters

0x4001 existed existed parameter

sl Add USER Parameter x
e ——]

ID Ox | 4001
) 0 User Parameter ID must be identical
Parameter Name duplicated
Description duplicated paramter
Type Unsigned Integer

B Unfin Length(Byte) 1

Value 20

~
-

-
o
=]
(1]
[a]
=
1)
-

OK Cancel

Figure 3-39 Failure to add a user parameter due to an identical parameter ID

3.9.5 Modify NVDS Parameters

Users can modify both the USER Parameters and ROM Parameters.

ROM Parameters: You can modify the Parameter Name, Description, and Value of a ROM parameter. The
modification on a parameter value does not lead to changes in the parameter length (except varying-length character
strings).

USER Parameters: For user parameters in same and different states, the Parameter Name, Description, and Value can
be modified. For user parameters in unfinished state, the Type and Length(Byte) can be modified.

Double-click a parameter to be modified, and edit the parameter information in the pop-up window. Click OK to write
the modifications into NVDS.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 34

GA@DIiX

Programming Flash with GProgrammer

Edit Parameter Value x

ID 0Ox
Parameter Name ABC
Description abc
Type

Length(Byte)

Value

oK Cancel

Figure 3-40 Edit Parameter Value window

L. Note:

Parameters in unfinished state with a modified length that is different from that in the NVDS remain unfinished. Such

parameters cannot be automatically written into the NVDS.

3.9.6 Remove a User Parameter

Users can remove user parameters only.

Select a parameter to be removed, and click === to remove the parameter from the NVDS.

@ GProgrammer

>

171

Chip Configuration

Init NVDS Area
Start Address: | Ox | 10ff000
Parameters

All D Parameter Name

USER Parameters

0x4001 testl
034003 test3
0x4000

0x4002 test2

ROM Parameters

0xC001 BD_ADDRESS
0xC002 DEVICE_NAME
0xC007 LPCLK_DRIFT
0xC085 CODED_PHY_500
0xC0B1 RF_XO_OFFSET

M Unfinished M Same M Different

The selected parameters will be deleted from chip.
are you sure to continue?

oK Cancel
test? 1 1
Device Address 6 01:23:45:67:8%:AB
Device Name 4 name
Sleep Clock Accuracy 2 500
Prefer LE Coded PHY 500K 1 0x00
XO offset 2 0x0100

Figure 3-41 Removing a parameter

Import

dl

Sectors:

Value In Chip

NAA
NAA
N/A
N/A

0x008c

Export

Write

Read All

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

35

G@Dix Programming Flash with GProgrammer

- Tip:
* You can select more than one parameter and click Pet= to implement a batch removal.

o When a ROM parameter is selected, Remove is unavailable (Pe== s in grey).

3.9.7 Import and Export

GProgrammer allows users to export all parameter data (Parameter Name, Description, Length, and Value) to a local

JSON configuration file as well as import local JSON configuration files to GProgrammer.

6 GProgrammer

l# Chip Configuration = @
—-— Init NVDS Area
4 Desitop + GProgrammes

& Parameters Deganire = New folder i 10

A it @ OneDeive i Mo ‘ value |
II' USER Parameters S Tie PC =+

P 10 Otgects
fastl Dy Racord
B -
> A
----- H NVOS Config " juont -
o
Import config fle.
W Unfinished M Same M Different Import mn Write Read All

Figure 3-42 Importing local JSON configuration files to GProgrammer

- Tip:

o Parameters in the imported JSON files replace all those listed in the Parameters pane.
. Export modified parameter data to a local JSON file to prevent repeated modification.
o Export is unavailable when parameters in unfinished state exist.

o All data displayed in the Chip Configuration interface can be exported by clicking Export.

3.10 Device Log

Click B on the left side of the main interface of GProgrammer to open the Device Log interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 36

G@DIX Programming Flash with GProgrammer

@& GProgrammer
& Device Log e
ID CONTENT

5]
A001 HARDFAULT CALLSTACK INFO: R
a A002 HARDFAULT

Read

Figure 3-43 Device Log interface

Users can view device logs, mainly error information during SoC running, on GProgrammer. Click Read to retrieve the

device logs.

. Note:

Prior to viewing device logs, make sure you have performed the following:
o Write device error code into the NVDS by using the application firmware (NVDS ID: AO01-A010).

o Initialize the NVDS area correctly on GProgrammer, and the initialization result is identical with the value defined

in the application firmware.

In the interface, click €D or C in the upper-right corner to switch the mode in displaying device logs between
ASCII and stream.

. @& : The device logs are displayed by ASCII character as shown in Figure 3-44.

o 20 The device logs are displayed by byte stream as shown in Figure 3-45.

Figure 3-44 Device logs in ASCII characters

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 37

G@Dix Programming Flash with GProgrammer

Device Log @
- ID CONTENT

u 4341 4C

&

M

E A

Figure 3-45 Device logs in byte streams

3.11 Command-line Programs

Goodix provides two command-line programs in the GProgrammer installation directory: GR551x_console.exe and
GR551x_encrypt_signature.exe.

. GR551x_console.exe supports firmware download and flash programming in GR551x SoCs in a command-line
interface.

o GR551x_encrypt_signature.exe supports firmware encryption and signing or firmware signing in a command-line
interface.

3.11.1 GR551x_console.exe

Follow the steps below to run GR551x_console.exe:
1. Openthe Command Prompt window from the Start menu or by entering “cmd” in the Run window.
2. Navigate to the GProgrammer installation directory by using cd command.

3. Type the GR551x_console.exe command to complete corresponding operations. The details about the command
are shown in Table 3-6.

Table 3-6 GR551x_console supported commands

Command Functional Description Command Format and Parameter Description
program <firmware file path> <run immediately:y | n>

Parameter description:

Programs firmware files to internal))
program o <firmware file path>: It sets the path of the to-be-downloaded

SoC flash memories. firmware file.
e <run immediately:y | n>: It decides on whether to run the
firmware immediately after downloading.
erase <start address<hex>> <end address<hex>><force erase when
Erases flash memory data within | conflict with firmware/bootinfo:y | n>
erase an SoC based on a specified Parameter description:

address range. e <start address<(hex)>>: It represents the start address of the

storage area to be erased (in hexadecimal).

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 38

GA@DIiX

Programming Flash with GProgrammer

Command

eraseall

download

writeefuse

reset

help

Functional Description

Erases all flash memory data

within an SoC.

Downloads data files to internal

SoC flash memories.

Writes Encrypt Key Info and Mode

Control files to eFuse.

Resets the GR551x SoC.

Displays all help information.

Command Format and Parameter Description

¢ <end address<(hex)>>: It represents the end address of the

storage area to be erased (in hexadecimal).

« <force erase when conflict with firmware/bootinfo:y | n>: This
parameter decides whether to forcibly erase the flash memory
data when its address conflicts with that of firmware, Boot info, or
NVDS.

eraseall

download <data file path> <start address<(hex)>> <force download
when conflict with firmware/bootinfo:y | n>
Parameter description:

¢ <data file path>: It sets the path of the to-be-downloaded data
file.

e <start address<(hex)>>: It represents the start address of the
download area (in hexadecimal).

« <force download when conflict with firmware/bootinfo:y | n>:
This parameter decides whether to forcibly download the data
files to internal SoC flash memories when their addresses conflict
with that of firmware or Boot info.

writeefuse <Encrypt Key Info file Path> <Mode Control file Path>

Parameter description:

¢ <Encrypt Key Info file Path>: It sets the path of Encrypt Key Info
file.

¢ <Mode Control file Path>: It sets the path of Mode Control file.

reset

help

The example below shows how to use the program command to download a firmware file to internal SoC flash

memories and run the firmware immediately after downloading.

GR551x console.exe program “C:\ble app hrs fw.bin” y

The downloading progress is displayed in real time during executing the program command, as shown in Figure 3-46.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

39

G(DDiX Programming Flash with GProgrammer

ed “C:vProgram Files {(xB6)\Goodix“GProgrammepr"

“Progran Files Goodix\GProgranmner ¥), exe progranm "C:vble_app_hes_fw. bhin™ v

Figure 3-46 Executing the program command

Note:

You cannot operate GR551x_console.exe while GProgrammer is running.

3.11.2 GR551x_encrypt_signature.exe

Follow the steps below to run GR551x_encrypt_signature.exe:
1. Openthe Command Prompt window from the Start menu or by entering “cmd” in the Run window.
2. Navigate to the GProgrammer installation directory by using cd command.

3. Type GR551x_encrypt signature. exe --paraneter tocomplete corresponding operations. The
details about “parameter” are shown in Table 3-7. (Only the most frequently used parameters are listed in the
table. To view all parameters, enter GR551x_encr ypt _si gnat ure. exe --hel p.)

Table 3-7 Frequently used parameters for GR551x_encrypt_signature.exe

Parameter Description

operation Encrypts and signs firmware or signs firmware only. Options: encryptandsign and sign.
firmware_key Shows the directory of firmware.key, which is used for encryption and signing, or signing only.
signature_key Shows the directory of sign.key, which is used for encryption and signing, or signing only.
signature_pub_key Shows the directory of sign_pub.key, which is used for encryption and signing, or signing only.
product_json_path Shows the directory of product.json, which is used for encryption and signing, or signing only.
rand_number Shows the directory of random.bin, which is used for encryption and signing, or signing only.
ori_firmware Shows the directory that saves the firmware before encryption and signing, or signing only.
output Shows the directory that saves the firmware after encryption and signing, or signing only.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 40

G@Djx Programming Flash with GProgrammer

Parameter Description

Shows the directory that saves the random numbers used in encryption and signing, or signing
random_output
only.

help Displays help information.

The example below shows how to use the program command to encrypt and sign firmware:

GR551x encrypt signature.exe

--operation="encryptandsign"

--firmware key="C:/eFuse/firmware.key"

--signature key="C:/eFuse/sign.key"
--signature pub key="C:/eFuse/sign pub.key"

--product json path="C:/eFuse/product.json"

--ori firmware="C:/firmware/ble app hrs fw.bin"

--output="C:/firmware encryptAndSign/ble app hrs fw encryptAndSign.bin"
--random output="C:/firmware encryptAndSign/random.bin"

In the code snippet above, the “C:/eFuse/” directories show the user-defined folders where files are saved after users

click Generate eFuse File, as described in “Section 3.7.1 eFuse Settings”.
. --ori_firmware=“C:/firmware/ble_app_hrs_fw.bin”: the directory of the firmware before any operation

. --output="C:/firmware_encryptAndSign/ble_app_hrs_fw_encryptAndSign.bin”: the directory of the encrypted

and signed firmware

A sample of executing the encryption and signing command is shown in Figure 3-47:

sble_app_hrs_Ffu. " ——outpu
And8ign.bin" --random_output="|
ravare_encryptAndSign/randomn.bin'

lconst n: Bx622a551b
hz
B580dcB3e7142230d61 4ceald8267f8fOA6hBE37£3B4df d616e801a91024a
Bx11 5,8x92,8xcl,8xc8,Bx16,.8x21, 8x?4.0x2c . Bxel . Bx3e, Bxf1,.8x29 .

-8x20. Bxfb. Bx%d. y E >3 . Bxed . Bxbe . Bxde Bx2 -Bxd4.
29 . 8xf1 e, Bxel, - (! 6 . Bx 1.8x92. -
»Bxde . 3.8xe?. Bx12.08x13,0xed.
£ @, Bxdb .
41, Bxch , Bxald, Bx41,0x93 . Bx1c, B> @ +Bxhl,Bx45 . Bx4b, Bxd6 . Bx66 . B:0f .
»Bx?d.0xF9,0xe2. Oxbe . Bxc5,0x31,0x53 . 0x93, Ox1f . Ox4f ,

a,Bx8d.08x5h, BxhB, 0x67, Bx18 ., 8x15, BxA7.0x89 .0 xdh, Bx55 1,
1,8x48,.8x86 .8x%h, Bxcf . Bx@5 . Bxda ., Bx6c . Bx43 . B> +Bxed, BxA7,

[C:\Program Files (x86)\Goodix\GProgrammer>

Figure 3-47 Executing the encryption and signing command

3.11.3 User-defined Windows Scripts

Users can also write custom scripts on Windows to call command-line programs. Two sample script files are provided

in the GR551x_script file in the GProgrammer installation directory.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 41

G@Djx Programming Flash with GProgrammer

encryptAndSignatureFirmware.bat can encrypt and sign firmware with firmware_origin.bin in the same directory and
the files saved in the eFuse directory. The encrypted and signed firmware is available in f i r mnar e_encr ypt AndS
i gn\firmvare_encrypt AndSi gn. bi n.

program_Firmware_EncryptAndSign.bat can erase all internal flash memories, and download the firmware f i r nw
are_encrypt AndSi gn\ fi rmnar e_encr ypt AndSi gn. bi n and save the firmware file in the internal flash
memories.

3.12 Help

Click B on the left side of the main interface of GProgrammer to open the Help interface.
GProgrammer offers help and support to users.
o About GProgrammer

This section provides version information and features of GProgrammer.
o Feedback

If you have any questions or suggestions, please send an email to software@reg.goodix.com.
. About Goodix

For more information, please visit Goodix official website: www.goodix.com.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 42

https://www.goodix.com/en

	Preface
	Contents
	1 Introduction
	2 Installation Instructions
	2.1 Installation Requirements
	2.2 Installation Steps

	3 Programming Flash with GProgrammer
	3.1 Hardware Connection
	3.2 SoC Selection
	3.3 Main Operational Interface
	3.4 Connection Management
	3.5 Firmware
	3.5.1 Download Firmware
	3.5.2 Action Order

	3.6 Flash
	3.6.1 Internal Flash
	3.6.1.1 Flash Configuration
	3.6.1.2 Erase Flash
	3.6.1.3 Download Data
	3.6.1.4 Dump Data

	3.6.2 External Flash
	3.6.2.1 Flash Configuration
	3.6.2.2 External Flash Programming

	3.7 Encrypt & Sign
	3.7.1 eFuse Settings
	3.7.2 Download
	3.7.3 Encrypt & Sign

	3.8 eFuse Layout
	3.9 Chip Configuration
	3.9.1 Init NVDS Area
	3.9.2 Read All
	3.9.3 Write
	3.9.4 Add a User Parameter
	3.9.5 Modify NVDS Parameters
	3.9.6 Remove a User Parameter
	3.9.7 Import and Export

	3.10 Device Log
	3.11 Command-line Programs
	3.11.1 GR551x_console.exe
	3.11.2 GR551x_encrypt_signature.exe
	3.11.3 User-defined Windows Scripts

	3.12 Help

