G@WDIX

GProgrammer User Manual

Version: 2.0

Release Date: 2021-01-05

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

GCDD]X and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other

trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F.,, Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

GA@DIX Preface

Preface
Purpose

This document introduces how to install GProgrammer and operate its functional modules, enabling users to quickly

get started with GProgrammer.

Audience

This document is intended for:
. GR551x and GMFO03x users
o GR551x and GMFO03x developers

o GR551x and GMFO03x testers

Release Notes

This document is the sixth release of GProgrammer User Manual, corresponding to GProgrammer V1.2.14.

Revision History
Version Date Description

1.5 2020-05-30 Initial release

e Updated the version number based on software update.
e Updated sector-related description in “Section 3.3.7 Chip Configuration”.

e Added “Section 3.3.9.1 GR551x_console.exe”, introducing a command-line program to erase
16 2020-06-30 and download commands; added “Section 3.3.9.2 GR551x_encrypt_signature.exe” and
“Section 3.3.9.3 User-defined Windows Scripts”.

¢ Introduced the public key hashes to verify signatures, updated the file name extension for
encrypted and signed files, and introduced the firmware signing function in “Section 3.3.5
Encrypt & Sign”.

e Updated GProgrammer version number (including a figure), in line with software update
(GProgrammer V1.2.11).

1.7 2020-08-30 . .)
¢ Introduced the GR5515I0ND SoC for GR551x SoCs in “Section 3.2 SoC/MCU Selection”.
e Changed icons for “Delete” and “Startup” in “Section 3.3.3 Firmware”.
1.8 2020-09-30 Added description on firmware download failure in “Section 3.3.3.1 Download Firmware”.
Updated GProgrammer version number (including a figure), in line with software update
1.9 2020-11-26
(GProgrammer V1.2.13).
e Updated GProgrammer version number (including a figure), in line with software update
20 2021-01-05 (GProgrammer V1.2.14).

¢ Updated software Ul figures for SoC/MCU selection and firmware operations.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. |

GA@DiX Contents

Contents
=Y - ol |
L INErOAUCEHION.eeeeeiiieenieeniierrerre s s ss s s s s s ssssssssssss s e st e s s e s s assssssssasssssssssssssssssssssssssssssnnnnnnnnannassans 1
2 InStallation INSEIUCHIONS.....ueeeeeiiiiiiiiiiiii ettt s s e s s s s s s s s s e a s ansanaasas s e e s e ees 3
D2 A [13 = | =Y o o T =T [T =T g 1T o SR 3
D2 A 1 11 - | =T o T =T oL 3
3 Programming Flash With GProgrammer.........cc.iiiieeeiiiiiiiniiiiieiiieiienneeeetrennsesessesssesssensssessssnssssssssnsssssssnnsssssssnnnes 5
3.1 HardWare CONNECTION.ii ettt ettt ettt sttt e et e e ab et e s ab e s bt e e e be e e sabeesabee e nbeesabeesaneeesaneesabeeennes 5
I Yo 107 41V, (O W Y=Y [=Tot o o R 6
3.3 GRES5IX SBIIES . eeeeiiiiitee ettt ettt ettt s et e s et e s s e e e s s et e e s et e e e araeee s 8
3.3.1 Main Operational INtEIfACE.........uuiiiiie e e e e e e e e e e arae e e e e e e e e e s naraaeeeaeees 8
R B Oo] a1 T=To A oY o I\ oY T (=] 0 =T o 9
R TR N 14 1011 =T OO PSP O PT P OPPPPOPPPRN 11
3.3.3.1 DOWNIOAA FIFMWAIE.....eiiiiiieiiiieeiieeet ettt ettt ettt ettt e st e st e e st e st et s abe e e sabeesbe e e smbeesareeeanneenanes 11
3.3.3.2 ACTION OFBI ittt et s ettt sa e st e s bt e e st e s bt e e bt e e st e e s bee e sabeesabeeennseesabeesneeenns 13
IR 2 S - T o O T TSSO P PTOPRRPPRO 14
3.3.4.0 INEEINAL FIASN...ciieiie et sttt st et e s e e nr e sb e s e e saree s 15
3.304.2 EXEEINAL FIaSN..ciniiiiie e e e s et 19
e TR T =Y ol Y oL A YY1 o TSR PPURRNE 22
S T T =T L U =B =1 o] =4 PPPRPPPPRE 22
3.3.5.2 DOWNIOQM. ...ttt ettt et e s bt e hn e s bt e be e s ab e s be e et e e et eeeanne s 24
I T T =1 ol Y/ oL Y - o 1S USRS 25
G L SR =Y T Y= =1 o 11 | SN 26
. T A @ o 1T o I @o) o1 1= U] =1 d o o TSRS PRPPN 28
3.3.7.0 INIE NVDS AF@a..cii ittt ettt ettt e st e e st a e e s s snre e e s snbe e e s snaeeesenraeesas 29
3.3.7.2 REAA Al ettt et ettt et e et e e b et e enne e s b e e ebeeesanee s 29
I T R T 1 (T PSPPSR PPPTPPPPTOPRROE 30
3.3.7.4 Add @ USEI Parameter.. .o ei ittt ettt ettt ettt et e st st e e bt s ra e s esbe e nes 31
3.3.7.5 MOdify NVDS ParameterS....cccciiiiecciiiiieeeeeeeeeciiteeeee e e s e eeareeeeeeeessssataaeeeaeesssssassssseseesseessnssssseeeeeenan 32
3.3.7.6 REmMOVE @ USEr Parameter...ccccuuiiiiiiiiiiiiiiee ettt e e s sneee e 33
S I B A 1 g 'o Yo flr= Vo I 5 o Yo U PRURPRt 34
3.3.8 DBVICE LOG . ciiiiiiiiiiiieiieeeeeeeeeeee ettt a e e e e e e e e e e e e e e e aaeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaeaeaeeeeeens 35
3.3.9 ComMMAN-IINE PrOramsS......c.euiiiiiiiee ettt e e e e e ettt e e e e e e e s s s bbbaeeeeeeeseeansssaaaeeeeessannnssaeeaeaens 36
I R € 211 N D oo T g 1o [T < (U PPURN 36
3.3.9.2 GR551X_ENCIYPE_SIBNATUIE.EXE. .. e cciiieiiiieie et eee e ettt eeeeeeeeeeeeeeeeeeeeeeeereeaeeeaneen 38
3.3.9.3 User-defined WinAOWS SCriPtS....uiiiiiiiciiiiiiiiee e e ettt e et e e e e s e eeaarraee e s e e s e s saeraaeeeaeeessnnnnnnns 40
3.4 GIMIFOBX SIS . ueeiiiiiiiiie ittt ettt ettt e sttt e st e e s e et e e s e e e e e s bt e e e s aab e et e s s b et e e s sab et e e s ba e e e s nn e e e s s rre e e s enneees 40
3.4.1 Main Operational INtErfacCe.........uuiiiiii i e s e e e e e e e baaa e e e e e e e e e e nnnraaeeas 40
R N oo ol T=To A oY a I\ Y T =T 0 =T o) 41

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1]

G@Dix Contents

I Y 1Yo o o Y <R o =T o S 44
3.4.3.1 REAU/WHIItE 10 IMIBIMOIY...eiitiiiiiieiiieie ettt ettt et e et e et e et e e be e be e beesbeesaaessbeeabesabeeabeenbeebeeseenseesseennns 44
I 7 T 1= o T 1 =SS 45

3.4.4 Programming & EraSing......ccccuuiiiiiiiiiiiiiiiiiiee ettt e e e sttt e e e e e s s sttt e e e e e e s s sttt t e e e e e e e e s aabraaeaaaeees 46
I o I o =T o T S oY== 2101 '] 1V 47
I Ny o F= T o T 1 =T [V S 48
3.4.4.3 Read/Write Protection for FIash MemOry........cccccoeiiiiiiiecieeie ettt ettt e 49

3L4.5 USEI OPtiON BY LS. .uuuuiiiiieiiiiiiiiiiiitteeee e e s sttt et e e e s e ssssbt it e e e eeessssbbbaaeeaeesssssaarataaaeeeesssassbrtaeeeeesssssssssnsaeees 49

38 T o 1= o TSRS 50

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.]

G@Dix Introduction

1 Introduction

GProgrammer supports programming of flash memories on Goodix SoCs and MCUs. It runs on Windows only.

GProgrammer provides diverse features:

Flexible SoC/MCU selections:
° GR551x series
° GMFO03x series
o Connection via SWD and UART
o Automatic GUI adaptation specific to SoC/MCU type
. Functionalities for GR551x series:
° Firmware download
° Flash programming & erasing
° Inputting product information (ID, name, description, and value)
° Downloading files to eFuse
° Viewing eFuse contents
° Firmware encryption and signing
° Configuring Non-Volatile Data Storage (NVDS) parameters
° Displaying device logs
° Programming on GR551x_console
o Functionalities for GMFO3x series:
° Reading from/Writing to SRAM and flash memory
° Reading out BIN and HEX files
° Programming and erasing of flash memory
° Read/Write protection for flash memory
° Configuring User Option Bytes

Figure 1-1 shows the Graphical User Interface (GUI) of GProgrammer (for GR551x series).

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1

G@Dix Introduction

GProgrammer

Firmware @
f~1 Ox010F FFFF
3] % Firmware File
a User App Firmware:
® Image Info
| II Image Name: Run Address:
Unused Version: System Clock:
s . NVDS Size(Byte): XQSPI Speed:
E . Existed SPI Access Mode: Boot Delay:
Download CheckSum: Check Image:
o Delete Load Address: Code Copy Mode:
Il Overlapping Update
@ Update ble_app_hrs
Unfinished Events
No. Action Description
1 update Update ble_app_hrs image info
2 delete Delste ble_zpp_hts_
3 add Add and download ble_app_ancs_fw.bin
0x0100 2000 4 add Add and download ble aop bos fw.bin
Refresh Add Delete Startup Commit

Figure 1-1 GProgrammer GUI (for GR551x series)

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 2

v
G@D]X Installation Instructions

2 Installation Instructions

This chapter describes the environment requirements as well as installation steps for installing GProgrammer.

2.1 Installation Requirements

i Hardware environment

Table 2-1 Hardware environment

Name Description
CPU 1.6 GHz and faster
RAM 1 GB and larger

. Operating system
Table 2-2 Operating system

Name Description

Windows Windows 7/Windows 10 (32-bit/64-bit)

2.2 Installation Steps

GProgrammer runs on Windows only with an executable installation package: GProgrammer Setup 1.2.14.exe.

Users can follow the steps below when installing GProgrammer:

1. Double-click GProgrammer Setup 1.2.14.exe, and follow the steps in the GProgrammer Setup wizard (see Figure
2-1).

& GProgrammer Setup M= E3

Welcome to GProgrammer Setup

Setup will guide you through the installation of
GProgrammer.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

Mext = I Cancel

Figure 2-1 GProgrammer Setup installation wizard

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 3

v
G@D]X Installation Instructions

2. Afterinstalling GProgrammer, you are prompted to install J-Link on demand. See Figure 2-2.

{&| cProgrammer Setup M= B2

Completing GProgrammer Setup

GProgrammer has been installed on your computer.,

Click Finish to dose Setup,

¥ Install JLink

< Back. I Finish I Zamcel

Figure 2-2 Prompt to install J-Link

- Tip:
For users who have installed J-Link on their PCs before installing GProgrammer, clear Install J-Link in the installation

wizard.

3. Afterinstalling J-Link, you can start the GProgrammer by clicking the GProgrammer shortcut on desktop or Start

menu.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

GA@DIX

Programming Flash with GProgrammer

3 Programming Flash with GProgrammer

This chapter elaborates on how to use functional modules of GProgrammer.

3.1 Hardware Connection

Before starting GProgrammer, make sure the host (PC) is correctly connected to the target board. You can establish the

connection in either SWD mode or UART mode.

. SWD mode

In SWD mode, users need a J-Link emulator with one end connecting to the host through a Micro USB cable and

the other end connecting to SoC/MCU pins of the target board through Dupont wire cables.

Host(PC)

Micro USB Cable

Jlink

Dupont Wire Cable

Figure 3-1 Host-target-board connection in SWD mode

The table below lists the mapping relations between J-Link emulator pins and SoC/MCU pins.

Table 3-1 Mapping relations between J-Link emulator pins and SoC/MCU pins

J-Link Emulator Pin GR551x SoC Pin GMF03x MCU Pin
VCC VCC VCC

GND GND GND

SWDIO GPIO_1 PA13

SWCLK GPIO_O PA14

- Tip:

For target boards that have been integrated with J-Link emulator chips, you can connect the host to the target board

directly through a Micro USB cable.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

G@Dix Programming Flash with GProgrammer

. UART mode

In UART mode, users need a USB-to-serial converter with one end connecting to the host through a Micro USB
cable and the other end connecting to SoC/MCU pins of the target board through Dupont wire cables.

Host(PC)

Micro USB Cable USB-to-Serial

Converter

Dupont Wire Cable

Figure 3-2 Host-target-board connection in UART mode

The table below lists the mapping relations between USB-to-serial converter pins and SoC/MCU pins.

Table 3-2 Mapping relations between USB-to-serial converter pins and SoC/MCU pins

USB-to-Serial Converter Pin GR551x SoC Pin GMF03x MCU Pin
vcC vcC vcc

GND GND GND

TX GPIO_1 PA15

RX GPIO_O PA14

RTS CHIP_EN N/A

In UART mode, the BOOTO pin of a GMF03x MCU shall be pulled up to high level. For details, refer to “Chapter 2
Bootloader Activation and Hardware Connection” in GMFO3x Bootloader Description.

- Tip:
For target boards that have been integrated with USB-to-serial converter chips, you can connect the host to the target
board directly through a Micro USB cable.

3.2 SoC/MCU Selection

Start GProgrammer. Prior to other operations, you are required to choose the SoC/MCU model on your target board
and click OK.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 6

G@Dix Programming Flash with GProgrammer

- Tip:

By default, GProgrammer opens the SoC/MCU selection interface when being started.

@ GProgrammer

Find Products

Y Filter Settings C
Products v -
ting Bluetooth 5.1, making it an ide:
Part Number >
B8 Series >
>
(&] Memory >
B Package > Item list 23 items
% Peripheral 5 Part Number Core Frequency RAM Flash Package Peripherals
it N GR3315IGND Cortex-M4F 64MHz 236KB 1024KB QFN56 2xQSPI, 2x SPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1x ISO7816, 6 x PWM
s
GRS513RGBD Cortex-M4F 64MHz 236KB 1024k BGAGE 2xQSPI, 2x SPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1xIS07816, 6 x PWM
GR5515GGBD Cortex-M4F 64MHz 256KB 1024KB BGAS55 0x QSPI, 2 x SPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1x 1507816, 6 x PWM
'@:‘ GR551510ND Cortex-M4F 64MHz 256KB OKB QFN56 2x QSPI, 2% SPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1x I1SO7816, 6 x PWM
GR5513BEND Cortex-M4F 64MHz 128KB 512KB QFN40 1x QSPI, 2% 5PI, 2 x 12C, 1 x 125, 2 x UART, 1 x ADC, 1x ISO7816, 6 x PWM
GMF0313C6PI Cortex-M0 A8MHz 4K8 32KB LQFP43 1x USART, 1x12C, 1xSPI, 1x 125
GMFO0313K6P! Cortex-M0 ABMHz 4KB 32KB LQFP32 1x USART, 1x12C, 1xSPI, 1x 125
GMFQ313F6TI Cortex-M0O 48MHz 4K8 32KB TSSOP20 1x USART, 1x12C, 1xSPI, 1x 125
GMF0310C6PI Cortex-M0 48MHz 4KB 32KB LOFP48 1xUSART, 1x12C, 1xSPI, 1x125

oK

Figure 3-3 SoC/MCU selection interface

On the SoC/MCU selection interface, the left pane lists Products and Kits options, and the right pane shows the
available choices. You can select an SoC or MCU by defining its Part Number, Series, Core, Memory, Package, or

Peripheral.

Under Series, you can quickly switch between GR551x SoCs and GMF03x MCUs.

B8 Series v
Product Type
BLE
Item list 5 items
Series
Part Number Core Frequency RAM Flash Package Peripherals
GR551x
GR3515IGND Cortex-MAF 64MHz ~ 256KB 1024KB QFNS6 2% QSPI, 2xSPI, 2 x 12€, 2 x 125, 2 x UART, 1 x ADC, 1x1SO7816, 6 x PWM
>
GRS515RGBD Cortex-M4F 64MHz 256KB 1024KB BGAGS 2% QSPI, 2x SPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1 1SO7816, 6 x PWM
(&] Memary >
P Package 5 GRS515GGBD Cortex-M4F 64MHz 256KB 1024KB BGASS 0x QSPI, 2 xSPI, 2 x 12C, 2 x 125, 2 x UART, 1 x ADC, 1x1SO7816, 6 x PWM
< Peripheral > GR551510ND Cortex-M4F 64MHz 256KB OKB QFNS6 2% QSPI, 2 xSPI, 2 x 12C, 2 x 125, 2 x UART, 1x ADC, 1x ISO7816, 6 x PWM
Kits > GRS513BEND Cortex-M4F 64MHz ~ 128KB 512KB QFN4D 1% QSPI, 2 SPI, 2 x 12C, 1x 125, 2 x UART, 1x ADC, 1 x ISO7816, 6 x PWM

Figure 3-4 Selecting GR551x series

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 7

G@Dix Programming Flash with GProgrammer

Item list 18 items
Series

Part Number Core Frequency RAM Flash Package Peripherals

GMF0313C6PI Cortex-M0O 48MHz KB 32KB LQFP48 1xUSART, 1xI2C, 1 x SPL 1 %125
it Core >

GMF0313K6PT Cortex-M0 48MHz 2KB 32KB LQFP32 1xUSART, 1xI2C, 1 x SPI 1 %125
(%] Memory >
a Package 5 GMFO0313F6TL Cortex-M0 48MHz 4K 32KB TSSOP20 1xUSART, 1x12C, 1 x SPL 1 xI25

Figure 3-5 Selecting GMFO3x series

To date, GProgrammer has supported both GR551x and GMF03x series:
. Five GR551x models such as GR5515IGND and GR5515RGBD

. 18 GMF03x models such as GMF0313K6PI, GMF0313C6PI, and GMFO313F6TI

- Tip:
Peripherals listed on the SOoC/MCU selection interface are only part of the peripherals of a GR551x SoC or GMF03x
MCU. For details of all peripherals, see GR551x Datasheet or GMF03x Datasheet.

3.3 GR551x Series

This section elaborates on functional modules of GProgrammer for GR551x series.

3.3.1 Main Operational Interface

After you choose a GR551x SoC, the main operational interface opens, as shown in the figure below.

@ GProgrammer

£l Firmware @ - .
SWD AR
~1 0xO10F FFFF
3] Firmware File
% Device:
User App Firmware:
& " Speed: 400
@ Image Info
|I| Image Name: Run Address: Connect
Version: Size(Byte)
SPI Access Mode Boot Delay:
CheckSum: Check Image:
a Unused
Load Address:
0 W nvDs

Unfinished Events

No. Action Description

Refresh Add Delete Startup

Figure 3-6 GProgrammer GUI (for GR551x series)

The GUI comprises a functional navigation bar on the left (see Table 3-3) and a function operational zone on the right.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 8

GA@DIX

Programming Flash with GProgrammer

Icon Function Name

Firmware

Flash

Encrypt & Sign

eFuse Layout

Chip Configuration

Device Log

Help

Table 3-3 Options on the functional navigation bar
Description

Displays firmware-related operations.

Displays operations related to flash memory.

Displays operations related to firmware encryption and signing.

Displays eFuse layout.

Displays operations related to chip configurations.

Displays device logs.

Displays help information.

3.3.2 Connection Management

GProgrammer helps users manage and control the connection between your host and target board.

Click @ in the upper-right corner of the interface to open or hide the connection management window of

GProgrammer.

GProgrammer supports two connection modes: SWD and UART.

U SWD

Users need to configure Speed (data transfer rate) only and click Connect to connect the target board to the host.

U UART

Connect

Figure 3-7 GProgrammer SWD connection

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 9

G@Dix Programming Flash with GProgrammer

Users need to configure Port (click Refresh and select a correct Port value) and Baudrate on demand. The default
configurations of other parameters (Parity, DataBits, StopBits, and FlowControl) cannot be modified.

After setting these parameters, click Connect to connect the target board to the host.

Port: OM1
Baudrate 921600
Parity:
DataBits
StopBits:
Refrash Connect

m

Figure 3-8 GProgrammer UART connection

After the connection is successfully established, the connection management window automatically hides with the o

button turning into o , which indicates successful connection establishment.

To disconnect the host from the board, click O open the connection management window, and click Disconnect.

Disconnect

Figure 3-9 Clicking Disconnect on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

10

G@Dix Programming Flash with GProgrammer

3.3.3 Firmware

Click ﬁ on the left side of the main interface of GProgrammer to open the Firmware interface.

@ GProgrammer

£+l Firmware e
1 0x010F FFFF N . .
3] Firmware File
& User App Firmware:
@ Image Info
age Name: Run Address:
111 e
Unused Version: Size(Byte):
W wvos SPI Access Mode: Boot Delay:
E W Existed CheckSum: Check Image:
Download Load Address:
o Delets Update
Il Overlapping
Update ble_app_hrs @ Unfinished Events
No. Action Description
1 add Add and download app_ancs_c_fw.bin
2 add Add and downlo :_app_hts_fw.bin
3 startup Start up ble_app_hts_

0x0100 2000 | |

Refresh Add Delete Startup Commit

Figure 3-10 GProgrammer Firmware interface

You can download your application firmware to the contiguous space of flash memories, ranging from 0x01002000 to
OxO10FFFFF.

3.3.3.1 Download Firmware

GProgrammer graphically displays the flash memory space layout occupied by firmware (see Figure 3-11), which helps

you easily learn the flash occupation status.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 11

G@Dix Programming Flash with GProgrammer

0xO10F FFFF

Il Overlapping

Update ble_app_hrs @

0x0100 2000 | |

Refresh Add Delete

Figure 3-11 Flash firmware layout

: flash space to which data can be downloaded
.: default NVDS area to which firmware cannot be downloaded
: space for storing to-be-deleted firmware. Example: ble_app_ancs
: space for storing to-be-downloaded firmware. Example: ble_app_hrs
.: space for storing downloaded firmware in flash memories. Example: ble_app_bps

.: space overlapped by two pieces of firmware. Examples: ble_app_T3u and ble_app_hts
Follow the steps below to download firmware to a flash memory by using GProgrammer:

1. Click Add to add a local firmware file to GProgrammer. GProgrammer presents details of the added firmware

such as firmware directory (User App Firmware) and Image Info.

2. Click Commit to download the firmware to flash memories.

After downloading, the color of the firmware turns from to ., indicating the firmware has been successfully

downloaded.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 12

G@Djx Programming Flash with GProgrammer

I Note:
1. GProgrammer automatically reads firmware existing in the flash memories after being connected a target board.

2. If J-Link cannot be connected when you download firmware, connection/firmware download to the GR5515 SK
Board fails. At this moment, the GR551x SoC may be in sleep mode (the firmware keeps running in sleep mode).
You can press RESET on the GR5515 SK Board, wait for around one second, and re-download the firmware. If this
approach does not work, erase the flash and re-download the firmware.

3.3.3.2 Action Order

You can execute multiple actions at a time. For example, download multiple pieces of firmware to flash memories and
set one piece of firmware as Startup. The user-defined actions are executed by clicking Commit. The action orders are
displayed in Unfinished Events, as shown in Figure 3-12.

Unfinished Events

Figure 3-12 Action order

Executable actions for users are listed in the table below.

Table 3-4 Executable actions for users on GProgrammer
Name Button/Ilcon Description
Add firmware Add Click Add to add a local firmware file to GProgrammer.

Click Refresh to obtain the information of firmware downloaded in the flash memories of a target

board.
Refresh firmware Refrash

Unexecuted actions in the Unfinished Events pane, such as those labeled as startup or update are

withdrawn with modified parameters being reset to values before refresh.

Click the Delete button to delete existing firmware in flash memories. Select firmware to be
Delete firmware Delete deleted in the flash firmware layout, and click Delete. The firmware color turns to . An action

labelled as delete is added to the Unfinished Events.

Set firmware as startup to run the firmware immediately. Select firmware in the flash firmware
Start execution Startup

layout, and click the Startup button. displays on the right of the firmware. An action labelled

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 13

G@Djx Programming Flash with GProgrammer

Name Button/lcon Description
as startup is added to the Unfinished Events. The host automatically disconnects from the target
board after running the firmware.
Click the Update button to update the information of existing firmware in flash memories on

a target board. Select firmware to be updated in the flash firmware layout, and modify the

firmware information (the color of modified parameters turns to I) Click Update, and the
Update firmware

. . Update icon displays on the right side of the firmware. An action labelled as update is added to the
information
Unfinished Events.
Execute update actions, and all parameters involved are locked. No editing is allowed. If
modification is required, withdraw the previous update action.
Note:
o In the action order list, you can withdraw an action by clicking * on the right side of the action.

o For two associated actions, withdrawal of the associated action may lead to automatic withdrawal of the
previous action. For example, add a firmware file to flash memories, and set it as startup. Withdrawal of Add

leads to withdrawal of Startup.

In addition, if there is overlapped space for firmware, Commit will not be available until the conflict is resolved.

Note:

For two pieces of firmware totally overlapping with each other, you can click the overlapping space to select one piece

of firmware and double-click the space to select the other.

3.3.4 Flash

Click E on the left side of the main interface of GProgrammer to open the Flash interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

14

G@Dix Programming Flash with GProgrammer

@ GProgrammer

£+ Flash @
a 0x010F FFFF - . B)
B Flash Configuration

& (® Internal Flash

Extemal Flash Flash ID: Flash Size: Config
111
Q Erase Flash

Erase Al
E Unused Erase Sector

Il Boot (® Erase Specified Area | Ox | 01002000 to | Ox | OL02FFFF

0 W nvDs

Wi ble_app_bps
Firmware

é Download Data
File Path: =3

File Size(Byte): Download Address: | Ox | 00000000 Download

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): | 0 Dump

Figure 3-13 GProgrammer Flash interface

GProgrammer allows users to program internal and external flash memories of GR551x SoCs. Detailed programming

actions include Erase Flash, Download Data, and Dump Data.

Similar to the firmware layout, the Flash module presents the flash space occupation in a graphic manner.

: unused flash space
.: space for NVDS

.: Boot info space (0x01000000 to 0x01002000). The Boot info space is automatically loaded and displayed

when users choose internal flash memories.

.: space for storing downloaded firmware in flash memories. Example: ble_app_bps

: space to be operated, such as flash space to be erased

3.3.4.1 Internal Flash

3.3.4.1.1 Flash Configuration

Select Internal Flash in the Flash Configuration list to program internal flash memories.

The flash layout on the left side of the Flash interface automatically synchronizes with updated firmware layout

information to obtain the firmware, NVDS, and Boot info space.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 15

G@Dix Programming Flash with GProgrammer

@& GProgrammer

Flash @
ﬁ 0x010F FFFF i
E\O Flash Configuration
a (®) Internal Flash
Edernzl Flash Flzsh ID: Flash Size: Config
111
- Q Erase Flash
Erase All
E Unused Erase Sector
W coot (@) Erase Specified Area | Ox | 01002000 to | Ox | O102FFFF Erase
0 |
ble_app_bps
W Frmere é’; Download Data
File Path: =
File Size(Byte): Download Address: | Ox | 00000000 Download
D Dump Data
ble_dfu_boot
Starting Address: 0x | 00000000 Size(Byte): | 0 Dump
0x0100 0000

Figure 3-14 Selecting Internal Flash

3.3.4.1.2 Erase Flash

GProgrammer provides three flash erasing mechanisms: Erase All, Erase Sector, and Erase Specified Area.
. Erase All
The mechanism helps erase all flash space.

The Boot info and NVDS space is cleared with all firmware deleted.

@& GProgrammer

Flash @

0x010F FFFF

E}, Flash Configuration

e a

(® Intemal Flash

External Flash Flash ID: Flash Size: Config

171
" m Erase Flash
@® Erase Al

E Unused Erase Sector

Il Boot Erase Specified Area 0x to | Ox
o L Iv

W Firmware +.

& Download Erase all data in internal flash, are you sure to

continue?
File Path: (=]
File Size(Byte): oK Cancel 00000000 Download
B Dump Data
Starting Address: 0x | 00000000 Size(Byte): | © Dump

0x0100 0000

Figure 3-15 Erase All on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 16

G@Dix Programming Flash with GProgrammer

. Erase Sector

The mechanism helps erase a specified flash sector (size: 4 KB).

@ GProgrammer
Flash @

OxQ10F FFFF

B Flash Configuration

(®) Internal Flash

5
(]

Externzl Flash Flash 1D: Flash Size: Config

E)! Erase Flash

Erase All

E (®) Erase Sector 100

Unused
Erase Specified Area 0x to | Ox
0 W coot

W ~vos
d’; Download Data

Filz Path: =3

File Size(Byte): Download Address: | Ox | 00000000 Download

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): 0 Dump
0x0100 0000

Figure 3-16 Erase Sector on GProgrammer

o Erase Specified Area

The mechanism helps erase an area within a specified address range, by sector.

@ GProgrammer

Flash @

51 0x010F FFFF : .
[\0 Flash Configuration

(® Internal Flash

External Flash Flash ID: Flash Size: Config

I:)z Erase Flash

Erase All

E Erase Sector
Unused
(®) Erase Specified Area Ox | 01010000 to | Ox | 01020000

o I soot
W nvDs
‘t; Download Data
File Path: =
File Size(Byte): Download Address: | Ox | 00000000 Download

B Dump Data

Starting Address: Ox | 00000000 Size(Byte): | 0 Dump
0x0100 0000

Figure 3-17 Erase Specified Area on GProgrammer

3.3.4.1.3 Download Data

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 17

G@Dix Programming Flash with GProgrammer

When downloading data to flash memories on GProgrammer, users only need to view and add the BIN files of the
data, as well as set a starting address for downloading in Download Address.

GProgrammer

Flash

0x010F FFFF & open *

_
o
X

| II I This PC _] ble_app_ancs_ﬁml.:in 12/3/2019 213 PM BIN ::'.-
o __| ble_2pp_bps_fw.bin 12/2/2019 213 PM EIN File
1] ble_dfu_best_fw.bin

« v 4 « Desktop » GPregrammer v U Search GProgrammer »

= @
~

@ OneDiive Hame Date Type Config

Organize =~ New folder

B 3D Objects
Daily Record
I Desktop

EIN File

Docurnent_publ

| Documents
I

¥ Downloads p—

B Music

= Pictures

Software
é Dow B videos

File Path: weeklyreport ¢ 2

File name: | ble_spp_bps_fw.bin v| Image (*.bin) ~

==

File Size(B|

Download

B Dump Data

Size(Byte)l: | 0 Dump

Figure 3-18 Viewing and selecting a data file to be downloaded

A flash overflow error occurs when the downloaded file size is excessively large or the starting address is out of range.

(% GProgrammer

Flash e

ﬁ 0x010F FFFF

E}u Flash Configuration
(® Internal Flash

External Flash Flash ID:

Flash Size: Config
111
m Erase Flash
= Erase All Failed x
E Unused (® Erase Sector
Qut of range.
. Boot Erase Specified Ar Erase
0 Il VDS oK
ble_app_bps
Firmw _
W Firmuare gf; Download Data
File Path: FAFIF= R A \GRProgrammerifii\ble_app_T3u_fw.bin =3

File Size(Byte): Download Address: | Ox | O10EFFFF

B Dump Data
ble_dfu_boot
Starting Address: Ox | 00000000 Size(Byte): | 0

Dump
0x0100 0000

Figure 3-19 Flash overflow error

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 18

GA@DIX

Programming Flash with GProgrammer

- Tip:

Users are allowed to forcibly download data to the Boot info space in SWD connection mode only. In UART mode,

force download to the Boot info space is prohibited.

3.3.4.1.4 Dump Data

Users can dump any data in flash memories to a local file by specifying a starting dump address and the data size.

@ GProgrammer

Flash

@ Save As

+ » This PC » Desktop » GProgrammer

m ® Intern LETt3s LTI

n
8 This PC
111 ¥ 30 Objects [bl spp.snes_fwbin
Daily Record L] ble_app_bps_fw.bin
ble_dfu_boot_fw.bin
E} Eras I Deskicp

Decurnent_publ

a Q Flasl
a

Name

&

] Docurnents
4 Downloads
D Music
.':'-"" Erase = Pictures

Software
B videos

Date

Erase

File narme: “

File Path: Save astype | Image (*bin)

1 A Hide Folders

Cancel

[
w ke

=

Download

B Dump Data

Figure 3-20 Dump Data on GProgrammer

3.3.4.2 External Flash

3.3.4.2.1 Flash Configuration

Select External Flash in the Flash Configuration list to program external flash memories. Click Config to configure the

SPI Type and pins based on actual demands.

Click Apply to complete the configuration.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

19

G@Dix Programming Flash with GProgrammer

External Flash Configuration X

SPI Type (®) SPI QSPI0
GPIO Type GPIO PIN PIN MUX
Cs: NORMAL GPIO_0 MUX_0
CLK: NORMAL GPIO_3 MUX_2
MOSE | NORMAL GPIO_4 MUX_2
MISO: | NORMAL GPIO_S MUX_2
Apply Cancel

Figure 3-21 SPI configurations

External Flash Configuration x

SPI Type SPI (® QSPI0
GPIO Type GPIO PIN PIN MUX

CS: AON AON_GPIO_1 MUX_5

CLK NORMAL GFIO_24 MUX_5

100: NORMAL GPIO_25 MUX_5

101: NORMAL GPIO_16 MUX_5

102 NORMAL GPIO_17 MUX_5 |
103: NORMAL GPIO_31 MUX_5

Apply Cancel

Figure 3-22 QSPIO configurations

o Configure Flash Size

After users apply the pin configurations, GProgrammer reads and displays the external Flash ID based on which the
Flash Size is automatically set.

- Tip:
Before clicking Apply, make sure external flash memories are correctly connected to the target board in accordance

with pin configurations. Incorrect connections lead to failures in communications between external flash and the
board.

Users need to manually set the Flash Size when GProgrammer fails to get the flash size based on the accessed flash ID.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 20

GA@DIX

Programming Flash with GProgrammer

@ GProgrammer

u Flash

0x000F FFF

> Q

171

0x0000 0000

E\o Flash Configuration
Internal Flash

(®) External Flash F

ash ID: Flash Size:

E} Erase Fla

Erase All

(®) Erase Secto

o Unknown flash ID and you need to config flash size.

Erase SpecimeorArea

‘5 Download Data
File Path

File Size(Byte):

B Dump Data

Starting Address:

FAGRProgramm e_app_T3u_fw.bin

Download Address: = Ox

Size(Byte):

Config
Erase
=3
01009000 Download
150000 Dump

3.3.4.2.2 External Flash Programming

Figure 3-23 Unknown flash ID

GProgrammer allows users to program flash memories (erase flash, download data to flash, and dump data to a local

file) within a valid address range.

@ GProgrammer

£+ Flash

0x003F FFFF

> Q

111

o Unused

I:), Flash Configuration

Internal Flash

® External Flash Flash ID: Flash Size:
D Erase Flash

Erase Al
(®) Erase Sector 10

Erase Specified Area Ox to | Ox

5‘3 Download Data
File Path:

File Size(Byte)

B Dump Data

Starting Address:

F\GRProgrammerilifizt\ble_app_T3u_fw.bin

Download Address: = Ox

Ox | O10AFFFF

Size(Byts):

Config

Erase

150000

Dump

Figure 3-24 Download Data to external flash on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

21

G@Dix Programming Flash with GProgrammer

- Tip:

No operation on external flash is allowed before completing pin configurations.

3.3.5 Encrypt & Sign

Click H on the left side of the main interface of GProgrammer to open the Encrypt & Sign interface.

@ GProgrammer

Encrypt & Sign @
a eFuse Settings
Name: 1D
& Firmware Key: '@‘ Using Random Key Select Key
Security Mode: (®) Open Close SWD: (® Open Close
171
Batch eFuse:
Generate
E Download
=
o (=]
o ad t u
Encrypt and Sign
Product Info: =
Random Number: (E) Using Random Number Select Number
Firmware: 4 =

Encrypt Encrypt and Sign

Figure 3-25 GProgrammer Encrypt & Sign interface

GR551x SoCs support Security Mode and Non-security Mode. The mode is determined by the security mode of the
product written in eFuse. When Security Mode is enabled, only firmware that has been encrypted and signed can be

downloaded to flash memories.

3.3.5.1 eFuse Settings

eFuse is a one-time programmable (OTP) memory with random access interfaces on GR551x SoCs. The eFuse stores

product configurations, security mode control information, and keys for encryption and signing.

When using GProgrammer, users can generate eFuse files by specifying product names, IDs, and firmware keys, and by

configuring security mode and SWD interfaces.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

22

G@Djx Programming Flash with GProgrammer

eFuse Settings

Generate eFuse File

Figure 3-26 Setting eFuse parameters

I Note:
o Firmware keys can be random keys generated by GProgrammer. Users can also add key files on demand.

. When Security Mode is enabled, users can choose to Open or Close the SWD interface.

GProgrammer allows users to generate multiple Encrypt_key_info.bin files in batches by checking Batch eFuse.
The generated files are unique, meeting requirements of scenarios demanding one key for one device. For
example, when users input “3” in the Batch eFuse box, GProgrammer generates three Encrypt_key_info.bin files:

Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin.

Generated files are listed in the figure below:

| | 2_Encrypt_key_info.bin
|| 2_Public_key_hash.txt
|| 3_Encrypt_key_info.bin
|| 3_Public_key_hash.b
|=] efuse json

|| Encrypt_key_info.bin
|| firmware. key

| | Mode_control.bin

|¥] product.json

|| Public_key_hash.tu
|| sign.key

| | sign_pub.key

Figure 3-27 Generated files

o efuse.json: a temporary file

. Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin: files to be downloaded to eFuse,
covering information on products, encryption, and signing. These files shall be downloaded to and stored in

eFuse.
e firmware.key: a private key for encrypting firmware

o Mode_control.bin: an eFuse file covering information on security mode and SWD. This file shall be downloaded

to and stored in eFuse.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 23

G@Dix Programming Flash with GProgrammer

. product.json: a product information file. This file shall be imported to a GProgrammer when encrypting or signing

firmware.
o sign.key: a private key to generate signatures
o sign_pub.key: a public key to verify signatures
o Public_key_hash.txt, 2_Public_key_hash.txt, and 3_Public_key_hash.txt: public key hashes to verify signatures

To make files download to eFuse or firmware encryption and signing user-friendly, GProgrammer automatically loads
the paths of the Encrypt_key_info.bin file and the Mode_control.bin file to the Download area, and the path of the

product.json file to the Product Info pane in the Encrypt and Sign area, as shown in the figure below.

@ GProgrammer

£+l Encrypt & Sign @
a eFuse Settings

Name: test 1D: 1111
& Firmware Key: ® Using Random Key Select Key

SecurtyMode: @ Open () Close Close
1T)

Batch eFuse - o Complete to generate efuse file.
: Only Data Key is different between batch efuse files,
Generate eFuse File

oK
E Download
Encrypt Key Info: C\eFuse\Encrypt_key_info.bin =

o Mode Control: C\eFuse\Mode_control.bin =]

Encrypt and Sign

Product Info: C:\eFuse\product.json

Random Number: '@) Using Random Number Select Number

Firmware: P

Encrypt Encrypt and Sign

Figure 3-28 Paths for automatically loaded files

3.3.5.2 Download

For users who have clicked Generate eFuse File to generate Encrypt_key_info.bin and Mode_control.bin files in the
eFuse Settings pane, select Encrypt Key Info and Mode Control in the Download pane, and click Download to eFuse
to download the files to eFuse.

Otherwise, users need to manually add Encrypt_key_info.bin and Mode_control.bin files before downloading the files

to eFuse.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 24

G@Dix Programming Flash with GProgrammer

@ GProgrammer

£+l Encrypt & Sign @
a eFuse Settings

Name: test 1D: 1111
& Firmware Key: sing Random Key Select Key

Security Mode: (®) Open Close SWD: (® Open Close
111
Batch eFuse: 3
Only Data Key is different between batch efuse files,
Generate eFuse File
E Download
Encrypt Key Info: C\eFuse\Encrypt_key_info.bin =
o Mode Control: C\eFuse\Mode_control.bin =]
Download to eFuse
Encrypt and Sign
Product Info: C:\eFuse\product.json =
Random Number: (E) Using Random Number Select Number
Firmware: =
4
Encrypt Encrypt and Sign
Figure 3-29 Downloading files to eFuse
LI Note:

eFuse information cannot be repeatedly downloaded to firmware.

3.3.5.3 Encrypt & Sign

When Security Mode is enabled, only firmware that has been encrypted and signed can be downloaded to flash
memories. GProgrammer allows users to encrypt and sign, or to sigh multiple firmware files by using one set of
product information (Product Info) and one random number (Random Number).

The Random Number can be manually set by users or generated by GProgrammer.

When adding more than one firmware file, separate each file path with a semicolon (;), as shown in Figure 3-30.

Encrypt and Sign

Product Info: C\eFuse\productjson =4
Random Number: (®) Using Random Number Select Number
Firmware: C\firmware\ble_app_ancs_fw.bin:C:\firmware\ble_app_bps_fw.bin:C:\firmware\ble_app_hrs_fw.bimC:\firmware\ble_app_hts_fw.bin =3

“

Encrypt Encrypt and Sign

Figure 3-30 Adding more than one firmware file

To encrypt and sign the firmware, check the Encrypt box, and the button changes from Sign to Encrypt and Sign; to
sign the firmware only, uncheck the Encrypt box, and the button changes back to Sign. Choose the directory to save
the (encrypted and) signed firmware, and click Encrypt and Sign/Sign.

Files after being encrypted and signed are listed below:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

25

G@Dix Programming Flash with GProgrammer

|| ble_app_ancs_fw_encryptandsign.bin
|| ble_app_bps_fw_encryptandsign.bin
|| ble_app_hrs_fw_encryptandsign.bin
| | ble_app_hts_fw_encryptandsign.bin

|| random.bin
Figure 3-31 GProgrammer-generated files after encryption and signing

Files after being signed are listed below:

|] ble_ app_ancs_fw _sign.bin
[| ble app_bps fw_sign.bin
[| ble_ app_hrs_fw _sign.bin
[| ble app_hts_fw_sign.bin
[] random.bin

Figure 3-32 GProgrammer-generated files after signing

| Note:

The random number generated by GProgrammer is for encryption algorithms. After users perform encryption and
signing of firmware files, the random.bin file is stored in the same directory as encrypted and signed firmware files.
Users can view and add the random.bin file to GProgrammer next time they use the random number for firmware

encryption and signing.

3.3.6 eFuse Layout

Click ﬂ on the left side of the main interface of GProgrammer to open the eFuse Layout interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 26

G@Dix Programming Flash with GProgrammer

o eFuse Layout @
ﬁ Offset Name Value Length Comments
0x015E Product ID 2 product identity
& 0x0158 ChipID 6 chip identity
0x0152 EncMode 2 encrypted or not
171
0x0150 SWDDisable 2 enable SWD or not
0x014C Config 4 chip configuration
0x013C Chip UID 16

0x012A XO 2 xo offset

o 00124 BTMAC &

Figure 3-33 eFuse Layout interface

GProgrammer presents users with eFuse layout information: Offset, Value, Length, and Comments of fields including
Product ID, Chip ID, EncMode, SWDDisable, and Config. Among them, the Config field contains multiple bit fields.

Click Refresh to obtain the values of all fields or bit fields.

Click ~ before Offset of Config to expand the detailed bits, as shown in the figure below. Click or double-click
Config to collapse the detailed bits.

@ GProgrammer

eFuse Layout @

ﬁ Offset Name Value Length Comments
0x015E Product ID 67 2B 2 product identity
& 0x0158 Chip ID 00 A8 27 D4 13 EA 6 chip identity
0x0152 EncMode 0100 2 encrypted or not
171
0x0150 SWDDisable 00 00 2 enable SWD or not
0x014C Config 00 00 00 00 4 chip configuration
0 upgrade_disable] 1

1: PLL-48MHz, 2: XO-16MHz, 3: PLL-24MHz, 4:

1 boot_clk 000 3 . PLL-32MHz
o 4 dpad_while_disable] 1
rx_sample_delay 00 2
7 flash_power_up_delay 0000 4
11 spi_mode 00 2 mode 0, 1,2, 3
13 clk_fls_ctrl 4 0: 64MHz, 1: 48MHz, 2: 32MHz, 3: 24MHz, 4: 16MHz, 5: 16MHz
17 xip_cmd_mode 3
. - o g . - rer racd
Refresh

Figure 3-34 Expanded Offset

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 27

G@Dix Programming Flash with GProgrammer

-/ Note:
The fields and bit fields listed in the interface are stored in the efuse_config.json file in the config folder. Information

stored in eFuse is more than just the listed fields and bit fields.

3.3.7 Chip Configuration

Click % on the left side of the main interface of GProgrammer to open the Chip Configuration interface.

@ GProgrammer

Chip Configuration = ®
— Init NVDS Area
3]
Start Address: | Ox | O10FF000 Sectorst 1
& Parameters
A D Parameter Name Description Length(Byte) Value Value In Chip
111 +
ROM Par
5:57:89:AB
0x0
i) -

W Unfinished Import Export Write Read All

Figure 3-35 GProgrammer Chip Configuration interface

GProgrammer allows users to set the parameters (including USER Parameters and ROM Parameters) stored in the
NVDS area.

. USER Parameters: user-defined parameters that can be added, deleted, and modified

ROM Parameters: ROM parameters stored on GR551x SoCs, which can be modified only by users. Neither

parameter addition nor deletion is allowed.

L. Note:

o The default ROM parameters listed in the interface are stored in the nvds_config.json file in the config folder.
The parameters are not results accessed in real time from the NVDS area. For more information about ROM

parameters, see Table 3-5.

* Click == in the upper-right corner of the Chip Configuration interface to enable display of complete value

contents of a parameter.

. Look up parameters quickly by using the screening box in the upper-right corner of the interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

28

GA@DIX

Programming Flash with GProgrammer

ID Parameter Name
0xC001 BD_ADDRESS
0xC002 DEVICE_NAME
0xC007 LPCLK_DRIFT
0xC085 CODED_PHY_500
0xCOB1 RF_XO_OFFSET
3.3.7.1 Init NVDS Area

Table 3-5 NVDS ROM parameters

Description

This parameter sets the Bluetooth device address.

This parameter sets the device name.

This parameter sets the Sleep Clock Accuracy (SCA); range: 10 ppm to 500 ppm

This parameter sets the default Coded PHY value; Value 0: 125 kbps; Value 1: 500 kbps

This parameter sets the clock calibration byte; range: 0x000 to Ox1FF

Prior to configuring NVDS parameters, users need to specify a starting address (4 KB aligned) and the number of

occupied sectors in the NVDS area.

Init NVDS Area

Start Address: | Ox | 010FF0O00

Sectors: | 1

Figure 3-36 Setting the starting address and sector quantity in the NVDS area

NVDS initialization fails when the configured NVDS area overlaps with the existing firmware area.

@ GProgrammer

& Chip Configuration
a Init NVDS Area

Start Address: | Ox | OLO0FF0OQ
& Parameters

A D P

171
o
=]
i)

M Unfinished

3.3.7.2 Read All

Sectors: 1
0 Can not init NVDS in the area firmware exists. +
oK
0K
0x0:
Import Export Write Read All

Figure 3-37 NVDS initialization failure

GProgrammer can read all parameters in the current NVDS area and display them in the Parameters pane.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

29

GA@DIX

Programming Flash with GProgrammer

To prevent operation failures in user applications due to parameter overlapping in the NVDS area, users are

recommended to click Read All after connecting the target board to the host.

GProgrammer provides three parameter states: Unfinished, Same, and Different, which help you quickly identify the

parameter state in the current NVDS. Details are listed below:

. Unfinished: Parameters in unfinished state are presented in black. These parameters are either new ones
different from the default listed parameters after users click Read All (example: 0x4000 in Figure 3-38) or ones

that have been listed in the NVDS area but with a different parameter length (example: 0x4001 in Figure 3-38).

o Same: Parameters in same state are presented in green, indicating the parameters already exist in the NVDS area

and have the same length and value as those in the default list (example: 0x4002 in Figure 3-38)

. Different: Parameters in different state are presented in orange, indicating the parameters already exist in the
NVDS area and have the same length as but a different value from default listed parameters (example: 0x4003 in

Figure 3-38)

@ GProgrammer

£+l Chip Configuration

Init NVDS Area

o
Start Address: | Ox
& Parameters
A D
111
E 0x4002
ROM Parameters

W Unfinished M Same

3.3.7.3 Write

10ff000

test2

BD_ADDRESS

M Different

Description Length(Byte) Value

Device Name 4 name

Import

Figure 3-38 Read All interface

Select parameters to be written to NVDS, and click Write.

e In Chip

Write Read All

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

30

GA@DIX

Programming Flash with GProgrammer

& GProgrammer

> a

171

1 -

Chip Configuration

Init NVDS Area

Start Address: Ox | 10ff000

Parameters

0x4003

0x4000

0:4002

ROM Parameters
0xC001

0xC002
0xC007

0xC085

OxCOBL

M Unfinished B Same

Parameter Name

test2

BD_ADDRESS
DEVICE_NAME
LPCLK_DRIFT
CODED_PHY_500

RF_XO_

e

M Different

The following value will be writen in chip:

o 0xCO

Are you sure to continue?

: name

OK Cancel
Device Address 6 01:23:45:67:89:A8
Device Name 4 name
Sleep Clock 2 500
Prefer LE Co 0x00
XO offset 2 0x0100

Import

Figure 3-39 Write parameters to NVDS

Value In Chip

N/A
N/A
N/A
N/A

0x008¢

Export Write

Read All

- Tip:

o Parameters in unfinished state cannot be written to NVDS directly.

o You can select more than one parameter to implement a batch write.

. When an unfinished parameter is selected, Write is unavailable.

3.3.7.4 Add a User Parameter

Follow the steps below to add a user parameter to NVDS.

1. Click+to open the Add USER Parameter window.

2. Specify the ID, Parameter Name, Description, Type, Length(Byte), Value, and data presentation format (dec or

hex).

Add USER Parameter x

D

Dx

Parameter Name

Description

Type
Length(B

Byte)

Value

Unsigned Integer

vie)]

(@) dec

(@) dec

OK Cancel

Figure 3-40 Adding a user parameter to NVDS

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

31

G@Dix Programming Flash with GProgrammer

3. Click OK to complete the adding.

I Note:

o You cannot input a parameter ID that is identical with those listed in the Parameters pane. Otherwise, a warning
dialog box pops up, as shown in Figure 3-41.

o If the added ID is different from those existing in the NVDS, the added parameter is directly written to NVDS.

o If the ID of a to-be-added parameter already exists in NVDS and the two parameters with the same ID are of the
same length, the to-be-added parameter is written to NVDS.

o If the ID of a to-be-added parameter already exists in NVDS but the two parameters with the same ID are of
different lengths, the to-be-added parameter is not written to NVDS. Users need to modify the parameter length
before writing it to NVDS.

USER Parameters

04001 existed existed parameter

el Add USER Parameter »

1D Ox | 4001

N) 0 User Parameter ID must be identical
Parameter Name duplicatec

Description duplicated paramter oK

Type Unsigned Integer

P

Pl
(=]
1%
]
=
]
=4

OK Cancel

Figure 3-41 Failure to add a user parameter due to an identical parameter ID

3.3.7.5 Modify NVDS Parameters

Users can modify both the USER Parameters and ROM Parameters.

ROM Parameters: You can modify the Parameter Name, Description, and Value of a ROM parameter. The
modification on a parameter value does not lead to changes in the parameter length (except varying-length character
strings).

USER Parameters: For user parameters in same and different states, the Parameter Name, Description, and Value can
be modified. For user parameters in unfinished state, the Type and Length(Byte) can be modified.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 32

G@Dix Programming Flash with GProgrammer

Double-click a parameter to be modified, and edit the parameter information in the pop-up window. Click OK to write
the modifications into NVDS.

Edit Parameter Value x

D Ox
Parameter Name ABC
Description abe
Type

Length(Byte)

oK Cancel

Figure 3-42 Edit Parameter Value window

. Note:

Parameters in unfinished state with a modified length that is different from that in the NVDS remain unfinished. Such

parameters cannot be automatically written into the NVDS.

3.3.7.6 Remove a User Parameter
Users can remove user parameters onIy.

Select a parameter to be removed, and click Delete 15 remove the parameter from the NVDS.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 33

GA@DIX

Programming Flash with GProgrammer

@ GProgrammer

bf Chip Configuration

Init NVDS Area

Parameter Name

o

Start Address: | Ox | 10ff000
& Parameters

Al D
1T ;

USER Parameters

0x4001

04003

E 0x4002
ROM Parameters

o 0xC00L
0xC002

0xC007

0xC085

0xC0B1

W Unfinished M Same

test2

BD_ADDRESS
DEVICE_NAME
LPCLK_DRIFT
CODED_PHY_500

RF_XO_OFFSET

M Different

The selected parameters will be deleted from chip.
are you sure to continue?

OK Cancel
test? 1 1
Device Address 6 01:23:45:67:8%:AB
Device Name 4 name
Sleep Clock Accuracy 2 500
Prefer LE Coded PHY 500K 1 0x00
XO offset 2 0x0100

Import

Figure 3-43 Removing a parameter

©

Sectors: | 1

Value In Chip

N/A
N/A
N/A
N/A

0x008c

Export Write Read All

- Tip:

You can select more than one parameter and click 2% to implement a batch removal.

When a ROM parameter is selected, Remove is unavailable (Pelete

isin grey).

3.3.7.7 Import and Export

GProgrammer allows users to export parameter data (Parameter Name, Description, Length, and Value) to a local

JSON configuration file as well as import local JSON configuration files to GProgrammer.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

34

GA@DIX

Programming Flash with GProgrammer

GProgrammer

Chip Configuration

Init NVDS Area

[+
Start Ad, Ox 10ff000
& Parameters
1T R
USER Parameters

o &

test2

M Unfinished M Same W Different

Desitop » GProgesmenes -

Cuganie =

& OnaDrive Harre Date
8 T PC) ehure jron 4
& 10 Ctypects
Dty Racerd
BB Desktop
Decrorment_publ

ot e ' W14

| Detwemenny
& Doanicsde
B M
= Puchues
et mprr
W videos
weekly mpont . ¢

Fie e

NVDS Config ©juon)

o]

L e -

x
'y Secto
1 @
e
alue I
. o
» A
Comcel 008:
Impert config file
Import Export Write Read All

Figure 3-44 Importing local JSON configuration files to GProgrammer

- Tip:

o Parameters in the imported JSON files replace all those listed in the Parameters pane.

o Export modified parameter data to a local JSON file to prevent repeated modification.

3.3.8 Device Log

Click E on the left side of the main interface of GProgrammer to open the Device Log interface.

@& GProgrammer

Device Log

D CONTENT

e o
x
g

171

o o
Py Py
53 4

AD0B

ADOC

A00D

AQOE

AQOF

HARDFAULT CALLSTACK INFO: R0-00000000 R1-00000000 R2-00000000 R3-00000000 R12-0000000A LR-01020581 PC-01015FEC XPSR-61000011

HARDFAULT CALLSTACK INFO: R0-00000000 R1-00000000 R2-00000000 R3-00000000 R12-0D2E6465 LR-010058AD PC-01015FEC XPSR-61000011

HARDFAULT CALLSTACK INFO: R0-00000000 R1-00000000 R2-00000000 R3-00000000 R12-0D2E6465 LR-010058AD PC-01015FEC XPSR-61000011

Read

Figure 3-45 Device Log interface

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

35

G@Dix Programming Flash with GProgrammer

Users can view device logs, mainly error information during SoC running, on GProgrammer. Click Read to retrieve the

device logs.

In the interface, click €D or in the upper-right corner to switch the mode in displaying device logs between
ASCII and stream.

. @& : The device logs are displayed by ASCII character as shown in Figure 3-46.

o : The device logs are displayed by byte stream as shown in Figure 3-47.
E+ll Device Log (o)
o [e i
& [N -_
Figure 3-46 Device logs in ASCII characters
Device Log ()

D CONTENT

Figure 3-47 Device logs in byte streams

3.3.9 Command-line Programs

Goodix provides two command-line programs in the GProgrammer installation directory: GR551x_console.exe and
GR551x_encrypt_signature.exe.

o GR551x_console.exe supports firmware download and flash programming in GR551x SoCs in a command-line
interface.

. GR551x_encrypt_signature.exe supports firmware encryption and signing or firmware signing in a command-line
interface.

3.3.9.1 GR551x_console.exe

Follow the steps below to run GR551x_console.exe:
1. Openthe Command Prompt window from the Start menu or by entering “cmd” in the Run window.
2. Navigate to the GProgrammer installation directory by using cd command.

3. Type the GR551x_console.exe command to complete corresponding operations. The details about the command
are shown in Table 3-6.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 36

GA@DIX

Programming Flash with GProgrammer

Command

program

erase

eraseall

download

writeefuse

reset

Table 3-6 GR551x_console supported commands

Functional Description

Programs firmware files to internal

SoC flash memories.

Erases flash memory data within
an SoC based on a specified

address range.

Erases all flash memory data

within an SoC.

Downloads data files to internal

SoC flash memories.

Writes Encrypt Key Info and Mode

Control files to eFuse.

Resets the GR551x SoC.

Command Format and Parameter Description
program <firmware file path> <run immediately:y | n>
Parameter description:

o <firmware file path>: It sets the path of the to-be-downloaded
firmware file.

e <run immediately:y | n>: It decides on whether to run the
firmware immediately after downloading.

erase <start address<hex>> <end address<hex>><force erase when
conflict with firmware/bootinfo/nvds:y | n>

Parameter description:

e <start address<(hex)>>: It represents the start address of the

storage area to be erased (in hexadecimal).

e <end address<(hex)>>: It represents the end address of the

storage area to be erased (in hexadecimal).

s <force erase when conflict with firmware/bootinfo/nvds:y |
n>: This parameter decides whether to forcibly erase the flash
memory data when its address conflicts with that of firmware,
Boot info, or NVDS.

eraseall

download <data file path> <start address<(hex)>> <force download
when conflict with firmware/bootinfo/nvds:y | n>
Parameter description:

e <data file path>: It sets the path of the to-be-downloaded data
file.

e <start address<(hex)>>: It represents the start address of the

download area (in hexadecimal).

o <force download when conflict with firmware/bootinfo/nvds:y |
n>: This parameter decides whether to forcibly download the data
files to internal SoC flash memories when their addresses conflict
with that of firmware, Boot info, or NVDS.

writeefuse <Encrypt Key Info file Path> <Mode Control file Path>

Parameter description:

e <Encrypt Key Info file Path>: It sets the path of Encrypt Key Info
file.

e <Mode Control file Path>: It sets the path of Mode Control file.

reset

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

37

G@Djx Programming Flash with GProgrammer

Command Functional Description Command Format and Parameter Description

help Displays all help information. help

The example below shows how to use the program command to download a firmware file to internal SoC flash

memories and run the firmware immediately after downloading.

GR551x console.exe program “C:\ble app hrs fw.bin” y

The downloading progress is displayed in real time during executing the program command, as shown in Figure 3-48.

ed “C:vProgram Files {(xB6)\Goodix“GProgrammepr"

*rogran Files Goodix\GProgranmnepr >), exe program "C:vble_app _hrs_fw. bhin"™ v

Figure 3-48 Executing the program command

Note:

You cannot operate GR551x_console.exe while GProgrammer is running.

3.3.9.2 GR551x_encrypt_signature.exe

Follow the steps below to run GR551x_encrypt_signature.exe:
1. Openthe Command Prompt window from the Start menu or by entering “cmd” in the Run window.
2. Navigate to the GProgrammer installation directory by using cd command.

3. Type GR551x_encrypt _si gnature. exe --parameter tocomplete corresponding operations. The
details about “parameter” are shown in Table 3-7. (Only the most frequently used parameters are listed in the
table. To view all parameters, enter GR551Xx_encrypt _si gnat ure. exe --hel p.)

Table 3-7 Frequently used parameters for GR551x_encrypt_signature.exe

Parameter Description
operation Encrypts and signs firmware or signs firmware only. Options: encryptandsign and sign.
firmware_key Shows the directory of firmware.key, which is used for encryption and signing, or signing only.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 38

GA@DIX

Programming Flash with GProgrammer

Parameter
signature_key
signature_pub_key
product_json_path
rand_number
ori_firmware

output

random_output

help

Description

Shows the directory of sign.key, which is used for encryption and signing, or signing only.
Shows the directory of sign_pub.key, which is used for encryption and signing, or signing only.
Shows the directory of product.json, which is used for encryption and signing, or signing only.
Shows the directory of random.bin, which is used for encryption and signing, or signing only.
Shows the directory that saves the firmware before encryption and signing, or signing only.
Shows the directory that saves the firmware after encryption and signing, or signing only.
Shows the directory that saves the random numbers used in encryption and signing, or signing
only.

Displays help information.

The example below shows how to use the program command to encrypt and sign firmware:

GR551x encrypt signature.exe

--operation="encryptandsign"

--firmware key="C:/eFuse/firmware.key"

--signature key="C:/eFuse/sign.key"
--signature pub key="C:/eFuse/sign pub.key"

--product json path="C:/eFuse/product.json"

--ori firmware="C:/firmware/ble app hrs fw.bin"

--output="C:/firmware encryptAndSign/ble app hrs fw encryptAndSign.bin"
--random output="C:/firmware encryptAndSign/random.bin"

In the code snippet above, the “C:/eFuse/” directories show the user-defined folders where files are saved after users

click Generate eFuse File, as described in “Section 3.3.5.1 eFuse Settings”.

. --ori_firmware=“C:/firmware/ble_app_hrs_fw.bin”: the directory of the firmware before any operation

o --output="C:/firmware_encryptAndSign/ble_app_hrs_fw_encryptAndSign.bin”: the directory of the encrypted

and signed firmware

A sample of executing the encryption and signing command is shown in Figure 3-49:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

39

G@Djx Programming Flash with GProgrammer

>cd “C:“\Program Files (x86)“Goodix“GProgrammer"

_app_h
ndSignshle_: dSign.bin"
ign/randon.b:

4ceal8267f8FfAd6HE639FIB4df d616e801a91A24a
5 2,8xcl . Oxc8, Bx16.8x91 . 0x94,0x2c . Bxel . Bx3e ., Bxf1 . Bx29,

~Bx90,8xfb d. 17.0x69 , Bx93 33, Bxed . Oxbe , Oxde, Bx29 . B>008, Bxd4,
29 .8xf1, 3 ~8x2c. » B - »0xcl,8x92,0xd5,8x11.,.8xf1 .

~Bxdc xe?. Bx30.8xd0,8x12.8x13 ,08xe4. -Bxa3,.Bx82,

0. 0xd6 .

Bxch, Bxal, Bx41 . 8x93 . Oxlc, Bx »Bxh1,0x45, Bx4h . Bxd6 . Bx66 .. Ox0Ff .

#Bxef , Bx9d.BxF9,0xel, Oxhe 2 Bxc5,0x31,8x53.0x93, Bx1f . Ox4f ,

(huf : Bxeh,BxB1,Bxca, Bx8d,.Bx5h, BxhB, Bx67, Bx48 ,8x15 . BxA7 . Ox8 edbh, Bx55,.8xb1 ,
0x8e . Bx48 ,Bx2c . Bx51 , Bx48 ,8x06 ,8x%h, Bxcf , BxB5 . Bxda, Bxbc . Bxd B .Bxed, BxB9 ,.8xF3,

IC:~Program Files <(x86>“Goodix\GProgrammer>

Figure 3-49 Executing the encryption and signing command

3.3.9.3 User-defined Windows Scripts

Users can also write custom scripts on Windows to call command-line programs. Two sample script files are provided

in the GR551x_script file in the GProgrammer installation directory.

encryptAndSignatureFirmware.bat can encrypt and sign firmware with firmware_origin.bin in the same
directory and the files saved in the eFuse directory. The encrypted and signed firmware is available in
firmvare_encrypt AndSi gn\ firmvare_encrypt AndSi gn. bi n.

program_Firmware_EncryptAndSign.bat can erase all internal flash memories, and download the firmware
firmvare_encrypt AndSi gn\ firmvare_encrypt AndSi gn. bi n and save the firmware file in the internal

flash memories.

3.4 GMFO3x Series

This section elaborates on functional modules of GProgrammer for GMF03x series.

3.4.1 Main Operational Interface

After you choose a GMF03x MCU, the main operational interface opens, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 40

Programming Flash with GProgrammer

© & ©

Memory & File

Device Memory
Address: Ox 08000000

Address 0 1 2

Open File

Address: | 0x

Address 0 1 2

%)
=]

UART

= c D = 7 Speed: 4000

Connect

Size (Byte) 0x 0 Data Width: | 8 bits

Figure 3-50 GProgrammer GUI (for GMFO3x series)

The GUI comprises a functional navigation bar on the left (see Table 3-8) and a function operational zone on the right.

Icon

Function Name

Memory & File

Programming & Erasing

User Option Bytes

Help

Table 3-8 Options on the functional navigation bar
Description

Displays operations related to memory and files.

Displays operations related to flash programming and erasing.

Displays configurations of User Option Bytes.

Displays help information.

3.4.2 Connection Management

GProgrammer helps users manage and control the connection between your host and target board.

Click @ in the upper-right corner of the interface to open or hide the connection management window of

GProgrammer.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 41

G@Dix Programming Flash with GProgrammer

& Memory & File SWD UART

Device Memory

£+ 3
Address: 0x | 08000000 Size (Byte] O 100 Data Width 8 bits
Address 0 1 2 3 4 5 3 7 8 g 2 = c D E B Speed 4000
6 Connect
Open File
e
Address: 0x = 00000000 Size (Byte) Ox 0 Data Width: 8 bits

Figure 3-51 GProgrammer connection management window

GProgrammer supports two connection modes: SWD and UART.

U SWD

Users need to configure Speed (data transfer rate) only and click Connect to connect the target board to the

host.
@ SWD UART

Device:

Speed: 4000

IIJ

Connect

Figure 3-52 GProgrammer SWD connection

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 42

G@Dix Programming Flash with GProgrammer

U UART

Users need to configure Port (click Refresh and select a correct Port value), Baudrate, and Parity on demand. The
default configurations of other parameters (DataBits, StopBits, and FlowControl) cannot be modified.

After setting these parameters, click Connect to connect the target board to the host.

@ SWD UART

te Port COM1
F Baudrate: 115200
Parity Even
DataBits:
StopBits
FlowControl
Refresh Connect

Figure 3-53 GProgrammer UART connection

After the connection is successfully established, the connection management window automatically hides with the

© button turning into (] , Which indicates successful connection establishment. Meanwhile, a dialog box pops up,

showing the model of the MCU in connection.

o Connecting to product: GMF0313C6PI

OK

Figure 3-54 MCU model in connection

To disconnect the host from the board, click 9 open the connection management window, and click Disconnect.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 43

GA@DIX

Programming Flash with GProgrammer

Device:

Spead:

UART

Disconnect

Figure 3-55 Clicking Disconnect on GProgrammer

3.4.3 Memory & Flash

Click H on the left side of the main interface of GProgrammer to open the Memory & File interface.

@ GProgrammer

& Memory & File
& Device Memory
Address: Size (Byte):
Address 0 1 2
2 2
le:
Address: 0x 00000000 Size (Byte)

Address 0 1 z

Figure 3-56 GProgrammer Memory & File interface

8 bits Read Dump

Browse

GProgrammer allows users to read from and write to memories on GMF03x MCUs as well as view BIN and HEX files.

3.4.3.1 Read/Write to Memory

In the Device Memory pane, GProgrammer allows users to read data from and write data to memories on GMF03x

MCUs.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

44

G@Djx Programming Flash with GProgrammer

. Read memory

When using GProgrammer to read data from memories, set Address (starting address) and Size (Byte) (data size)

before clicking Read.

The read data is displayed in the list under the read parameters. You can select 8 bits (byte), 16 bits (half-word),
and 32 bits (word) in the Data Width list to display the read data.

Device Memory

Figure 3-57 Reading data from memories on GProgrammer

You can click Dump to store the read data locally into a BIN file.

- Tip:
The Address should be 4-byte aligned.

. Write to memory
You can write data to memories on GMF03x MCUs using GProgrammer.

In the data display list, double-click the data to be modified. Input a new data value in the text box, and press

Enter on your keyboard. The new data is written to the memory.

oK

Figure 3-58 Writing data to memories on GProgrammer

- Tip:

Double-click the Size (Byte) input box to switch between Hexadecimal and Decimal.

3.4.3.2 Open File

In the Open File pane, GProgrammer allows users to view data in BIN and HEX files.

Click Browse to open a file on your local PC. Select 8 bits, 16 bits, or 32 bits from the Data Width list to decide a data
display mode. GProgrammer automatically calculates the Size (Byte) of the file.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 45

G@Dix Programming Flash with GProgrammer

Open File
File: Browse
Address: | Ox Size (Byte Ox | 150000 Data Width: | 8 bits 1 1
Address 0 1 2 3 4 5 3 7 g8] ES B D E F
00 7 2z 01 2z 1 2z 1
9 2z 1 88 22 01 8D 2z 1 00
00 00 1 ac 1
F 22 01 00 00 00 00 91 22 0o 01 Q3 22 1
] 2z 1 91] 1] 22 1
9 2z 1 g 2z 1] 2z 1 9 2z 1 ' ' ' '
] 2z 1 L} 22 1 9 2z 1] 22

Figure 3-59 Reading out a BIN file on GProgrammer

When reading out a HEX file, click ~ under the Browse button to turn to another page, which enables quick reading
of the HEX file.

Open File
File: Browse
Address: 0x Size (Byte Ox 18 Data Width: | 8 bits 1 /2>
Address 0 1 2 3 4 5 3 7 g8 9 2 B c D E F RSCII

20 1 BR 9D 5E 20 1 20

SN

0x0100001

Figure 3-60 Reading out a HEX file in pages on GProgrammer
3.4.4 Programming & Erasing

Click E on the left side of the main interface of GProgrammer to open the Programming & Erasing interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 46

Programming Flash with GProgrammer

GProgrammer allows users to program and erase flash memories with read or write protection enabled or disabled.

@ GProgrammer

& Programming & Erasing e
!# Flash Programming
File: | Ci\Users\hejie. GOODIX\ Desktop\test\dump4.bin Browse
Starting Address: | Ox = 08000000 Programming Options: Skip flash erase before programming Run after programming
o Programming
Flash Operation @
All Page Start Address Wirite Protection
0 1K Ne Pro
1 1K Ne Pro ®
2 1K Ne Pro
3 1K Ne Pro
4 1K Ne Pro
5 1K Ne Pro ®
6 1K Ne Pro
7 1K Ne Pro
8 1K No Pro
9 1K No Pro ®
10 1K No Pro
1K No Pro
2 1K No Protection | No Protection

Erase

Figure 3-61 GProgrammer Programming & Erasing interface

3.4.4.1 Flash Programming

Follow the steps below to program flash memories on a GMF03x MCU:

1.

2.

Click Browse to open the file (BIN or HEX) to be programmed.
Set the Starting Address.

Configure Programming Options (Select or clear Skip flash erase before programming and/or Run after
programming).

Click Programming.

Flash Programming

o

D:\Software\Gprogrammer-1.2.4-ia32-win\snapshot_blob.bin Browse

Starting Address: ~ Ox 08000000 9

Programming

Figure 3-62 Programming flash on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

47

G@Dix Programming Flash with GProgrammer

| Note:

o When programming a HEX file, you do not need to set the Starting Address. Run after programming should be

cleared.

. The Starting Address should be 4-byte aligned.

3.4.4.2 Flash Erasing

GProgrammer supports erasing of main flash memory areas by page. You can select a page or pages to be erased on

demand, and click Erase.

Flash Operation C @
A Page ize (Byt: rite ite Protecti
1K
1K
2 1K w
1K
; ®
. ®
1 K
12 1K
Erase
Figure 3-63 Erasing flash memories by page
I Note:

Pages under write protection cannot be erased.

You can select All to choose all pages (except those under write protection), and click Erase to erase all the chosen

pages at one time.

Flash Operation C @

T
A A A A A A A

A oA oA A

SO @@@

Erase

Figure 3-64 Erasing all on GProgrammer

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 48

G@Dix Programming Flash with GProgrammer

3.4.4.3 Read/Write Protection for Flash Memory

GProgrammer protects data reads and writes on flash memories on GMF03x MCUs.

. Read protection

Flash memory areas under read protection cannot be read. The protected area varies depending on the
connection mode. When Read Protection is enabled: In SWD mode, the main flash memory area cannot be read.
In UART mode, all flash memory areas cannot be read.

- Tip:

For MCUs with read protection enabled, UART connection cannot be established.

Click @ in the upper right of the Flash Operation pane to enable read protection.

. c
- @
oK Cancel 1 ®

Figure 3-65 Enabling Read Protection on GProgrammer

The @ icon turns into @ after Read Protection is enabled. Click @ to disable Read Protection and erase the
main flash memory area.

o Write protection

When Write Protection is enabled, you cannot write data to specific flash memory areas under write protection.
GProgrammer protects flash memory against being written to by sector (four pages) only.

Click W in the Write Protection column to enable write protection.

;@
OK Cancel @

Figure 3-66 Enabling Write Protection on GProgrammer

The W icon turns into W after Write Protection is enabled. The check boxes of the pages corresponding to

protected sectors cannot be selected. Click W to disable Write Protection.

3.4.5 User Option Bytes

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 49

G@Dix Programming Flash with GProgrammer

Click ﬁ on the left side of the main interface of GProgrammer to open the User Option Bytes interface.

@ GProgrammer

& User Option Bytes e
o User Data
Data0: | Ox | 44 Datal: | Ox 45
User Parameters
Use software watchdog No reset generated when entering Stop mode D Mo reset generated when entering Standby mode
o Boot from system flash when BOOTO=1 VDDA power supply supervisor enabled RAM parity check disabled
Refresh Apply

Figure 3-67 GProgrammer User Option Bytes interface

GProgrammer allows users to modify User Option Bytes of GMF03x MCUs. Option examples include User software
watchdog, Boot from system flash when BOOT0=1, and RAM parity check disabled.

After setting all user option byte parameters in the interface, click Apply to program the settings into an MCU.

Click Refresh to obtain the user option bytes of the MCU.

3.5 Help

Click ﬂ on the left side of the main interface of GProgrammer to open the Help interface.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd.

50

G@Dix Programming Flash with GProgrammer

@ GProgrammer

Help ® SWD UART

a About GProgrammer
Device:
GProgrammer 1.2.14
& # GProgrammer is a flash programming tool which supports the GR351x and GMF03x series SoC designed by Goodix. It has the following features. | Speed: 4000
‘
The GR551x Series The GMF03x Series
|I| Connect
& Firmware Programming * Read/Write SRAM 4
® Internal/External Flash Operation * Display the content
" * Encryption and Signature * Download and eras|
® eFuse Programming and Layout » Activate flash read]
. .

Chip Configuration Configure user opti

Copyright@2020 Shenzhen Goodix Technology Co, Lid. Al rights reserved.

Feedback

i) -

Feedback
If you have any questions or suggestions, please send an email to: software@reg.goodix.com.

About Goodix

Goodix Technology (SH: 603160) is an integrated solution provider for applications based on IC design and software development offer|
G(DD]X software and hardware semiconductor solutions for smart devices, loT applications, and automotive electronics.

For more information, please visit Goodix official website: www.goodix.com.

Figure 3-68 GProgrammer Help information

GProgrammer offers help and support to users.

. About GProgrammer
This section provides version information and features of GProgrammer.
o Feedback

If you have any questions or suggestions, please send an email to: software@reg.goodix.com.

. About Goodix

For more information, please visit Goodix official website: http://www.goodix.com.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 51

mailto:software@reg.goodix.com
http://www.goodix.com

	Preface
	Contents
	1 Introduction
	2 Installation Instructions
	2.1 Installation Requirements
	2.2 Installation Steps

	3 Programming Flash with GProgrammer
	3.1 Hardware Connection
	3.2 SoC/MCU Selection
	3.3 GR551x Series
	3.3.1 Main Operational Interface
	3.3.2 Connection Management
	3.3.3 Firmware
	3.3.3.1 Download Firmware
	3.3.3.2 Action Order

	3.3.4 Flash
	3.3.4.1 Internal Flash
	3.3.4.1.1 Flash Configuration
	3.3.4.1.2 Erase Flash
	3.3.4.1.3 Download Data
	3.3.4.1.4 Dump Data

	3.3.4.2 External Flash
	3.3.4.2.1 Flash Configuration
	3.3.4.2.2 External Flash Programming

	3.3.5 Encrypt & Sign
	3.3.5.1 eFuse Settings
	3.3.5.2 Download
	3.3.5.3 Encrypt & Sign

	3.3.6 eFuse Layout
	3.3.7 Chip Configuration
	3.3.7.1 Init NVDS Area
	3.3.7.2 Read All
	3.3.7.3 Write
	3.3.7.4 Add a User Parameter
	3.3.7.5 Modify NVDS Parameters
	3.3.7.6 Remove a User Parameter
	3.3.7.7 Import and Export

	3.3.8 Device Log
	3.3.9 Command-line Programs
	3.3.9.1 GR551x_console.exe
	3.3.9.2 GR551x_encrypt_signature.exe
	3.3.9.3 User-defined Windows Scripts

	3.4 GMF03x Series
	3.4.1 Main Operational Interface
	3.4.2 Connection Management
	3.4.3 Memory & Flash
	3.4.3.1 Read/Write to Memory
	3.4.3.2 Open File

	3.4.4 Programming & Erasing
	3.4.4.1 Flash Programming
	3.4.4.2 Flash Erasing
	3.4.4.3 Read/Write Protection for Flash Memory

	3.4.5 User Option Bytes

	3.5 Help

