
GR533x Developer Guide

Version: 1.2

Release Date: 2024-01-16

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces the Software Development Kit (SDK) of the Goodix GR533x Bluetooth Low Energy
(Bluetooth LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started
with secondary development of Bluetooth LE applications.

Audience

This document is intended for:

• Device user

• Developer

• Test engineer

• Technical support engineer

Release Notes

This document is the third release of GR533x Developer Guide, corresponding to GR533x SDK.

Revision History

Version Date Description

1.0 2023-10-18 Initial release

1.1 2023-11-08
• Updated the SDK directory.

• Added the section "Tools".

1.2 2024-01-16

• Updated the descriptions of parameters in custom_config.h.

• Revised the code example for bsp_log_int().

• Revised the approach to obtain GRToolbox installation file.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 GR533x SDK... 1
1.2 Bluetooth LE Protocol Stack.. 1

2 GR533x Bluetooth LE Software Platform...4

2.1 Hardware Architecture.. 4
2.2 Software Architecture..5
2.3 Memory Mapping..6
2.4 Flash Memory Mapping.. 8

2.4.1 SCA.. 8
2.4.2 NVDS... 11

2.5 RAM Mapping..12
2.5.1 Typical RAM Layout.. 13
2.5.2 RAM Power Management.. 14

2.6 SDK Directory Structure.. 15
2.7 Tools...17

3 Bootloader.. 18

4 Development and Debugging with SDK in Keil.. 19

4.1 Installing Keil MDK...19
4.2 Installing SDK... 20
4.3 Building a Bluetooth LE Application..20

4.3.1 Preparing ble_app_example... 20
4.3.2 Configuring a Project.. 24

4.3.2.1 Configuring custom_config.h..24
4.3.2.2 Configuring Memory Layout.. 30
4.3.2.3 Configuring After Build...32

4.3.3 Adding User Code... 32
4.3.3.1 Modifying the main() Function.. 32
4.3.3.2 Implementing Bluetooth LE Service Logics.. 33
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.. 36

4.4 Generating Firmware...37
4.5 Downloading .hex Files to Flash..38
4.6 Debugging..41

4.6.1 Configuring the Debugger.. 41
4.6.2 Starting Debugging... 43
4.6.3 Outputting Debug Logs...44

4.6.3.1 Module Initialization.. 44

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.6.3.2 Application..45
4.6.4 Debugging with GRToolbox...46

5 Glossary.. 48

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
The Goodix GR533x series is a System-on-Chip (SoC) that supports Bluetooth 5.3 and Bluetooth Mesh, making it an
ideal choice for applications including Internet of Things (IoT).

Based on 64 MHz ARM® Cortex®-M4F CPU core, the GR533x series integrates a 2.4 GHz RF transceiver, Bluetooth LE
5.3 Protocol Stack, on-chip 512 KB Flash, 96 KB system SRAM, and multiple peripherals. It also features excellent RF
performance, with up to +15 dBm TX power, -99 dBm RX sensitivity, and up to 114 dB link budget in Bluetooth LE 1
Mbps mode.

The GR533x series supports connection between multiple centrals and multiple peripherals. It can be configured as a
Broadcaster, an Observer, a Peripheral, or a Central, and supports the combination of all the above roles.

GR533x series comes in two package choices: QFN32 and QFN48 packages. The specific configurations are listed
below.

Table 1-1 Configuration of GR533x series

GR533x Series GR5331AENI GR5331CENI GR5332AENE GR5332CENE

CPU Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F

RAM 96 KB 96 KB 96 KB 96 KB

SiP Flash 512 KB 512 KB 512 KB 512 KB

I/O Number 16 32 16 32

Operating

Temperature
-40°C to 85°C -40°C to 85°C -40°C to 105°C -40°C to 105°C

Package (mm) QFN32 (4 x 4 x 0.75) QFN48 (6 x 6 x 0.75) QFN32 (4 x 4 x 0.75) QFN48 (6 x 6 x 0.75)

1.1 GR533x SDK

The GR533x Software Development Kit (SDK) provides comprehensive software development support for GR533x
SoCs. The SDK contains Bluetooth LE APIs, Mesh APIs, System APIs, peripheral drivers, a tool for debugging and
download, project example code, and related user documents.

Tip:

The GR533x SDK version mentioned in this document is applicable to all GR533x SoCs.

1.2 Bluetooth LE Protocol Stack

The Bluetooth LE Protocol Stack (Bluetooth LE Stack) architecture is as shown in the figure below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 1

Introduction

Bluetooth LE Protocol Stack
Host

Generic Aribute Profile (GATT)

Aribute Protocol (ATT)

Logical Link Control and Adaptaon Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Generic Access Profile (GAP)

Security Manager (SM)

Host Controller Interface (HCI)

Figure 1-1 Bluetooth LE Stack architecture

The Bluetooth LE Stack consists of the Controller, the Host Controller Interface (HCI), and the Host.

Controller

• Physical Layer (PHY): Supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

• Link Layer (LL): Controls the RF state of devices. Devices are in one of the following five states, and can switch
between the states on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

• HCI: Enables communication between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

• Logical Link Control and Adaptation Protocol (L2CAP): Provides channel multiplexing and data segmentation and
reassembly services for upper layers. It also supports logic end-to-end data communication.

• Security Manager (SM): Defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functionalities.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 2

Introduction

• Generic Access Profile (GAP): Provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, fulfilling functionalities such as advertising, scanning, connection initiation, service
discovery, connection parameter update, secure process initiation, and response.

• Attribute Protocol (ATT): Defines service data interaction protocols between a server and a client.

• Generic Attribute Profile (GATT): Based on the top of ATT, it defines a series of communication procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

Tip:

• For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website:
https://www.bluetooth.com.

• Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and
code which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 3

https://www.bluetooth.com

GR533x Bluetooth LE Software Platform

2 GR533x Bluetooth LE Software Platform
The GR533x SDK is designed for GR533x SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
LE 5.3 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR533x SDK.

2.1 Hardware Architecture

The GR533x hardware architecture is shown as follows.

Figure 2-1 GR533x hardware architecture

• Arm® Cortex®-M4F: GR533x CPU. Bluetooth LE Stack and application code run on the CPU.

• SRAM: static random access memory that provides memory space for program execution

• ROM: read-only memory, containing the software code (cannot be modified after being programmed) for
Bootloader and Bluetooth LE Stack

• Flash: Flash memory unit embedded in the SoC. It stores user code and data, and supports the Execute in Place
(XIP) mode for user code.

• Peripherals: GPIO, DMA, I2C, SPI, UART, PWM, Timer, ADC, TRNG, and more

• RF Transceiver: 2.4 GHz RF transceiver

• Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller, enabling communication between the
software protocol stack and 2.4 GHz RF hardware

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 4

GR533x Bluetooth LE Software Platform

• Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC-DC, SYS_LDO, IO-LDO, CORE_LDO, and RF Subsystem, based on configuration parameters
and the current operating state of the system, so that the power can be managed automatically.

Tip:

For more details about device modules, refer to GR533x Datasheet .

2.2 Software Architecture

The software architecture of GR533x SDK is shown below.

Software

Bluetooth LE Stack

Hardware

Applicaon

SDK

Bluetooth 5.3 Core Arm® Cortex®- M4F Peripheral

Mesh Model

Bootloader

Bluetooth LE API System APIMesh API

Mesh Stack

LL Driver

HAL Driver

APP Driver

Figure 2-2 GR533x software architecture

• Bootloader

A boot program built in GR533x SoCs, used for GR533x software and hardware environment initialization, and to
check and start applications

• Bluetooth LE Stack

The core to implement Bluetooth LE protocols. It consists of Controller, HCI, and Host protocols (including LL, HCI,
L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

• Mesh Stack

The core to implement Bluetooth LE Mesh protocols. It integrates Bearer Layer, Network Layer, Lower Transport
Layer, Upper Transport Layer, Access Layer, and some functionalities of the Foundation Model Layer.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 5

GR533x Bluetooth LE Software Platform

• LL Driver

Low Layer (LL) drivers which control and manage peripherals by registers

• HAL Driver

Hardware Abstraction Layer (HAL) drivers; the HAL Driver layer is between the APP Driver layer and the LL Driver
layer. HAL drivers offer a set of standard APIs, to allow the APP driver layer to access the LL peripheral resources
by calling HAL APIs.

 Note:

Generally, HAL APIs are used for developing LL drivers and system services, not for developing common applications.
Therefore, it is not recommended for developers to directly call HAL APIs.

• Bluetooth LE SDK

SDK that provides easy-to-use Mesh APIs, Bluetooth LE APIs, system APIs, and APP Driver APIs

◦ Mesh APIs: Include APIs required for developing Mesh applications.

◦ Bluetooth LE APIs: Include L2CAP, GAP, SM, and GATT APIs.

◦ System APIs: Provide APIs for Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system
power management, and generic system-level access.

◦ APP Driver APIs: Provide definitions for APIs of common peripherals such as UART, I2C, and ADC. APP Driver
APIs call HAL/LL APIs to enable the corresponding functionalities.

• Mesh Model

It contains example implementation code for standard Mesh Model (such as Lightness Model) from Bluetooth
SIG. You can refer to the example code to develop Mesh applications.

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; you can download these files to GR533x SoCs for operation and test. In addition, GRToolbox (Android)
provides rich functionalities to allow users to test most Bluetooth applications with ease.

2.3 Memory Mapping

The memory mapping of a GR533x SoC is shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 6

GR533x Bluetooth LE Software Platform

Reserved

Reserved

0x0010 0000

0x00117FFF
0x00118000

0x001FFFFF
0x00200000

0x011FFFFF

Reserved
0x01200000

0x021FFFFF
0x0220 0000

16384 KB

ExFlash Alias

0x031F FFFF
0x0320 0000

16384 KB

Reserved

0x2000 0000

473088 KB

RAM

0x20018000
0x20017FFF

96 KB

0x2200 0000
0x21FF FFFF

32672 KB

RAM BitBanding

0x22280000
0x2227FFFF

2560 KB

0x4000 0000

488960 KB

Peripheral

0x400FFFFF
0x40100000

Reserved
0x41FFFFFF

1024 KB

31744 KB

Peripheral BitBanding

0x42000000

0x43FF FFFF
0x4400 0000

32768 KB

Reserved
2555904 KB

0xDFFF FFFF
0xE000 0000

ARM Private

0xE00F FFFF
0xE010 0000

Reserved
0xFFFF FFFF

1024 KB

523264KB

TIMER0

TIMER1

DUAL_TIMER

WATCHDOG

AON CTRL

AON_GPIO

AON_PWR

AON WD TIMER

AON PMU

AON RF

SPI_M

SPI_S

I2C0

I2C1

UART0

UART1

PWM0

PWM1

CACHE-XQSPI

MCU_AUX(SNS-ADC eg.)

CLK_CAL_1

Private peripheral bus
(internal)

Private peripheral bus
debugging (external)

ITM
DWT
FPB

SYS_TICK
NVIC
MPU
FPU
SCB
DAP

TPIU
ETM

ROM TABLE

0x1FFF FFFF

0x3FFF FFFF

(0x4000_0000-0x4000_0FFF)

(0x4000_1000-0x4000_1FFF)

(0x4000_2000-0x4000_2FFF)

(0x4000_8000-0x4000_8FFF)

(0x4000_A000-0x4000_A3FF)

(0x4000_A400-0x4000_A4FF)

AON SLP TIMER (0x4000_A500-0x4000_A5FF)

AON CLDR (0x4000_A600-0x4000_A6FF)

(0x4000_A800-0x4000_A8FF)

(0x4000_A700-0x4000_A7FF)

(0x4000_A900-0x4000_A9FF)

(0x4000_AA00-0x4000_AAFF)

(0x4000_C000-0x4000_C0FF)

(0x4000_C100-0x4000_C1FF)

(0x4000_C300-0x4000_C3FF)

(0x4000_C400-0x4000_C4FF)

(0x4000_C500-0x4000_C5FF)

(0x4000_C600-0x4000_C6FF)

(0x4000_CB00-0x4000_CBFF)

(0x4000_CC00-0x4000_CCFF)

HTABLE_AMCM (0x4000_CD00-0x4000_CDFF)

(0x4000_D000-0x4000_DFFF)

(0x4000_E000-0x4000_E3FF)

(0x4000_E400-0x4000_E4FF)

DVS (0x4000_E800-0x4000_E8FF)

PAD_CTRL (0x4000_E900-0x4000_E9FF)

CLK_CAL_0

(0x4000_E500-0x4000_E5FF)

GPIO0

GPIO1

DMA

TRNG

BLE

(0x4001_0000-0x4001_0FFF)

(0x4001_1000-0x4001_1FFF)

(0x4001_4000-0x4001_7FFF)

(0x4001_8400-0x4001_8FFF)EFUSE CTRL

(0x4001_9000-0x4001_97FF)

(0x400E_0000-0x400F_FFFF)

EFUSE ARRAY (0x4001_8000-0x4001_83FF)

ROM

Reserved

RAM Alias

224 KB

800 KB

96 KB

Reserved
928 KB

ExFlash

16384 KB

0x000F FFFF
0x0003 8000
0x0003 7FFF

0x0000 0000

Figure 2-3 GR533x memory mapping

• RAM: 96 KB in total; 0x0010_0000 to 0x0011_7FFF, or 0x2000_0000 to 0x2001_7FFF.

◦ 0x2000_0000 to 0x2001_7FFF: Variables of the SDK including RW, ZI, HEAP, and STACK are in this range.
The 16 KB storage area at the end of SRAM can be used as Exchange Memory (EM) for baseband when you
configure Bluetooth LE projects. The actual area used as EM is determined by the maximum Bluetooth LE
service volume configured in custom_config.h. The unused EM area will form a contiguous address space
with other SRAM areas. In addition, bit field operations are supported in the region from 0x2000_0000 to
0x2001_3FFF, mapping to the region from 0x2200_0000 to 0x2227_FFFF, in which atomic operations are
supported.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 7

GR533x Bluetooth LE Software Platform

◦ 0x0010_0000 to 0x0011_7FFF: This region features higher access efficiency thanks to the Cortex®-M4F
architecture. Therefore, executable code RAM_CODE is in this area.

• Flash: Internal Flash of GR533x SoCs is 512 KB, from 0x0020_0000 to 0x0027_FFFF.

2.4 Flash Memory Mapping

GR533x packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout for typical GR533x application scenarios is shown below.

End of Flash

NVDS_START_ADDR

0x0020_2000

0x0020_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store configurations such as system boot parameters

• User App: an area to store application firmware

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

• NVDS: non-volatile data storage area

 Note:

• By default, NVDS occupies the last two sectors of Flash memory. You can configure the start address of NVDS and
the number of occupied sectors according to Flash memory layout of products. For more information about the
configuration, refer to “Section 4.3.2.1 Configuring custom_config.h”.

• The start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It mainly stores flags and
other system configuration parameters used during system boot.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 8

GR533x Bluetooth LE Software Platform

During firmware download, the download algorithm or GProgrammer will generate Image Info based on the
BUILD_IN_APP_INFO structure in the application firmware, and program the Image Info (stored in SCA) to Flash along
with the application firmware. During system boot, Bootloader will check the boot information in SCA, and then jump
to the entry address of the firmware if the check passes.

The BUILD_IN_APP_INFO structure is defined and configured as follows:

Tip:

The BUILD_IN_APP_INFO structure is in SDK_Folder\platform\soc\common\gr_platform.c, and
SDK_Folder is the root directory of GR533x SDK.

const APP_INFO_t BUILD_IN_APP_INFO __attribute__((at(APP_INFO_ADDR))) = {
 .app_pattern = APP_INFO_PATTERN_VALUE,
 .app_info_version = APP_INFO_VERSION,
 .chip_ver = CHIP_VER,
 .load_addr = APP_CODE_LOAD_ADDR,
 .run_addr = APP_CODE_RUN_ADDR,
 .app_info_sum = CHECK_SUM,
 .check_img = BOOT_CHECK_IMAGE,
 .boot_delay = BOOT_LONG_TIME,
 .sec_cfg = SECURITY_CFG_VAL,
#ifdef APP_INFO_COMMENTS
 .comments = APP_INFO_COMMENTS,
#endif
};

• app_pattern: a fixed value 0x47525858

• app_info_version: firmware version information, corresponding to APP_INFO_VERSION

• chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h

• load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

• run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

• app_info_sum: checksum of firmware information, which is automatically calculated by CHECK_SUM

• check_img: system boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h.
When check_img is set to 1, Bootloader will check the firmware at booting.

• boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When
boot_delay is set to 1, the system cold boot will be launched after a one-second delay.

• sec_cfg: security configuration parameter, reserved

• comments: firmware information, up to 12 bytes

The SCA layout is shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 9

GR533x Bluetooth LE Software Platform

0x0020_0000

0x0020_1000

0x0020_2000

Boot_Info sector

3588B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

Reserved

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

Img_Info_10
(40B)

3632B

400B

Figure 2-5 SCA layout

• Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.

• The firmware boot information is stored in the Boot_Info (32 B) area. During system boot, Bootloader will check
the boot information, and then jump to the entry address of the firmware if the check passes.

◦ Boot Config: This area stores the system boot configuration information.

◦ SPI Access Mode: This area stores the SPI access mode configuration. It is a fixed configuration of the
system and cannot be modified.

◦ Run Addr: Indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.

◦ Load Addr: Indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

◦ CheckSum: This area stores the firmware checksum which is calculated automatically by the download
algorithm after firmware is generated.

◦ APP Size: This area stores the firmware size which is calculated automatically by the download algorithm
after firmware is generated.

• Up to 10 pieces of firmware information can be stored in Img_Info areas. Firmware information is stored in
Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

◦ Comments: This area stores the descriptive information (up to 12 characters) about firmware. Every time a
firmware file is generated, the file name will be saved in the Comments area by the download algorithm.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 10

GR533x Bluetooth LE Software Platform

◦ Boot Info (24 B): This area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ Version: This area stores the firmware version, corresponding to VERSION in the custom_config.h.

◦ Pattern: This area stores a fixed value 0x4744.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash HAL. NVDS is located in the Flash memory and data
in it will not be lost in power-off state. By default, NVDS uses the last two sectors of the Flash memory. You can also
configure the number of Flash sectors to be occupied. In NVDS, the last sector is for defragmentation, and the other
sector(s) for data storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data,
states, and user information. Bluetooth LE Stack stores parameters such as device binding parameters in NVDS.

NVDS features:

• Each storage item (TAG) has a unique TAG ID for identification. User applications can read and change data
according to TAG IDs, regardless of physical storage addresses.

• It is optimized based on medium characteristics of Flash memory and supports data check, word alignment,
defragmentation, and erase/write balance.

• The size and start address of NVDS are configurable. NVDS can be in several Flash sectors as configured. Make
sure the start address of NVDS is 4 KB aligned.

 Note:

• You can configure the start address and size of the NVDS area by adding the NVDS_START_ADDR macro and
modifying the NVDS_NUM_SECTOR macro respectively in custom_config.h. NVDS_NUM_SECTOR has a default
value of 1, which will be automatically increased by 1 during NVDS initialization. That is, NVDS occupies two Flash
sectors.

• Bluetooth LE Stack and the application share the same NVDS storage area. However, TAG ID namespace is divided
into different categories. You can only use the TAG ID name category assigned to an application.

◦ Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as
an NVDS API parameter.

◦ Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x4000 to
0x7FFF.

• Before running an application for the first time, you can use GProgrammer to write the initial TAG ID value used
by Bluetooth LE Stack and the application to NVDS.

• If you specify an NVDS area, instead of using the default NVDS area in the GR533x SDK, make sure the start
address of the NVDS area configured in GProgrammer is 4 KB aligned.

Data stored in NVDS is in the format below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 11

GR533x Bluetooth LE Software Platform

Data Header Data

8 bytes Up to 1024 bytes

Figure 2-6 Data format in NVDS

Details of data header are described below.

Table 2-1 Data header format

Byte Name Description

0–1 tag Data tag

2–3 len Data length

4–4 checksum Checksum of data header

5–5 value_cs Checksum of data

6–7 reserved Reserved bits

GR533x SDK provides the following NVDS APIs to allow developers to manipulate non-volatile data in Flash.

Table 2-2 NVDS APIs

Function Prototype Description

uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the Flash sectors used by NVDS.

uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

uint8_t nvds_put(NvdsTag_t tag, uint16_t len, const uint8_t *p_buf)
Write data to NVDS and mark the data with TAG IDs.

You need to create a TAG ID when writing data for the first time.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.

uint16_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG ID.

uint8_t nvds_drv_func_replace(nvds_drv_func_t *p_nvds_drv_func) Replace the APIs that can directly control Flash.

uint8_t nvds_func_replace(nvds_func_t *p_nvds_func) Replace the APIs that control NVDS.

void nvds_retention_size(uint8_t bond_dev_num)
Reserve space for device bonding. The space reserved depends

on the number of devices to be bonded.

 Note:

For details of NVDS APIs, refer to the NVDS header file (in SDK_Folder\components\sdk\gr533x_nvds.h).

2.5 RAM Mapping

The RAM start address is 0x2000_0000, and it comprises six RAM blocks, each with a size of 16 KB, totaling 96 KB. Each
RAM block can be independently powered on or off by software.

The 96 KB RAM layout is shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 12

GR533x Bluetooth LE Software Platform

RAM_16K_0

RAM_16K_1

RAM_16K_2

RAM_16K_3

RAM_16K_4

RAM_16K_5

0x2000_0000

0x2000_4000

0x2000_8000

0x2000_C000

0x2001_0000

0x2001_4000

0x2001_7FFF

Figure 2-7 96 KB RAM layout

Applications run in Execute in Place (XIP) mode. User applications are stored in on-chip Flash, and applications use the
same space for running and loading. When the system is powered on, it fetches and executes commands from Flash
directly through the Cache Controller.

2.5.1 Typical RAM Layout

The typical RAM layout with Bluetooth LE projects in running is shown below. Developers are able to modify the RAM
layout based on product needs.

Stack

Unused RAM Space

HEAP

RW
ZI

FPB_TABLE

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

EM

0x0010_2000

0x2000_0000

RAM_CODE
0x2000_2000

0x2001_8000

Size=8 KB

Max_Size= 16KB

SYSTEM_STACK_SIZE

SYSTEM_HEAP_SIZE

Figure 2-8 RAM layout in XIP mode (with Bluetooth LE projects)

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 13

GR533x Bluetooth LE Software Platform

• RAM_CODE saves code that is executed in RAM. To boost the efficiency in execution, it is recommended to define
this region in the Aliasing memory (at physical address 0x00100000).

• EM is used by the Bluetooth LE core. It is managed together with SRAM used by the MCU, located at the highest
address space of SRAM. EM size is determined by the Bluetooth service volume configured in custom_config.h. If
no Bluetooth LE service is included in the project, the value of the EM_BUFF_ENABLE macro in custom_config.h
can be set to 0.

• Stack stores the task call stack. In peripheral projects without Bluetooth LE services, Stack is defined at the
highest address of RAM. In projects with Bluetooth LE services, Stack is defined after the address of EM. The
Stack size is defined by the SYSTEM_STACK_SIZE macro. You need to determine the size according to the function
call depth and the consumption of the call stack in the project.

2.5.2 RAM Power Management

Each RAM block has three power modes: Full Power, Retention Power, and Power Off.

• Full Power: The system is in active state; MCU is permitted to read from and write to RAM blocks.

• Retention Power: The system is in sleep state; data in RAM blocks does not get lost and is ready for use by the
system when it switches from sleep state to active state.

• Power off: The system is in power-off state; RAM blocks will be powered off and the data in the blocks will get
lost. Therefore, you need to save the data before the system is powered off.

By default, the PMU in the GR533x enables all RAM power sources when the system starts. The GR533x SDK also
provides a complete set of RAM power management APIs. You can configure the power state of RAM blocks based on
application needs.

By default, the system enables automatic RAM power management mode during boot: It automatically implements
power mode control of RAM blocks according to RAM usage of applications. The configuration rules are provided as
follows:

• When the system is in active state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Full Power mode.

• When the system is in sleep state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Retention Power mode.

Recommended RAM configurations in practice are described below:

• In Bluetooth LE applications, the first 8 KB of RAM_16K_0 are reserved for Bootloader and Bluetooth LE Stack
only, not available for applications. When the system is in active state, RAM_16K_0 shall be in Full Power mode;
when the system is in sleep state, RAM_16K_0 shall be in Retention Power mode. Non-Bluetooth LE MCU
applications can use this RAM block.

• Purposes of RAM_16K_1 and subsequent RAM blocks are defined by applications. The GR533x RAM has
been reasonably arranged according to execution efficiency and SRAM utilization. You can also re-configure
it according to actual application requirements. The power mode of these RAM blocks can be enabled, or be
controlled by applications.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 14

GR533x Bluetooth LE Software Platform

 Note:

• An MCU access is permitted only when a RAM block is in Full Power mode.

• Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

2.6 SDK Directory Structure

The folder directory structure of GR533x SDK is shown as follows.

GR533x SDK

build

config
gcc
iar
keil

components

drivers_ext
libraries
mesh
profiles
sdk

drivers

src

external

projects

freertos

ble
mesh

nanopb
segger_r

arch
boards

plaorm

include
soc

common
include
linker
src

inc

mbedtls

peripheral

documentaon

GR533x API Reference

Figure 2-9 GR533x SDK directory structure

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 15

GR533x Bluetooth LE Software Platform

Detailed description of folders in GR533x SDK is shown below.

Table 2-3 GR533x SDK folders

Folder Description

build\config
Project configuration directory that stores the custom_config.h template file. This file is used to

configure project parameters.

build\gcc GCC tools

build\keil Keil MDK tools

build\iar IAR tools

components\drivers_ext Drivers of third-party components on the development board

components\libraries Libraries provided in GR533x SDK

components\profiles Source files of GATT Services/Service Clients implementation examples

components\mesh Source files to implement Mesh applications

components\sdk API header files

documentation GR533x API Reference Manual

drivers\inc Driver API header files which are easy to use for application developers

drivers\src Driver API source code which is easy to use for application developers

external\freertos Source code of FreeRTOS (a third-party program)

external\mbedtls Source code of Mbed TLS (a third-party program)

external\nanopb Source code of Nanopb (a third-party program)

external\segger_rtt Source code of SEGGER RTT (a third-party program)

platform\arch Toolchain files of CMSIS

platform\boards
Source files for initializing GR533x Starter Kit Board. The files are used for initializing basic

peripherals at board level.

platform\include Common header files related to platform

platform\soc\common
Public source files compatible to GR533x SoCs. The files include gr_interrupt.c, gr_platform.c, and

gr_system.c.

platform\soc\linker Symbol table files and library files for the linker

platform\soc\include
Common header files closely related to underlying driver configurations such as registers and

clock configurations

platform\soc\src
gr_soc.c which is about initialization processes closely related to SoC implementation. The

processes include initializing Flash and NVDS, configuring crystal, and calibrating PMU.

projects\ble Bluetooth LE application project examples, such as Heart Rate Sensor and Proximity Reporter

projects\mesh Mesh project examples

projects\peripheral Peripheral project examples of a GR533x SoC

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 16

GR533x Bluetooth LE Software Platform

2.7 Tools

Developers can use the following tools to develop and debug GR533x applications.

Table 2-4 Development/Debugging tools

Name Description Recommended Version

GProgrammer

A firmware programming tool that supports functionalities such as

firmware download, Flash read/write, and eFuse download.

Available on both Windows and Linux platforms.

V1.2.41 and later

GRUart
A serial port debugging tool.

Available on Windows platform only.
V2.1 and later

GRDirect Test Mode Tool

An RF test tool that controls the Device Under Test (DUT) to perform

Direct Test Mode (DTM) tests by delivering HCI commands.

Available on Windows platform only.

V1.5.2 and later

GRPLT Lite Config Tool

A mass production configuration tool for the offline mass production

programming board that supports batch firmware download, resource

download, parameter configuration, and functionality testing.

Available on Windows platform only.

V1.1.4 and later

GRToolbox

A mobile APP that enables users to scan for Bluetooth devices, set

connection parameters, demonstrate standard profiles, and debug

profiles/services from Goodix Bluetooth LE platform.

Both Android and iOS versions are supported.

V2.16 and later

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 17

http://www.goodix.com/en/software_tool/gprogrammer_ble
http://www.goodix.com/en/download?objectId=43&objectType=software
http://www.goodix.com/en/download?objectId=81&objectType=software
http://www.goodix.com/en/software_tool/grplt_lite
http://www.goodix.com/en/software_tool/grtoolbox

Bootloader

3 Bootloader
The GR533x code runs in XIP mode. When the system is powered on, the Bootloader first reads the system boot
configuration information from SCA, then performs application firmware integrity check and initialize Cache and XIP
controller accordingly, and finally jumps to the code running space to run firmware.

The application boot procedures of the GR533x SDK are shown as follows.

Inialize Flash.

Reset_Handler

Read boot informaon
and check the integrity of

Applicaon Image.

Is Applicaon
 Image integral?

Inialize instrucon cache.

Boot Start

Start DFU service.

Yes

No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR533x SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 to extract the extended stack pointer (ESP)
of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes Reset_Handler in ROM to enter the Bootloader.

2. Bootloader initializes Flash.

3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

4. If the integrity check fails, the Bootloader enters J-Link DFU mode. You can update application firmware in Flash
with GProgrammer and J-Link.

5. If the integrity check passes, the Bootloader jumps to the run address of the application firmware in Flash to
execute the code after completing the XIP configuration.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 18

Development and Debugging with SDK in Keil

4 Development and Debugging with SDK in Keil
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the SDK in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM® for Cortex® and ARM
devices. You can download and install the Keil installation package from the Keil official website https://www.keil.com/
demo/eval/arm.htm. For the GR533x SDK, Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, refer to online manuals provided by ARM: https://
www.keil.com/support/man_arm.htm.

The main interface of Keil is as shown below.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are listed below:

Table 4-1 Frequently used function buttons of Keil

Button Description

Options for Target

Start/Stop Debug Session

Download

Build

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 19

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm
https://www.keil.com/support/man_arm.htm

Development and Debugging with SDK in Keil

4.2 Installing SDK

GR533x SDK is in a .zip file. You can access the details after extracting the file.

 Note:

• SDK_Folder is the root directory of GR533x SDK.

• Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to quickly build a custom Bluetooth LE application with Keil and GR533x SDK.

4.3.1 Preparing ble_app_example

This section elaborates on how to create a project based on the template project provided in GR533x SDK.

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and
rename it as ble_app_example. Change the base name of .uvoptx and .uvprojx files in ble_app_example\Keil_
5 to ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and the Options for Target
'GRxx_Soc' window opens. Choose the Output tab, and type ble_app_example in the Name of Executable field, to
name the output file as ble_app_example.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 20

Development and Debugging with SDK in Keil

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

Figure 4-4 ble_app_example groups

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries,
gr_profiles, and external.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 21

Development and Debugging with SDK in Keil

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 22

Development and Debugging with SDK in Keil

Table 4-2 SDK groups

SDK Group Name Description

gr_startup System boot file

gr_arch Initialization configuration files and system interrupt API implementation files for System Core and PMU

gr_soc
gr_soc.c which is used for initializing and calibrating modules such as Clock, PMU, and Vector before

entering the main() function

gr_board Board-level description file which is used for implementing components such as log, key, and LED

gr_stack_lib A SDK .lib file

gr_app_drivers
Driver API source files which are easy to use for application developers. You can add related application

drivers on demand.

gr_libraries Open source files of common assistant software modules and peripheral drivers provided in the SDK

gr_profiles
Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects on

demand.

external
Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party programs

on demand.

• User groups

User groups include user_platform and user_app.

Figure 4-6 User groups

Functionalities for source files in User groups need to be implemented by developers. Group descriptions are
provided below:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 23

Development and Debugging with SDK in Keil

Table 4-3 User groups

User Group Name Description

user_platform
Software and hardware resource setting and application initialization; you need to execute

corresponding APIs on demand.

user_app

main() function entries and other source files created by developers, which are used to configure

runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, After Build, and other configuration items.

4.3.2.1 Configuring custom_config.h

custom_config.h is used to configure parameters of application projects. Developers can directly modify the
configurations in the file or configure parameters in the Configuration Wizard interface of Keil.

Tip:

custom_config.h of each application example project is in Src\config under project directory.

• Modify the configurations in custom_config.h.

GR533x SDK provides a template configuration file custom_config.h (in SDK_Folder\build\config\cust
om_config.h). You can directly modify the template file to configure parameters for application projects.

Table 4-4 Parameters in custom_config.h

Macro Description

SOC_GR533X Define the SoC version number.

CHIP_TYPE

Specify the SoC model.

◦ 1: GR5331AENI

◦ 2: GR5331CENI

◦ 3: GR5332AENE

◦ 4: GR5331CENI

Note:

During project compilation, configure this macro according to the SoC model in use.

SYS_FAULT_TRACE_ENABLE

Enable/Disable trace info printing.

If printing is enabled, the trace info is printed when a HardFault occurs.

◦ 0: Disable

◦ 1: Enable

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 24

Development and Debugging with SDK in Keil

Macro Description

ENABLE_BACKTRACE_FEA

Enable/Disable the stack backtrace functionality.

◦ 0: Disable

◦ 1: Enable

APP_LOG_ENABLE

Enable/Disable the APP LOG module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_STORE_ENABLE

Enable/Disable the APP LOG STORE module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_PORT

Set the output mode of APP LOG module.

◦ 0: UART

◦ 1: J-Link RTT

◦ 2: ARM ITM

Note:

By default, this macro is removed from custom_config.h. It can be redefined by developers

on demand.

PLATFORM_SDK_INIT_ENABLE

Enable/Disable platform initialization.

◦ 0: Enable

◦ 1: Disable

PMU_CALIBRATION_ENABLE

Enable/Disable PMU calibration.

When PMU calibration is enabled, the system monitors temperature and voltage

automatically with adaptive adjustment. It is recommended to enable macro by default.

◦ 0: Enable

◦ 1: Disable

Note:

PMU calibration shall be enabled in high/low temperature scenarios.

NVDS_START_ADDR

Start address of NVDS in Flash.

Note:

By default, this macro is removed from custom_config.h. If you need to reconfigure

the NVDS address, enable the macro and set the address as needed (4-KB alignment is

compulsory).

NVDS_NUM_SECTOR Number of Flash sectors for NVDS

SYSTEM_STACK_SIZE Size of Call Stack required by applications. The default value is 8 KB.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 25

Development and Debugging with SDK in Keil

Macro Description

You can set the value as needed.

Note:

After compilation of ble_app_example, the Maximum Stack Usage is provided in Keil_5

\Objects\ble_app_example.htm for reference.

SYSTEM_HEAP_SIZE
Size of Heap required by applications. The default value is 0 KB.

You can set the value as needed.

CHIP_VER Version of the SoC that the firmware runs on; default: 0x5332

APP_CODE_LOAD_ADDR*

Start address of the application storage area

Note:

This address shall be within the Flash address range.

APP_CODE_RUN_ADDR*

Start address of the application running space

Note:

The value shall be the same as APP_CODE_LOAD_ADDR, and applications run in XIP mode.

SYSTEM_CLOCK*

Set the system clock frequency.

◦ 0: 64 MHz

◦ 1: 32 MHz

◦ 2: 16 MHz (XO)

◦ 3: 16 MHz

◦ 4: 8 MHz

◦ 5: 2 MHz

SYSTEM_POWER_MODE

Set the system power supply mode.

◦ 0: Supplied by DC-DC

◦ 1: Supplied by SYS_LDO

CFG_LF_ACCURACY_PPM
Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to 500 (unit:

ppm).

CFG_LPCLK_INTERNAL_EN

Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep clock.

If the OSC clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 ppm by force.

◦ 0: Disable

◦ 1: Enable

BOOT_LONG_TIME*

Set 1-second delay (during SoC boot before implementing the second half Bootloader).

◦ 0: No delay

◦ 1: Delay for 1 second.

BOOT_CHECK_IMAGE
Determine whether to check the image during cold boot in XIP mode.

◦ 0: Do not check.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 26

Development and Debugging with SDK in Keil

Macro Description

◦ 1: Check.

BLE_SUPPORT

Support Bluetooth LE or not.

◦ MCU only, no Bluetooth LE supported

◦ Support Bluetooth LE.

DTM_TEST_ENABLE

Enable/Disable DTM test.

◦ 0: Disable

◦ 1: Enable

RF_TX_PA_SELECT

Select an RF power amplifier.

◦ 1: SPA (for GR533x; supported TX power: -20 dBm to 6 dBm for GR5331 and -20 dBm to
5 dBm for GR5332)

◦ 2: UPA (for GR5331 only; supported TX power: -15 dBm to 2 dBm)

◦ 3: HPA (for GR5332 only; supported TX power: -10 dBm to 15 dBm)

CFG_MATCHING_CIRCUIT Matching network circuit configuration.

CFG_PATCH_ENABLE

Enable/Disable patch.

◦ 0: Disable

◦ 1: Enable

CFG_MAX_PRFS

Maximum number of supported GATT Profiles/Services.

You can set the value on demand. A larger value means more RAM space will be occupied.

Range: 1–64

CFG_MAX_BOND_DEVS Maximum number of devices that can be bonded; default: 4

CFG_MAX_CONNECTIONS

Maximum number of devices that can be connected; the number shall be no greater than

10.

You can set the value on demand. A larger value means more RAM space will be occupied

by Bluetooth LE Stack Heaps.

The size of Bluetooth LE Stack Heaps is defined by the following four macros in

flash_scatter_config.h:

◦ ENV_HEAP_SIZE

◦ ATT_DB_HEAP_SIZE

◦ KE_MSG_HEAP_SIZE

◦ NON_RET_HEAP_SIZE

Note:

The above four macros cannot be changed by developers.

CFG_MAX_ADVS
Maximum number of supported Bluetooth LE legacy advertising and extended advertising

Range: 0–5

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 27

Development and Debugging with SDK in Keil

Macro Description

Note:

The maximum number of supported Bluetooth LE legacy advertising and extended

advertising shall be no greater than 5.

CFG_MAX_SCAN
Maximum number of supported Bluetooth LE device used for scanning

Range: 0–1

CFG_MUL_LINK_WITH_SAME_DEV

Support multi-link functionality for a single device or not.

◦ 0: No

◦ 1: Yes

CFG_BT_BREDR

Support generating Bluetooth Classic link keys through the LE link or not.

◦ 0: No

◦ 1: Yes

CFG_CAR_KEY_SUPPORT

Support car key applications or not.

◦ 0: No

◦ 1: Yes

CFG_CONTROLLER_ONLY

Support Bluetooth LE controller (for external host or HCI UART transmission) only or not.

◦ 0: Support Bluetooth LE controller and host.

◦ 1: Support Bluetooth LE controller only.

CFG_MASTER_SUPPORT

Support master role or not.

◦ 0: No

◦ 1: Yes

CFG_SLAVE_SUPPORT

Support slave role or not.

◦ 0: No

◦ 1: Yes

CFG_LEGACY_PAIR_SUPPORT

Support legacy pairing or not.

◦ 0: No

◦ 1: Yes

CFG_SC_PAIR_SUPPORT

Support secure pairing or not.

◦ 0: No

◦ 1: Yes

CFG_COC_SUPPORT

Support Connection-oriented Channel (COC) or not.

◦ 0: No

◦ 1: Yes

CFG_GATTS_SUPPORT Support GATT Server or not.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 28

Development and Debugging with SDK in Keil

Macro Description

◦ 0: No

◦ 1: Yes

CFG_GATTC_SUPPORT

Support GATT Client or not.

◦ 0: No

◦ 1: Yes

CFG_CONN_AOA_AOD_SUPPORT

Support connection-based AoA/AoD or not.

◦ 0: No

◦ 1: Yes

Note:

The macro is configured to a fixed value of '0'.

CFG_CONNLESS_AOA_AOD_SUPPORT

Support connectionless AoA/AoD or not.

◦ 0: No

◦ 1: Yes

Note:

The macro is configured to a fixed value of '0'.

CFG_RANGING_SUPPORT

Support ranging or not.

◦ 0: No

◦ 1: Yes

Note:

The macro is configured to a fixed value of '0'.

CFG_MESH_SUPPORT

Support Mesh or not.

◦ 0: No

◦ 1: Yes

CFG_SNIFFER_SUPPORT

Support the RSSI listening functionality or not.

◦ 0: No

◦ 1: Yes

Note:

This functionality will be available in GR533x SDK in later versions.

SECURITY_CFG_VAL

Configure the algorithm security level.

◦ 0: Enable Level 1 algorithm.

◦ 1: Enable Level 2 algorithm.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 29

Development and Debugging with SDK in Keil

 Note:

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure which
is defined at 0x200 in the firmware and is initialized with the macros in custom_config.h. When system boots, the
Bootloader reads value from 0x200 and uses it as a boot parameter.

• Configure parameters in the Configuration Wizard interface.

Comments in custom_config.h are compliant with Configuration Wizard Annotations of Keil, making it possible
for developers to open custom_config.h in Keil and configure application project parameters in the Configuration
Wizard interface of Keil.

Tip:

It is recommended to configure parameters in the Configuration Wizard interface, to prevent inputting invalid
parameters.

Figure 4-7 custom_config.h in the Configuration Wizard interface

4.3.2.2 Configuring Memory Layout

In a Keil project, the memory area for the linker is defined in Scatter (.sct) files. The GR533x SDK provides an
example Scatter file (SDK_Folder\platform\soc\linker\keil\flash_scatter_common.sct) to
help developers quickly configure memory layout. The macros used by flash_scatter_common.sct are defined in
flash_scatter_config.h.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 30

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

Development and Debugging with SDK in Keil

 Note:

In Keil, __attribute__((section("name"))) can be used to define a function or a variable in a specific
memory segment, in which name can be customized by developers. The scatter (.sct) file defines the location for
customized fields. For example, to define the Zero-Initialized (ZI) data of applications in the segment named as
.bss.app, you can set attribute to attribute ((section(".bss.app "))).

You can follow the steps below to configure the memory layout:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar of the Linker tab, click ... to browse and select the flash_scatter_common.sct file in SDK_
Folder\platform\soc\linker\keil. You can also copy the scatter (.sct) file and the configuration (.h)
file to the ble_app_example project directory and then select the scatter file.

 Note:

• #! armcc -E –I in flash_scatter_common.sct specifies the directory of the header file on which
flash_scatter_common.sct depends. A wrong path results in a linker error.

• In flash_scatter_common.sct of the GR533x SDK, you can use the macro definition EM_BUFF_ENABLE in
custom_config.h to determine whether it is necessary to configure EM for Bluetooth LE in the end area of SRAM.
You need to define EM_BUFF_ENABLE based on whether the project includes Bluetooth LE services.

3. Click Edit... to open the .sct file, and modify corresponding code based on practical product memory layout.

Figure 4-8 Configuration of scatter file

4. Click OK to save the settings.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 31

Development and Debugging with SDK in Keil

4.3.2.3 Configuring After Build

After Build in Keil can specify the command to be executed after a project is built.

By default, After Build has been configured for the ble_app_template project. Therefore, ble_app_example, which is
based on ble_app_template, does not require manual configuration of After Build.

If you build a project in Keil, follow the steps below to configure After Build:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
User tab.

2. From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output
Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf
to generate a compiling file based on the selected .axf file.

3. From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
\@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to
generate a compiling file based on the selected .axf file.

4. Click OK to save the settings.

Figure 4-9 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
 STACK_HEAP_INIT(heaps_table);
…

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 32

Development and Debugging with SDK in Keil

int main (void)
{
 // Initialize user peripherals.
 app_periph_init();

 // Initialize ble stack.
 ble_stack_init(ble_evt_handler, &heaps_table);

 // loop
 while (1)
 {
 app_log_flush();
 pwr_mgmt_schedule();
 }
}

• STACK_HEAP_INIT(heaps_table) defines seven global arrays as Heaps for Bluetooth LE Stack. Do not
modify the definition; otherwise, Bluetooth LE Stack may not work properly. The Heap size is determined by the
Bluetooth LE service volume in “Section 4.3.2.1 Configuring custom_config.h”.

• app_periph_init() is used to initialize peripherals. In development and debugging phases,
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address; pwr_mgmt_mode_set()
sets the MCU operation mode (SLEEP/IDLE/ACTIVE) during automatic power management; app_periph_init() is
implemented in user_periph_setup.c, and the example code is as follows.

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
 SYS_SET_BD_ADDR(s_bd_addr);
 board_init();
 pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}

• Add main loop code of applications to while(1) { }, for example, code to handle external input and update
GUI.

• To use the APP LOG module, call app_log_flush() in the main loop, to ensure logs are output completely
before the system enters sleep state. For more information about the APP LOG module, refer to “Section 4.6.3
Outputting Debug Logs”.

• Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Service Logics

Bluetooth LE service logics of applications are driven by a number of Bluetooth LE events which are defined in GR533x
SDK. Therefore, applications need to implement the corresponding event handlers in GR533x SDK to obtain operation
results or state change notifications of Bluetooth LE Stack. The event handlers are called in the interrupt context of
Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking function
call and infinite loop; otherwise, the system is blocked, causing Bluetooth LE Stack and the SDK Bluetooth LE module
unable to run in a normal timing.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 33

Development and Debugging with SDK in Keil

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client.

All Bluetooth LE events supported by GR533x SDK are listed below.

Table 4-5 Bluetooth LE events

Event Type Event Name Description

Common BLE_COMMON_EVT_STACK_INIT Bluetooth LE Stack init complete event

BLE_GAPM_EVT_CH_MAP_SET Channel Map Set complete event

BLE_GAPM_EVT_WHITELIST_SET Whitelist Set complete eventGAP Management

BLE_GAPM_EVT_PER_ADV_LIST_SET Periodic Advertising List Set complete event

BLE_GAPM_EVT_PRIVACY_MODE_SET Privacy Mode for Peer Device Set complete event

BLE_GAPM_EVT_LEPSM_REGISTER LEPSM Register complete event

BLE_GAPM_EVT_LEPSM_UNREGISTER LEPSM Unregister complete event

BLE_GAPM_EVT_DEV_INFO_GOT Device Info Get event

BLE_GAPM_EVT_ADV_START Advertising Start complete event

BLE_GAPM_EVT_ADV_STOP Advertising Stop complete event

BLE_GAPM_EVT_SCAN_REQUEST Scan Request event

BLE_GAPM_EVT_ADV_DATA_UPDATE Advertising Data update event

BLE_GAPM_EVT_SCAN_START Scan Start complete event

BLE_GAPM_EVT_SCAN_STOP Scan Stop complete event

BLE_GAPM_EVT_ADV_REPORT Advertising Report event

BLE_GAPM_EVT_SYNC_ESTABLISH Periodic Advertising Synchronization Establish event

BLE_GAPM_EVT_SYNC_STOP Periodic Advertising Synchronization Stop event

BLE_GAPM_EVT_SYNC_LOST Periodic Advertising Synchronization Lost event

BLE_GAPM_EVT_READ_RSLV_ADDR Read Resolvable Address event

BLE_GAPC_EVT_PHY_UPDATED PHY Update event

BLE_GAPC_EVT_CONNECTED Connected event

BLE_GAPC_EVT_DISCONNECTED Disconnected event

BLE_GAPC_EVT_CONNECT_CANCEL Connect Cancel event

BLE_GAPC_EVT_AUTO_CONN_TIMEOUT Auto Connect Timeout event

BLE_GAPC_EVT_CONN_PARAM_UPDATED Connect Parameter Updated event

BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ Connect Parameter Request event

BLE_GAPC_EVT_PEER_NAME_GOT Peer Name Get event

BLE_GAPC_EVT_CONN_INFO_GOT Connect Info Get event

BLE_GAPC_EVT_PEER_INFO_GOT Peer Info Get event

GAP Connection Control

BLE_GAPC_EVT_DATA_LENGTH_UPDATED Data Length Updated event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 34

Development and Debugging with SDK in Keil

Event Type Event Name Description

BLE_GAPC_EVT_DEV_INFO_SET Device Info Set event

BLE_GAPC_EVT_CONNECT_IQ_REPORT Connection IQ Report info event

BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT Connectionless IQ Report info event

BLE_GAPC_EVT_LOCAL_TX_POWER_READ Local transmit power read indication info event

BLE_GAPC_EVT_REMOTE_TX_POWER_READ Remote transmit power read indication info event

BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT Transmit power change reporting info event

BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT Path loss threshold reporting info event

BLE_GAPC_EVT_RANGING_IND Ranging indication event

BLE_GAPC_EVT_RANGING_SAMPLE_REPORT Ranging sample report event

BLE_GAPC_EVT_RANGING_CMP_IND Ranging complete indication event

BLE_GAPC_EVT_DFT_SUBRATE_SET Default subrate param set complete event

BLE_GAPC_EVT_SUBRATE_CHANGE_IND Subrate change indication event

BLE_GATT_COMMON_EVT_MTU_EXCHANGE MTU Exchange event
GATT Common

BLE_GATT_COMMON_EVT_PRF_REGISTER Service Register event

BLE_GATTS_EVT_READ_REQUEST GATTS Read Request event

BLE_GATTS_EVT_WRITE_REQUEST GATTS Write Request event

BLE_GATTS_EVT_PREP_WRITE_REQUEST GATTS Prepare Write Request event

BLE_GATTS_EVT_NTF_IND GATTS Notify or Indicate Complete event

BLE_GATTS_EVT_CCCD_RECOVERY GATTS CCCD Recovery event

BLE_GATTS_EVT_MULT_NTF GATTS Multiple Notifications event

BLE_GATTS_EVT_ENH_READ_REQUEST GATTS Enhanced Read Request event

BLE_GATTS_EVT_ENH_WRITE_REQUEST GATTS Enhanced Write Request event

BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST GATTS Enhanced Prepare Write Request event

BLE_GATTS_EVT_ENH_NTF_IND GATTS Enhanced Notify or Indicate Complete event

BLE_GATTS_EVT_ENH_CCCD_RECOVERY GATTS Enhanced CCCD Recovery event

GATT Server

BLE_GATTS_EVT_ENH_MULT_NTF GATTS Enhanced Multiple Notifications event

BLE_GATTC_EVT_SRVC_BROWSE GATTC Service Browse event

BLE_GATTC_EVT_PRIMARY_SRVC_DISC GATTC Primary Service Discovery event

BLE_GATTC_EVT_INCLUDE_SRVC_DISC GATTC Include Service Discovery event

BLE_GATTC_EVT_CHAR_DISC GATTC Characteristic Discovery event

BLE_GATTC_EVT_CHAR_DESC_DISC GATTC Characteristic Descriptor Discovery event

BLE_GATTC_EVT_READ_RSP GATTC Read Response event

BLE_GATTC_EVT_WRITE_RSP GATTC Write Response event

GATT Client

BLE_GATTC_EVT_NTF_IND GATTC Notify or Indicate Receive event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 35

Development and Debugging with SDK in Keil

Event Type Event Name Description

BLE_GATTC_EVT_CACHE_UPDATE GATTC Cache Update event

BLE_GATTC_EVT_ENH_SRVC_BROWSE GATTC Enhanced Service Browse event

BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC GATTC Enhanced Primary Service Discovery event

BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC GATTC Enhanced Include Service Discovery event

BLE_GATTC_EVT_ENH_CHAR_DISC GATTC Enhanced Characteristic Discovery event

BLE_GATTC_EVT_ENH_CHAR_DESC_DISC
GATTC Enhanced Characteristic Descriptor Discovery

event

BLE_GATTC_EVT_ENH_READ_RSP GATTC Enhanced Read Response event

BLE_GATTC_EVT_ENH_WRITE_RSP GATTC Enhanced Write Response event

BLE_GATTC_EVT_ENH_NTF_IND GATTC Enhanced Notify or Indicate Receive event

BLE_SEC_EVT_LINK_ENC_REQUEST Link Encrypted Request event

BLE_SEC_EVT_LINK_ENCRYPTED Link Encrypted event

BLE_SEC_EVT_KEY_PRESS_NTF Key Press event
Security Manager

BLE_SEC_EVT_KEY_MISSING Key Missing event

BLE_L2CAP_EVT_CONN_REQ L2CAP Connect Request event

BLE_L2CAP_EVT_CONN_IND L2CAP Connected Indicate event

BLE_L2CAP_EVT_ADD_CREDITS_IND L2CAP Credits Add Indicate event

BLE_L2CAP_EVT_DISCONNECTED L2CAP Disconnected event

BLE_L2CAP_EVT_SDU_RECV L2CAP SDU Receive event

BLE_L2CAP_EVT_SDU_SEND L2CAP SDU Send event

BLE_L2CAP_EVT_ADD_CREDITS_CPLT L2CAP Credits Add Completed event

BLE_L2CAP_EVT_ENH_CONN_REQ L2CAP Enhanced Connect Request event

BLE_L2CAP_EVT_ENH_CONN_IND L2CAP Enhanced Connected Indicate event

BLE_L2CAP_EVT_ENH_RECONFIG_CPLT L2CAP Enhanced Reconfig Completed event

L2CAP

BLE_L2CAP_EVT_ENH_RECONFIG_IND L2CAP Enhanced Reconfig Indicate event

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only
those event handlers required for products are to be implemented.

Tip:

For details about the usage of Bluetooth LE APIs and event APIs, refer to the source code of Bluetooth LE examples in
SDK_Folder\documentation\GR533x_API_Reference and SDK_Folder\projects\ble.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 36

Development and Debugging with SDK in Keil

Bluetooth LE Stack is the core to implement Bluetooth LE protocols. It can directly operate the Bluetooth 5.3 Core
(refer to “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall
IRQ, which ensures that Bluetooth LE Stack runs strictly in a timing specified in Bluetooth Core Spec.

A state change of Bluetooth LE Stack triggers the BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler,
the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of
Bluetooth LE Stack and related service data to applications. Avoid time-consuming operations when using these event
handlers. Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK_
Folder\components\libraries\app_queue, or your own application framework, to transfer events from
Bluetooth LE event handlers to the main loop.

Bluetooth LE
Stack

BLE_Stack_IRQ

SDK
Bluetooth LE

BLE_SDK_IRQ

Applicaon
Callback

Applicaon
Queue

Applicaon
Main Loop

Bluetooth LE Event
Handler

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-10 System schedule (without OS)

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click (Build) on the Keil toolbar to build a project.

After project compilation is completed, two firmware files (in .bin and .hex formats) are created in Listings and Ob
jects respectively in the project directory.

Table 4-6 Firmware files generated

Name Description

ble_app_example.bin Binary application firmware, can be downloaded to Flash through GProgrammer for running

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 37

Development and Debugging with SDK in Keil

Name Description

ble_app_example.hex Binary application firmware, can be downloaded to Flash through Keil or GProgrammer for running

Tip:

Both the two types of firmware can be downloaded to Flash through GProgrammer for running. Refer to
GProgrammer User Manual for details.

4.5 Downloading .hex Files to Flash

After a firmware file is are generated, you need to download the file to Flash. Specific steps are provided below:

1. Configure Keil Flash programming algorithm.

(1). Copy SDK_Folder\build\Keil\GR5xxx_16MB_Flash.FLM to Keil_Folder\ARM\Flash.

(2). Click (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-11 Debug tab

(3). In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 38

Development and Debugging with SDK in Keil

Figure 4-12 Default configurations in the Download Function pane

(4). Click Add to add SDK_Folder\build\keil\GR5xxx_16MB_Flash.FLM to Programming
Algorithm.

 Note:

To facilitate multi-chip inheritance development for users, GR5xxx_16MB_Flash.FLM is used for all the Goodix GR5xx
Bluetooth LE SoC series which share the same download algorithm.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 39

Development and Debugging with SDK in Keil

Figure 4-13 Adding GR5xxx_16MB_Flash.FLM to Programming Algorithm

(5). Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR533x in the Start input field: 0x20000000. Enter 0x8000 in
the Size input field.

Figure 4-14 Settings of RAM for Algorithm

(6). Click OK to save the settings.

2. Download firmware.

After completing configuration, click (Download) on the Keil toolbar to download ble_app_example.axf to
Flash. After download is completed, the following results are displayed in the Build Output window of Keil.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 40

Development and Debugging with SDK in Keil

Figure 4-15 Download results

 Note:

During file download, if No Cortex-M SW Device Found pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this

case, developers need to press RESET on the GR5331 SK Board and wait for about 1 second; then click (Download)
to download the file again.

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select the Debug tab. In the window, software simulation debugging configurations
display on the left side, and online hardware debugging configurations display on the right side.

Bluetooth LE example projects adopt the online hardware debugging. Related default configurations of the debugger
are shown as follows:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 41

Development and Debugging with SDK in Keil

Figure 4-16 Configuring the debugger

The default initialization file sram.ini is in SDK_Folder\build\keil. You can use this file directly, or copy it to the
project directory.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the
Initialization File bar, click Edit... on the right side, to open sram.ini.

Example code of sram.ini is provided as follows:

/**
**
*GR55xx object loading script through debugger interface (e.g.Jlink, etc).
*The goal of this script is to load the Keils's object file to the GR55xx RAM
*assuring that the GR55xx has been previously cleaned up.
**
*/

//Debugger reset(check Keil debugger settings)
//Preselected reset type (found in Options->Debug->Settings)is Normal(0);
//-Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
RESET

//Load current object file
LOAD %L

//Load stack pointer
SP = _RDWORD(0x00000000)

//Load program counter
$ = _RDWORD(0x00000004)

//Write 0 to vector table register, remap vector
_WDWORD(0xE000ED08, 0x00000000)

//_WDWORD(0xE000E180, 0xFFFFFFFF)

//Write run address to 0xA000C578 register,For the debug mode;

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 42

Development and Debugging with SDK in Keil

//boot code will check the value of 0xA000C578 firstly,if the value of 0xA000C578 is
 valid,gr551x will jump to run

//_WDWORD(0xA000C578, 0x00810000)

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup is enabled, the debugger first loads
the file under Options for Target ‘GRxx_Soc’ > Output > Name of Executable.

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g,main is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-17. This is to
ensure when you click Reset on the Keil toolbar after enabling Debug Session, the program can run normally

Figure 4-17 Setting Connect and Reset

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 43

Development and Debugging with SDK in Keil

4.6.3 Outputting Debug Logs

GR533x SDK provides an APP LOG module and supports outputting debug logs of applications from hardware ports
based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM
ITM).

To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and configure APP_LOG_PORT based on
the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to call app_log_init() during peripheral initialization to initialize the APP LOG module,
including setting log parameters, and registering log output APIs and flush APIs.

The APP LOG module supports using printf() (a C standard library function) and APP LOG APIs to output
debug logs. If you choose APP LOG APIs, you can optimize logs by setting log level, log format, filter type, or other
parameters; if you choose printf(), set log parameters as NULL.

Call the initialization function of corresponding module (refer to SDK_Folder\platform\boards\board_SK
.c for details) and register corresponding log output and flush APIs (see bsp_log_init() for reference) according to the
configured output port.

If UART is the output port, bsp_log_init() is implemented as follows:

void bsp_log_init(void)
{
#if APP_LOG_ENABLE

#if (APP_LOG_PORT == 0)
 bsp_uart_init();
#elif (APP_LOG_PORT == 1)
 SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0, SEGGER_RTT_MODE_NO_BLOCK_TRIM);
#endif

#if (APP_LOG_PORT <= 2)
 app_log_init_t log_init;

 log_init.filter.level = APP_LOG_LVL_DEBUG;
 log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
 log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_FUNC;
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_NULL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_NULL;

#if (APP_LOG_PORT == 0)
 app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);
#elif (APP_LOG_PORT == 1)
 app_log_init(&log_init, bsp_segger_rtt_send, NULL);
#elif (APP_LOG_PORT == 2)
 app_log_init(&log_init, bsp_itm_send, NULL);
#endif

#endif
 app_assert_init();
#endif
}

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 44

Development and Debugging with SDK in Keil

 Note:

• The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API
(optional for registration).

• GR533x SDK provides an APP LOG STORE module, which supports storing the debug logs in Flash and outputting
the logs from Flash. To use the APP LOG STORE module, users need to enable APP_LOG_STORE_ENABLE in
custom_config.h. This module is configured in the ble_app_rscs project (in SDK_Folder\projects\ble\bl
e_peripheral\ble_app_rscs). This configuration can be a reference when the APP LOG STORE module is
used.

• Application logs output by using printf() cannot be stored by the APP LOG STORE module.

When debug logs are output through UART, the implemented log output API and flush API are bsp_uart_send() and
bsp_uart_flush() respectively.

• bsp_uart_send() is the basis for two log output APIs: app_uart asynchronization (app_uart_transmit_async) and
hal_uart synchronization (hal_uart_transmit). Users can choose the output methods as needed.

• bsp_uart_flush() is used to output the log data that is cached in memory in interrupt mode.

 Note:

You can rewrite the above two APIs.

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is
bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARNING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() to output all the debug logs cached, to ensure that all debug logs are
output before the SoC is reset or the system enters the sleep mode.

To output logs through J-Link RTT, it is recommended to make the following modifications in SEGGER_RTT.c:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 45

Development and Debugging with SDK in Keil

Figure 4-18 Creating RTT Control Block and placing it at 0x20005000

The figure below shows the reference configurations for J-Link RTT Viewer.

Figure 4-19 Configurations in J-Link RTT Viewer

The address of RTT Control Block can be specified by clicking Address and then entering a custom value, and the input
value can be set to the address of the _SEGGER_RTT structure in the .map file generated by the compiled project, as
shown in the figure below. If creating RTT Control Block through the method recommended in Figure 4-18 and placing
it at 0x20005000, you need to set Address to 0x20005000.

Figure 4-20 Obtaining RTT Control Block address

4.6.4 Debugging with GRToolbox

GR533x SDK provides an Android App, GRToolbox, to debug GR533x Bluetooth LE applications. GRToolbox features the
following:

• General Bluetooth LE scanning and connecting; characteristics read/write

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 46

Development and Debugging with SDK in Keil

• Demos for standard profiles, including Heart Rate and Blood Pressure

• Goodix-customized applications

Tip:

You can obtain the GRToolbox installation file from Goodix official website or download it from the application store.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 47

http://www.goodix.com/en/software_tool/grtoolbox

Glossary

5 Glossary
Table 5-1 Glossary

Name Description

API Application Programming Interface

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DFU Device Firmware Update

DTM Direct Test Mode

DUT Device Under Test

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

HPA High Power Amplifier

IoT Internet of Things

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

SPA Small Power Amplifier

UART Universal Asynchronous Receiver/Transmitter

UPA Ultra-low Power Amplifier

XIP Execute in Place

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 48

	Preface
	Contents
	1 Introduction
	1.1 GR533x SDK
	1.2 Bluetooth LE Protocol Stack

	2 GR533x Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout
	2.5.2 RAM Power Management

	2.6 SDK Directory Structure
	2.7 Tools

	3 Bootloader
	4 Development and Debugging with SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout
	4.3.2.3 Configuring After Build

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Service Logics
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	5 Glossary

