
GProgrammer User Manual

Version: 2.3

Release Date: 2021-07-16

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces how to install GProgrammer and operate its functional modules, enabling users to quickly
get started with GProgrammer.

Audience

This document is intended for:

• GR551x users

• GR551x developers

• GR551x testers

Release Notes

This document is the ninth release of GProgrammer User Manual, corresponding to GProgrammer V1.2.20.

Revision History

Version Date Description

1.5 2020-05-30 Initial release

1.6 2020-06-30

• Updated sector-related description in "Chip Configuration".

• Added "GR551x_console.exe", introducing a command-line program to erase and download
commands; added "GR551x_encrypt_signature.exe" and "User-defined Windows Scripts".

• Introduced the public key hashes to verify signatures, updated the file name extension for
encrypted and signed files, and introduced the firmware signing function in "Encrypt & Sign".

1.7 2020-08-30
• Introduced the GR5515I0ND SoC for GR551x SoCs in "SoC/MCU Selection".

• Changed icons for Delete and Startup in "Firmware".

1.8 2020-09-30 Added description on firmware download failure in "Download Firmware".

1.9 2020-11-26 Updated UI figures for software version.

2.0 2021-01-05 Updated software UI figures for SoC/MCU selection and firmware operations.

2.1 2021-03-02

• Added file modification description to "eFuse Settings".

• Added file export description to "Import and Export".

• Updated descriptions concerning operations prior to viewing device logs in "Device Log".

• Added description of IO_LDO_SEL field to "eFuse Layout".

• Deleted the parameter of nvds in erase and download commands in "GR551x_console.exe".

2.2 2021-05-13 Deleted functionalities for GMF03x series.

2.3 2021-07-16 Updated software UI figures for SoC selection.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Installation Instructions...2

2.1 Installation Requirements..2
2.2 Installation Steps... 2

3 Programming Flash with GProgrammer...5

3.1 Hardware Connection..5
3.2 SoC Selection... 6
3.3 Main Operational Interface... 7
3.4 Connection Management..8
3.5 Firmware..10

3.5.1 Download Firmware..10
3.5.2 Action Order... 12

3.6 Flash...13
3.6.1 Internal Flash.. 14

3.6.1.1 Flash Configuration.. 14
3.6.1.2 Erase Flash..15
3.6.1.3 Download Data...17
3.6.1.4 Dump Data... 18

3.6.2 External Flash..19
3.6.2.1 Flash Configuration.. 19
3.6.2.2 External Flash Programming.. 21

3.7 Encrypt & Sign...22
3.7.1 eFuse Settings... 22
3.7.2 Download.. 24
3.7.3 Encrypt & Sign.. 25

3.8 eFuse Layout..26
3.9 Chip Configuration...28

3.9.1 Init NVDS Area.. 30
3.9.2 Read All... 30
3.9.3 Write... 31
3.9.4 Add a User Parameter.. 32
3.9.5 Modify NVDS Parameters... 34
3.9.6 Remove a User Parameter..35
3.9.7 Import and Export.. 36

3.10 Device Log... 36
3.11 Command-line Programs... 38

3.11.1 GR551x_console.exe..38

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. II

Contents

3.11.2 GR551x_encrypt_signature.exe...40
3.11.3 User-defined Windows Scripts... 41

3.12 Help..42

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
GProgrammer supports programming of flash memories on GR551x SoCs. It runs on Windows only and provides the
following features.

• Connection via SWD and UART

• Firmware download

• Flash programming & erasing

• Inputting product information (ID, name, description, and value)

• Downloading files to eFuse

• Viewing eFuse contents

• Firmware encryption and signing

• Configuring Non-Volatile Data Storage (NVDS) parameters

• Displaying device logs

• Programming on GR551x_console

Figure 1-1 shows the Graphical User Interface (GUI) of GProgrammer.

Figure 1-1 GProgrammer GUI

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1

Installation Instructions

2 Installation Instructions
This chapter describes the environment requirements as well as installation steps for installing GProgrammer.

2.1 Installation Requirements

• Hardware environment

Table 2-1 Hardware environment

Name Description

CPU 1.6 GHz and faster

RAM 1 GB and larger

• Operating system

Table 2-2 Operating system

Name Description

Windows Windows 7/Windows 10 (32-bit/64-bit)

2.2 Installation Steps

GProgrammer runs on Windows only with an executable installation package: GProgrammer Setup Version.exe.

Users can follow the steps below when installing GProgrammer:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 2

Installation Instructions

1. Double-click GProgrammer Setup Version.exe, and follow the steps in the GProgrammer Setup wizard (see Figure
2-1).

Figure 2-1 GProgrammer Setup installation wizard

 Note:

Version indicates the GProgrammer software version number.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 3

Installation Instructions

2. After installing GProgrammer, you are prompted to install J-Link on demand. See Figure 2-2.

Figure 2-2 Prompt to install J-Link

 Tip:

For users who have installed J-Link on their PCs before installing GProgrammer, clear Install J-Link in the installation
wizard.

3. After installing J-Link, you can start the GProgrammer by clicking the GProgrammer shortcut on desktop or Start
menu.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 4

Programming Flash with GProgrammer

3 Programming Flash with GProgrammer
This chapter elaborates on how to use functional modules of GProgrammer.

3.1 Hardware Connection

Before starting GProgrammer, make sure the host (PC) is correctly connected to the target board. You can establish the
connection in either SWD mode or UART mode.

• SWD mode

In SWD mode, users need a J-Link emulator with one end connecting to the host through a Micro USB cable and
the other end connecting to SoC pins of the target board through Dupont wire cables.

Figure 3-1 Host-target-board connection in SWD mode

The table below lists the mapping relations between J-Link emulator pins and SoC pins.

Table 3-1 Mapping relations between J-Link emulator pins and SoC pins

J-Link Emulator Pin GR551x SoC Pin

VCC VCC

GND GND

SWDIO GPIO_1

SWCLK GPIO_0

 Tip:

For target boards that have been integrated with J-Link emulator chips, you can connect the host to the target board
directly through a Micro USB cable.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 5

Programming Flash with GProgrammer

• UART mode

In UART mode, users need a USB-to-serial converter with one end connecting to the host through a Micro USB
cable and the other end connecting to SoC pins of the target board through Dupont wire cables.

Figure 3-2 Host-target-board connection in UART mode

The table below lists the mapping relations between USB-to-serial converter pins and SoC pins.

Table 3-2 Mapping relations between USB-to-serial converter pins and SoC pins

USB-to-Serial Converter Pin GR551x SoC Pin

VCC VCC

GND GND

TX GPIO_1

RX GPIO_0

RTS CHIP_EN

 Tip:

For target boards that have been integrated with USB-to-serial converter chips, you can connect the host to the target
board directly through a Micro USB cable.

3.2 SoC Selection

Start GProgrammer. Prior to other operations, you are required to choose the SoC model on your target board and
click OK.

 Tip:

By default, GProgrammer opens the SoC selection interface when being started.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 6

Programming Flash with GProgrammer

Figure 3-3 SoC selection interface

On the SoC selection interface, the left pane lists Products and Kits options, and the right pane shows the available
choices. You can select an SoC by defining its Part Number, Series, Core, Memory, Package, or Peripheral.

 Tip:

Peripherals listed on the SoC selection interface are only part of the peripherals of a SoC. For details of all peripherals,
see the datasheet corresponding to SoC series.

3.3 Main Operational Interface

After you choose a GR551x SoC, the main operational interface opens, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 7

Programming Flash with GProgrammer

Figure 3-4 GProgrammer GUI (for GR551x series)

The GUI comprises a functional navigation bar on the left (see Table 3-3) and a function operational zone on the right.

Table 3-3 Options on the functional navigation bar

Icon Function Name Description

Firmware Displays firmware-related operations.

Flash Displays operations related to flash memory.

Encrypt & Sign Displays operations related to firmware encryption and signing.

eFuse Layout Displays eFuse layout.

Chip Configuration Displays operations related to chip configurations.

Device Log Displays device logs.

Help Displays help information.

3.4 Connection Management

GProgrammer helps users manage and control the connection between your host and target board.

Click in the upper-right corner of the interface to open or hide the connection management window of
GProgrammer.

GProgrammer supports two connection modes: SWD and UART.

• SWD

Users need to configure Speed (data transfer rate) only and click Connect to connect the target board to the host.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 8

Programming Flash with GProgrammer

Figure 3-5 GProgrammer SWD connection

• UART

Users need to configure Port (click Refresh and select a correct Port value) and Baudrate on demand. The default
configurations of other parameters (Parity, DataBits, StopBits, and FlowControl) cannot be modified.

After setting these parameters, click Connect to connect the target board to the host.

Figure 3-6 GProgrammer UART connection

After the connection is successfully established, the connection management window automatically hides with the

button turning into , which indicates successful connection establishment.

To disconnect the host from the board, click to open the connection management window, and click Disconnect.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 9

Programming Flash with GProgrammer

Figure 3-7 Clicking Disconnect on GProgrammer

3.5 Firmware

Click on the left side of the main interface of GProgrammer to open the Firmware interface.

Figure 3-8 GProgrammer Firmware interface

You can download your application firmware to the contiguous space of flash memories, ranging from 0x01002000 to
0x010FFFFF.

3.5.1 Download Firmware

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 10

Programming Flash with GProgrammer

GProgrammer graphically displays the flash memory space layout occupied by firmware (see Figure 3-9), which helps
you easily learn the flash occupation status.

Figure 3-9 Flash firmware layout

• represents flash space to which data can be downloaded.

• represents default NVDS area to which firmware cannot be downloaded.

• indicates space for storing to-be-deleted firmware. Example: ble_app_ancs.

• indicates space for storing to-be-downloaded firmware. Example: ble_app_hrs.

• indicates space for storing downloaded firmware in flash memories. Example: ble_app_bps.

• indicates space overlapped by two pieces of firmware. Examples: ble_app_T3u and ble_app_hts.

Follow the steps below to download firmware to a flash memory by using GProgrammer:

1. Click Add to add a local firmware file to GProgrammer. GProgrammer presents details of the added firmware
such as firmware directory (User App Firmware) and Image Info.

2. Click Commit to download the firmware to flash memories.

After downloading, the color of the firmware turns from to , indicating the firmware has been successfully
downloaded.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 11

Programming Flash with GProgrammer

 Note:

1. GProgrammer automatically reads firmware existing in the flash memories after being connected a target board.

2. If J-Link cannot be connected when you download firmware, connection/firmware download to the GR5515 SK
Board fails. At this moment, the GR551x SoC may be in sleep mode (the firmware keeps running in sleep mode).
You can press RESET on the GR5515 SK Board, wait for around one second, and re-download the firmware. If this
approach does not work, erase the flash and re-download the firmware.

3.5.2 Action Order

You can execute multiple actions at a time. For example, download multiple pieces of firmware to flash memories and
set one piece of firmware as Startup. The user-defined actions are executed by clicking Commit. The action orders are
displayed in Unfinished Events, as shown in Figure 3-10.

Figure 3-10 Action order

Executable actions for users are listed in the table below.

Table 3-4 Executable actions for users on GProgrammer

Name Button/Icon Description

Add firmware

Click Add to add a local firmware file to GProgrammer.

Alternatively, you can add a local firmware file to GProgrammer by directly dragging the file to

GProgrammer from Windows/File Explorer.

Note:

Do not click Open after dragging the file to GProgrammer.

Refresh firmware

Click Refresh to obtain the information of firmware downloaded in the flash memories of a target

board.

Unexecuted actions of flash firmware on the living target board in the Unfinished Events pane,

such as those labeled as startup or update are withdrawn with modified parameters being reset

to values before refresh.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 12

Programming Flash with GProgrammer

Name Button/Icon Description

Delete firmware

Click the Delete button to delete existing firmware in flash memories. Select firmware to be

deleted in the flash firmware layout, and click Delete. The firmware color turns to . An action

labelled as delete is added to the Unfinished Events.

Note: Delete operations result in deleting only image info of the selected firmware. The firmware

information stored in the area will not be deleted.

Start execution

Set firmware as startup to run the firmware immediately. Select firmware in the flash firmware

layout, and click the Startup button. displays on the right of the firmware. An action labelled

as startup is added to the Unfinished Events. The host automatically disconnects from the target

board after running the firmware.

Update firmware

information

Click the Update button to update the information of existing firmware in flash memories on

a target board. Select firmware to be updated in the flash firmware layout, and modify the

firmware information (the color of modified parameters turns to). Click Update, and the

icon displays on the right side of the firmware. An action labelled as update is added to the

Unfinished Events.

Execute update actions, and all parameters involved are locked. No editing is allowed. If

modification is required, withdraw the previous update action.

 Note:

• In the action order list, you can withdraw an action by clicking on the right side of the action.

• For two associated actions, withdrawal of the associated action may lead to automatic withdrawal of the
previous action. For example, add a firmware file to flash memories, and set it as startup. Withdrawal of Add
leads to withdrawal of Startup.

In addition, if there is overlapped space for firmware, Commit will not be available until the conflict is resolved.

 Note:

For two pieces of firmware totally overlapping with each other, you can click the overlapping space to select one piece
of firmware and double-click the space to select the other.

3.6 Flash

Click on the left side of the main interface of GProgrammer to open the Flash interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 13

Programming Flash with GProgrammer

Figure 3-11 GProgrammer Flash interface

GProgrammer allows users to program internal and external flash memories of GR551x SoCs. Detailed programming
actions include Erase Flash, Download Data, and Dump Data.

Similar to the firmware layout, the Flash module presents the flash space occupation in a graphic manner.

• unused flash space

• space for NVDS

• Boot info space (0x01000000 to 0x01002000). The Boot info space is automatically loaded and displayed when
users choose internal flash memories.

• space for storing downloaded firmware in flash memories. Example: ble_app_bps

• space to be operated, such as flash space to be erased

3.6.1 Internal Flash

3.6.1.1 Flash Configuration

Select Internal Flash in the Flash Configuration list to program internal flash memories.

The flash layout on the left side of the Flash interface automatically synchronizes with updated firmware layout
information to obtain the firmware, NVDS, and Boot info space.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 14

Programming Flash with GProgrammer

Figure 3-12 Selecting Internal Flash

3.6.1.2 Erase Flash

GProgrammer provides three flash erasing mechanisms: Erase All, Erase Sector, and Erase Specified Area.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 15

Programming Flash with GProgrammer

• Erase All

The mechanism helps erase all flash space.

The Boot info and NVDS space is cleared with all firmware deleted.

Figure 3-13 Erase All on GProgrammer

• Erase Sector

The mechanism helps erase a specified flash sector (size: 4 KB).

Figure 3-14 Erase Sector on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 16

Programming Flash with GProgrammer

• Erase Specified Area

The mechanism helps erase an area within a specified address range, by sector.

Figure 3-15 Erase Specified Area on GProgrammer

3.6.1.3 Download Data

When downloading data to flash memories on GProgrammer, users only need to view and add the BIN files of the
data, as well as set a starting address for downloading in Download Address.

Figure 3-16 Viewing and selecting a data file to be downloaded

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 17

Programming Flash with GProgrammer

A flash overflow error occurs when the downloaded file size is excessively large or the starting address is out of range.

Figure 3-17 Flash overflow error

 Tip:

Users are allowed to forcibly download data to the Boot info space in SWD connection mode only. In UART mode,
force download to the Boot info space is prohibited.

3.6.1.4 Dump Data

Users can dump any data in flash memories to a local file by specifying a starting dump address and the data size.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 18

Programming Flash with GProgrammer

Figure 3-18 Dump Data on GProgrammer

3.6.2 External Flash

3.6.2.1 Flash Configuration

Select External Flash in the Flash Configuration list to program external flash memories. Click Config to configure the
SPI Type and pins based on actual demands.

Click Apply to complete the configuration.

Figure 3-19 SPI configurations

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 19

Programming Flash with GProgrammer

Figure 3-20 QSPI0 configurations

• Configure Flash Size

After users apply the pin configurations, GProgrammer reads and displays the external Flash ID based on which the
Flash Size is automatically set.

 Tip:

Before clicking Apply, make sure external flash memories are correctly connected to the target board in accordance
with pin configurations. Incorrect connections lead to failures in communications between external flash and the
board.

Users need to manually set the Flash Size when GProgrammer fails to get the flash size based on the accessed flash ID.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 20

Programming Flash with GProgrammer

Figure 3-21 Unknown flash ID

3.6.2.2 External Flash Programming

GProgrammer allows users to program flash memories (erase flash, download data to flash, and dump data to a local
file) within a valid address range.

Figure 3-22 Download Data to external flash on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 21

Programming Flash with GProgrammer

 Tip:

No operation on external flash is allowed before completing pin configurations.

3.7 Encrypt & Sign

Click on the left side of the main interface of GProgrammer to open the Encrypt & Sign interface.

Figure 3-23 GProgrammer Encrypt & Sign interface

GR551x SoCs support Security Mode and Non-security Mode. The mode is determined by the security mode of the
product written in eFuse. When Security Mode is enabled, only firmware that has been encrypted and signed can be
downloaded to flash memories.

3.7.1 eFuse Settings

eFuse is a one-time programmable (OTP) memory with random access interfaces on GR551x SoCs. The eFuse stores
product configurations, security mode control information, and keys for encryption and signing.

When using GProgrammer, users can generate eFuse files by specifying product names, IDs, and firmware keys, and by
configuring security mode and SWD interfaces.

Figure 3-24 Setting eFuse parameters

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 22

Programming Flash with GProgrammer

 Note:

• Firmware keys can be random keys generated by GProgrammer. Users can also add key files on demand.

• When Security Mode is enabled, users can choose to Open or Close the SWD interface.

GProgrammer allows users to generate multiple Encrypt_key_info.bin files in batches by checking Batch eFuse.
The generated files are unique, meeting requirements of scenarios demanding one key for one device. For
example, when users input “3” in the Batch eFuse box, GProgrammer generates three Encrypt_key_info.bin files:
Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin.

Generated files are listed in the figure below:

Figure 3-25 Generated files

• efuse.json: a temporary file

• Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin: files to be downloaded to eFuse,
covering information on products, encryption, and signing. These files shall be downloaded to and stored in
eFuse.

• firmware.key: a private key for encrypting firmware

• Mode_control.bin: an eFuse file covering information on security mode and SWD. This file shall be downloaded
to and stored in eFuse.

• product.json: a product information file. This file shall be imported to a GProgrammer when encrypting or signing
firmware.

• sign.key: a private key to generate signatures

• sign_pub.key: a public key to verify signatures

• Public_key_hash.txt: a public key hash file to verify signatures

To make files download to eFuse or firmware encryption and signing user-friendly, GProgrammer automatically loads
the paths of the Encrypt_key_info.bin file and the Mode_control.bin file to the Download area, and the path of the
product.json file to the Product Info pane in the Encrypt and Sign area, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 23

Programming Flash with GProgrammer

Figure 3-26 Paths for automatically loaded files

 Note:

No modification of eFuse-generated files is allowed because any modification may lead to firmware encryption and
signing failures.

3.7.2 Download

For users who have clicked Generate eFuse File to generate Encrypt_key_info.bin and Mode_control.bin files in the
eFuse Settings pane, select Encrypt Key Info and Mode Control in the Download pane, and click Download to eFuse
to download the files to eFuse.

Otherwise, users need to manually add Encrypt_key_info.bin and Mode_control.bin files before downloading the files
to eFuse.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 24

Programming Flash with GProgrammer

Figure 3-27 Downloading files to eFuse

 Note:

eFuse information cannot be repeatedly downloaded to firmware.

3.7.3 Encrypt & Sign

When Security Mode is enabled, only firmware that has been encrypted and signed can be downloaded to flash
memories. GProgrammer allows users to encrypt and sign, or to sign multiple firmware files by using one set of
product information (Product Info) and one random number (Random Number).

The Random Number can be manually set by users or generated by GProgrammer.

When adding more than one firmware file, separate each file path with a semicolon (;), as shown in Figure 3-28.

Figure 3-28 Adding more than one firmware file

To encrypt and sign the firmware, check the Encrypt box, and the button changes from Sign to Encrypt and Sign; to
sign the firmware only, uncheck the Encrypt box, and the button changes back to Sign. Choose the directory to save
the (encrypted and) signed firmware, and click Encrypt and Sign/Sign.

Files after being encrypted and signed are listed below:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 25

Programming Flash with GProgrammer

Figure 3-29 GProgrammer-generated files after encryption and signing

Files after being signed are listed below:

Figure 3-30 GProgrammer-generated files after signing

 Note:

The random number generated by GProgrammer is for encryption algorithms. After users perform encryption and
signing of firmware files, the random.bin file is stored in the same directory as encrypted and signed firmware files.
Users can view and add the random.bin file to GProgrammer next time they use the random number for firmware
encryption and signing.

3.8 eFuse Layout

Click on the left side of the main interface of GProgrammer to open the eFuse Layout interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 26

Programming Flash with GProgrammer

Figure 3-31 eFuse Layout interface

GProgrammer presents users with eFuse layout information: Offset, Value, Length, and Comments of fields including
but not limited to Product ID, Chip ID, EncMode, SWDDisable, Config, and IO_LDO_SEL. Among them, the Config and
IO_LDO_SEL fields contain multiple bit fields.

Click Refresh to obtain the values of all fields or bit fields.

Click before Offset of Config or IO_LDO_SEL to expand the detailed bits, as shown in the figure below. Click or
double-click Config or IO_LDO_SEL to collapse the detailed bits.

You can change the IO_PWR_SRC value in the IO_LDO_SEL field to set the power source of peripherals.

 Note:

You can only change the IO_PWR_SRC value from "0" to "1". The contrary direction is not allowed.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 27

Programming Flash with GProgrammer

Figure 3-32 Expanded Offset

 Note:

The fields and bit fields listed in the interface are stored in the efuse_config.json file in the config folder. Information
stored in eFuse is more than just the listed fields and bit fields.

3.9 Chip Configuration

Click on the left side of the main interface of GProgrammer to open the Chip Configuration interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 28

Programming Flash with GProgrammer

Figure 3-33 GProgrammer Chip Configuration interface

GProgrammer allows users to set the parameters (including USER Parameters and ROM Parameters) stored in the
NVDS area.

• USER Parameters: user-defined parameters that can be added, deleted, and modified

• ROM Parameters: ROM parameters stored on GR551x SoCs, which can be modified only by users. Neither
parameter addition nor deletion is allowed.

 Note:

• The default ROM parameters listed in the interface are stored in the nvds_config.json file in the config folder.
The parameters are not results accessed in real time from the NVDS area. For more information about ROM
parameters, see Table 3-5.

• Click in the upper-right corner of the Chip Configuration interface to enable display of complete value
contents of a parameter.

• Look up parameters quickly by using the screening box in the upper-right corner of the interface.

Table 3-5 NVDS ROM parameters

ID Parameter Name Description

0xC001 BD_ADDRESS This parameter sets the Bluetooth device address.

0xC002 DEVICE_NAME This parameter sets the device name.

0xC007 LPCLK_DRIFT This parameter sets the Sleep Clock Accuracy (SCA); range: 10 ppm to 500 ppm

0xC085 CODED_PHY_500 This parameter sets the default Coded PHY value; Value 0: 125 kbps; Value 1: 500 kbps

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 29

Programming Flash with GProgrammer

ID Parameter Name Description

0xC0B1 RF_XO_OFFSET This parameter sets the clock calibration byte; range: 0x000 to 0x1FF

3.9.1 Init NVDS Area

Prior to configuring NVDS parameters, users need to specify a starting address (4 KB aligned) and the number of
occupied sectors in the NVDS area.

Figure 3-34 Setting the starting address and sector quantity in the NVDS area

NVDS initialization fails when the configured NVDS area overlaps with the existing firmware area.

Figure 3-35 NVDS initialization failure

3.9.2 Read All

GProgrammer can read all parameters in the current NVDS area and display them in the Parameters pane.

To prevent operation failures in user applications due to parameter overlapping in the NVDS area, users are
recommended to click Read All after connecting the target board to the host.

GProgrammer provides three parameter states: Unfinished, Same, and Different, which help you quickly identify the
parameter state in the current NVDS. Details are listed below:

• Unfinished: Parameters in unfinished state are presented in black. These parameters are either new ones
different from the default listed parameters after users click Read All (example: 0x4000 in Figure 3-36) or ones
that have been listed in the NVDS area but with a different parameter length (example: 0x4001 in Figure 3-36).

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 30

Programming Flash with GProgrammer

• Same: Parameters in same state are presented in green, indicating the parameters already exist in the NVDS area
and have the same length and value as those in the default list (example: 0x4002 in Figure 3-36)

• Different: Parameters in different state are presented in orange, indicating the parameters already exist in the
NVDS area and have the same length as but a different value from default listed parameters (example: 0x4003 in
Figure 3-36)

Figure 3-36 Read All interface

3.9.3 Write

Select parameters to be written to NVDS, and click Write.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 31

Programming Flash with GProgrammer

Figure 3-37 Write parameters to NVDS

 Tip:

• Parameters in unfinished state cannot be written to NVDS directly.

• You can select more than one parameter to implement a batch write.

• When an unfinished parameter is selected, Write is unavailable.

3.9.4 Add a User Parameter

Follow the steps below to add a user parameter to NVDS.

1. Click to open the Add USER Parameter window.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 32

Programming Flash with GProgrammer

2. Specify the ID, Parameter Name, Description, Type, Length(Byte), Value, and data presentation format (dec or
hex).

Figure 3-38 Adding a user parameter to NVDS

3. Click OK to complete the adding.

 Note:

• You cannot input a parameter ID that is identical with those listed in the Parameters pane. Otherwise, a warning
dialog box pops up, as shown in Figure 3-39.

• If the added ID is different from those existing in the NVDS, the added parameter is directly written to NVDS.

• If the ID of a to-be-added parameter already exists in NVDS and the two parameters with the same ID are of the
same length, the to-be-added parameter is written to NVDS.

• If the ID of a to-be-added parameter already exists in NVDS but the two parameters with the same ID are of
different lengths, the to-be-added parameter is not written to NVDS. Users need to modify the parameter length
before writing it to NVDS.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 33

Programming Flash with GProgrammer

Figure 3-39 Failure to add a user parameter due to an identical parameter ID

3.9.5 Modify NVDS Parameters

Users can modify both the USER Parameters and ROM Parameters.

ROM Parameters: You can modify the Parameter Name, Description, and Value of a ROM parameter. The
modification on a parameter value does not lead to changes in the parameter length (except varying-length character
strings).

USER Parameters: For user parameters in same and different states, the Parameter Name, Description, and Value can
be modified. For user parameters in unfinished state, the Type and Length(Byte) can be modified.

Double-click a parameter to be modified, and edit the parameter information in the pop-up window. Click OK to write
the modifications into NVDS.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 34

Programming Flash with GProgrammer

Figure 3-40 Edit Parameter Value window

 Note:

Parameters in unfinished state with a modified length that is different from that in the NVDS remain unfinished. Such
parameters cannot be automatically written into the NVDS.

3.9.6 Remove a User Parameter

Users can remove user parameters only.

Select a parameter to be removed, and click to remove the parameter from the NVDS.

Figure 3-41 Removing a parameter

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 35

Programming Flash with GProgrammer

 Tip:

• You can select more than one parameter and click to implement a batch removal.

• When a ROM parameter is selected, Remove is unavailable (is in grey).

3.9.7 Import and Export

GProgrammer allows users to export all parameter data (Parameter Name, Description, Length, and Value) to a local
JSON configuration file as well as import local JSON configuration files to GProgrammer.

Figure 3-42 Importing local JSON configuration files to GProgrammer

 Tip:

• Parameters in the imported JSON files replace all those listed in the Parameters pane.

• Export modified parameter data to a local JSON file to prevent repeated modification.

• Export is unavailable when parameters in unfinished state exist.

• All data displayed in the Chip Configuration interface can be exported by clicking Export.

3.10 Device Log

Click on the left side of the main interface of GProgrammer to open the Device Log interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 36

Programming Flash with GProgrammer

Figure 3-43 Device Log interface

Users can view device logs, mainly error information during SoC running, on GProgrammer. Click Read to retrieve the
device logs.

 Note:

Prior to viewing device logs, make sure you have performed the following:

• Write device error code into the NVDS by using the application firmware (NVDS ID: A001–A010).

• Initialize the NVDS area correctly on GProgrammer, and the initialization result is identical with the value defined
in the application firmware.

In the interface, click or in the upper-right corner to switch the mode in displaying device logs between
ASCII and stream.

• : The device logs are displayed by ASCII character as shown in Figure 3-44.

• : The device logs are displayed by byte stream as shown in Figure 3-45.

Figure 3-44 Device logs in ASCII characters

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 37

Programming Flash with GProgrammer

Figure 3-45 Device logs in byte streams

3.11 Command-line Programs

Goodix provides two command-line programs in the GProgrammer installation directory: GR551x_console.exe and
GR551x_encrypt_signature.exe.

• GR551x_console.exe supports firmware download and flash programming in GR551x SoCs in a command-line
interface.

• GR551x_encrypt_signature.exe supports firmware encryption and signing or firmware signing in a command-line
interface.

3.11.1 GR551x_console.exe

Follow the steps below to run GR551x_console.exe:

1. Open the Command Prompt window from the Start menu or by entering “cmd” in the Run window.

2. Navigate to the GProgrammer installation directory by using cd command.

3. Type the GR551x_console.exe command to complete corresponding operations. The details about the command
are shown in Table 3-6.

Table 3-6 GR551x_console supported commands

Command Functional Description Command Format and Parameter Description

program
Programs firmware files to internal

SoC flash memories.

program <firmware file path> <run immediately:y | n>

Parameter description:

• <firmware file path>: It sets the path of the to-be-downloaded
firmware file.

• <run immediately:y | n>: It decides on whether to run the
firmware immediately after downloading.

erase

Erases flash memory data within

an SoC based on a specified

address range.

erase <start address<hex>> <end address<hex>><force erase when

conflict with firmware/bootinfo:y | n>

Parameter description:

• <start address<(hex)>>: It represents the start address of the
storage area to be erased (in hexadecimal).

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 38

Programming Flash with GProgrammer

Command Functional Description Command Format and Parameter Description

• <end address<(hex)>>: It represents the end address of the
storage area to be erased (in hexadecimal).

• <force erase when conflict with firmware/bootinfo:y | n>: This
parameter decides whether to forcibly erase the flash memory
data when its address conflicts with that of firmware, Boot info, or
NVDS.

eraseall
Erases all flash memory data

within an SoC.
eraseall

download
Downloads data files to internal

SoC flash memories.

download <data file path> <start address<(hex)>> <force download

when conflict with firmware/bootinfo:y | n>

Parameter description:

• <data file path>: It sets the path of the to-be-downloaded data
file.

• <start address<(hex)>>: It represents the start address of the
download area (in hexadecimal).

• <force download when conflict with firmware/bootinfo:y | n>:
This parameter decides whether to forcibly download the data
files to internal SoC flash memories when their addresses conflict
with that of firmware or Boot info.

writeefuse
Writes Encrypt Key Info and Mode

Control files to eFuse.

writeefuse <Encrypt Key Info file Path> <Mode Control file Path>

Parameter description:

• <Encrypt Key Info file Path>: It sets the path of Encrypt Key Info
file.

• <Mode Control file Path>: It sets the path of Mode Control file.

reset Resets the GR551x SoC. reset

help Displays all help information. help

The example below shows how to use the program command to download a firmware file to internal SoC flash
memories and run the firmware immediately after downloading.

GR551x_console.exe program “C:\ble_app_hrs_fw.bin” y

The downloading progress is displayed in real time during executing the program command, as shown in Figure 3-46.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 39

Programming Flash with GProgrammer

Figure 3-46 Executing the program command

 Note:

You cannot operate GR551x_console.exe while GProgrammer is running.

3.11.2 GR551x_encrypt_signature.exe

Follow the steps below to run GR551x_encrypt_signature.exe:

1. Open the Command Prompt window from the Start menu or by entering “cmd” in the Run window.

2. Navigate to the GProgrammer installation directory by using cd command.

3. Type GR551x_encrypt_signature.exe --parameter to complete corresponding operations. The
details about “parameter” are shown in Table 3-7. (Only the most frequently used parameters are listed in the
table. To view all parameters, enter GR551x_encrypt_signature.exe --help.)

Table 3-7 Frequently used parameters for GR551x_encrypt_signature.exe

Parameter Description

operation Encrypts and signs firmware or signs firmware only. Options: encryptandsign and sign.

firmware_key Shows the directory of firmware.key, which is used for encryption and signing, or signing only.

signature_key Shows the directory of sign.key, which is used for encryption and signing, or signing only.

signature_pub_key Shows the directory of sign_pub.key, which is used for encryption and signing, or signing only.

product_json_path Shows the directory of product.json, which is used for encryption and signing, or signing only.

rand_number Shows the directory of random.bin, which is used for encryption and signing, or signing only.

ori_firmware Shows the directory that saves the firmware before encryption and signing, or signing only.

output Shows the directory that saves the firmware after encryption and signing, or signing only.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 40

Programming Flash with GProgrammer

Parameter Description

random_output
Shows the directory that saves the random numbers used in encryption and signing, or signing

only.

help Displays help information.

The example below shows how to use the program command to encrypt and sign firmware:

GR551x_encrypt_signature.exe
--operation="encryptandsign"
--firmware_key="C:/eFuse/firmware.key"
--signature_key="C:/eFuse/sign.key"
--signature_pub_key="C:/eFuse/sign_pub.key"
--product_json_path="C:/eFuse/product.json"
--ori_firmware="C:/firmware/ble_app_hrs_fw.bin"
--output="C:/firmware_encryptAndSign/ble_app_hrs_fw_encryptAndSign.bin"
--random_output="C:/firmware_encryptAndSign/random.bin"

In the code snippet above, the “C:/eFuse/” directories show the user-defined folders where files are saved after users
click Generate eFuse File, as described in “Section 3.7.1 eFuse Settings”.

• --ori_firmware=“C:/firmware/ble_app_hrs_fw.bin”: the directory of the firmware before any operation

• --output=“C:/firmware_encryptAndSign/ble_app_hrs_fw_encryptAndSign.bin”: the directory of the encrypted
and signed firmware

A sample of executing the encryption and signing command is shown in Figure 3-47:

Figure 3-47 Executing the encryption and signing command

3.11.3 User-defined Windows Scripts

Users can also write custom scripts on Windows to call command-line programs. Two sample script files are provided
in the GR551x_script file in the GProgrammer installation directory.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 41

Programming Flash with GProgrammer

encryptAndSignatureFirmware.bat can encrypt and sign firmware with firmware_origin.bin in the same directory and
the files saved in the eFuse directory. The encrypted and signed firmware is available in firmware_encryptAndS
ign\firmware_encryptAndSign.bin.

program_Firmware_EncryptAndSign.bat can erase all internal flash memories, and download the firmware firmw
are_encryptAndSign\firmware_encryptAndSign.bin and save the firmware file in the internal flash
memories.

3.12 Help

Click on the left side of the main interface of GProgrammer to open the Help interface.

GProgrammer offers help and support to users.

• About GProgrammer

This section provides version information and features of GProgrammer.

• Feedback

If you have any questions or suggestions, please send an email to software@reg.goodix.com.

• About Goodix

For more information, please visit Goodix official website: www.goodix.com.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 42

https://www.goodix.com/en

	Preface
	Contents
	1 Introduction
	2 Installation Instructions
	2.1 Installation Requirements
	2.2 Installation Steps

	3 Programming Flash with GProgrammer
	3.1 Hardware Connection
	3.2 SoC Selection
	3.3 Main Operational Interface
	3.4 Connection Management
	3.5 Firmware
	3.5.1 Download Firmware
	3.5.2 Action Order

	3.6 Flash
	3.6.1 Internal Flash
	3.6.1.1 Flash Configuration
	3.6.1.2 Erase Flash
	3.6.1.3 Download Data
	3.6.1.4 Dump Data

	3.6.2 External Flash
	3.6.2.1 Flash Configuration
	3.6.2.2 External Flash Programming

	3.7 Encrypt & Sign
	3.7.1 eFuse Settings
	3.7.2 Download
	3.7.3 Encrypt & Sign

	3.8 eFuse Layout
	3.9 Chip Configuration
	3.9.1 Init NVDS Area
	3.9.2 Read All
	3.9.3 Write
	3.9.4 Add a User Parameter
	3.9.5 Modify NVDS Parameters
	3.9.6 Remove a User Parameter
	3.9.7 Import and Export

	3.10 Device Log
	3.11 Command-line Programs
	3.11.1 GR551x_console.exe
	3.11.2 GR551x_encrypt_signature.exe
	3.11.3 User-defined Windows Scripts

	3.12 Help

