
GR5405 Developer Guide

Version: 1.1

Release Date: 2025-04-22

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 26F, Goodix Headquarters, No.1 Meikang Road, Futian District, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces the Software Development Kit (SDK) of the Goodix GR5405 automotive Bluetooth Low
Energy (Bluetooth LE) System-on-Chip (SoC) and Keil/IAR for program development and debugging, to help you quickly
get started with secondary development of automotive applications.

Audience

This document is intended for:

• Device user

• Developer

• Test engineer

• Technical support engineer

Release Notes

This document is the second release of GR5405 Developer Guide, corresponding to GR5405 SoCs.

Revision History

Version Date Description

1.0 2024-08-30 Initial release

1.1 2025-04-22

• Added Mesh-related descriptions.

• Updated "Tools".

• Revised "Configuring custom_config.h".

• Revised the code example for bsp_log_int() and the notes about outputting debug logs through
UART.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 GR5405 SDK...1
1.2 Bluetooth LE Protocol Stack.. 1

2 GR5405 Bluetooth LE Software Platform...3

2.1 Hardware Architecture.. 3
2.2 Software Architecture..4
2.3 Memory Mapping..5
2.4 Flash Memory Mapping.. 7

2.4.1 SCA.. 7
2.4.2 NVDS... 10

2.5 RAM Mapping..10
2.5.1 Typical RAM Layout.. 11
2.5.2 RAM Power Management.. 12

2.6 SDK Directory Structure.. 13
2.7 Tools...15

3 Bootloader.. 17

4 Development and Debugging with SDK in Keil.. 18

4.1 Installing Keil MDK...18
4.2 Installing SDK... 19
4.3 Building a Bluetooth LE Application..19

4.3.1 Preparing ble_app_example... 19
4.3.2 Configuring a Project.. 21

4.3.2.1 Configuring custom_config.h..21
4.3.2.2 Configuring Memory Layout.. 28

4.3.3 Adding User Code... 29
4.3.3.1 Modifying the main() Function.. 29
4.3.3.2 Implementing Bluetooth LE Service Logics.. 30
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.. 31

4.4 Generating Firmware...32
4.5 Downloading .hex Files to Flash..32
4.6 Debugging..35

4.6.1 Configuring the Debugger.. 35
4.6.2 Starting Debugging... 37
4.6.3 Outputting Debug Logs...38

4.6.3.1 Module Initialization.. 38
4.6.3.2 Application..40

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.6.4 Debugging with GRToolbox...41
4.7 Download and Debugging with IAR.. 41

5 Glossary.. 43

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
The Goodix GR5405 is an automotive Bluetooth LE 5.3 SoC designed to operate across a wide temperature range from
–40°C to 105°C, and is AEC-Q100 Grade 2 certified. It is suitable for various automotive applications, including digital
key and Tire Pressure Monitoring System (TPMS). Additionally, it supports Bluetooth Mesh networking protocols.

Based on Arm® Cortex®-M4F CPU core running at 64 MHz, the GR5405 integrates a 2.4 GHz RF transceiver, Bluetooth
LE 5.3 protocol stack, 512 KB on-chip Flash memory, 96 KB system SRAM, and a rich set of peripherals. It provides
outstanding RF performance, with a maximum TX power of +15 dBm, an RX sensitivity of -99 dBm in Bluetooth LE 1
Mbps mode, achieving an overall link budget of up to 114 dB.

The GR5405 supports connection between multiple centrals and multiple peripherals. It can be configured as a
Broadcaster, an Observer, a Peripheral, or a Central, and supports the combination of all the above roles.

1.1 GR5405 SDK

The GR5405 Software Development Kit (SDK) provides comprehensive software development support for GR5405
SoCs. The SDK contains Bluetooth LE APIs, Mesh APIs, System APIs, peripheral drivers, a tool for debugging and
download, project example code, and related user documents.

1.2 Bluetooth LE Protocol Stack

The Bluetooth LE Protocol Stack (Bluetooth LE Stack) architecture is as shown in the figure below.

Bluetooth LE Protocol Stack
Host

Generic Aribute Profile (GATT)

Aribute Protocol (ATT)

Logical Link Control and Adaptaon Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Generic Access Profile (GAP)

Security Manager (SM)

Host Controller Interface (HCI)

Figure 1-1 Bluetooth LE Stack architecture

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1

Introduction

The Bluetooth LE Stack consists of the Controller, the Host Controller Interface (HCI), and the Host.

Controller

• Physical Layer (PHY): Supports 1 Mbps, 2 Mbps, 500 kbps, and 125 kbps adaptive frequency hopping and
Gaussian Frequency Shift Keying (GFSK).

• Link Layer (LL): Controls the RF state of devices. Devices are in one of the following five states, and can switch
between the states on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

• HCI: Enables communication between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

• Logical Link Control and Adaptation Protocol (L2CAP): Provides channel multiplexing and data segmentation and
reassembly services for upper layers. It also supports logic end-to-end data communication.

• Security Manager (SM): Defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functionalities.

• Generic Access Profile (GAP): Provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, fulfilling functionalities such as advertising, scanning, connection initiation, service
discovery, connection parameter update, secure process initiation, and response.

• Attribute Protocol (ATT): Defines service data interaction protocols between a server and a client.

• Generic Attribute Profile (GATT): Based on the top of ATT, it defines a series of communication procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

Tip:

• For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website:
https://www.bluetooth.com.

• Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and
code which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 2

https://www.bluetooth.com

GR5405 Bluetooth LE Software Platform

2 GR5405 Bluetooth LE Software Platform
The GR5405 SDK is designed for GR5405 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
LE 5.3 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR5405 SDK.

2.1 Hardware Architecture

The GR5405 hardware architecture is shown as follows.

Figure 2-1 GR5405 hardware architecture

• Arm® Cortex®-M4F: GR5405 CPU. Bluetooth LE Stack and application code run on the CPU.

• SRAM: static random access memory that provides memory space for program execution

• ROM: read-only memory, containing the software code (cannot be modified after being programmed) for
Bootloader and Bluetooth LE Stack

• Flash: Flash memory unit embedded in the SoC. It stores user code and data, and supports the Execute in Place
(XIP) mode for user code.

• Peripherals: GPIO, DMA, I2C, SPI, UART, PWM, Timer, ADC, TRNG, and more

• RF Transceiver: 2.4 GHz RF transceiver

• Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller, enabling communication between the
software protocol stack and 2.4 GHz RF hardware

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 3

GR5405 Bluetooth LE Software Platform

• Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC-DC, SYS_LDO, IO-LDO, CORE_LDO, and RF Subsystem, based on configuration parameters
and the current operating state of the system, so that the power can be managed automatically.

Tip:

For more details about device modules, refer to GR5405 Datasheet.

2.2 Software Architecture

The software architecture of GR5405 SDK is shown below.

Software

Bluetooth LE Stack

Hardware

Applicaon

SDK

Bluetooth 5.3 Core Arm® Cortex®- M4F Peripheral

Mesh Model

Bootloader

Bluetooth LE API System APIMesh API

Mesh Stack

LL Driver

HAL Driver

APP Driver

Figure 2-2 GR5405 software architecture

• Bootloader

A boot program built in GR5405 SoCs, used for GR5405 software and hardware environment initialization, and to
check and start applications

• Bluetooth LE Stack

The core to implement Bluetooth LE protocols. It consists of Controller, HCI, and Host protocols (including LL, HCI,
L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

• Mesh Stack

The core to implement Bluetooth LE Mesh protocols. It integrates Bearer Layer, Network Layer, Lower Transport
Layer, Upper Transport Layer, Access Layer, and some functionalities of the Foundation Model Layer.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 4

GR5405 Bluetooth LE Software Platform

• LL Driver

Low Layer (LL) drivers which control and manage peripherals by registers

• HAL Driver

Hardware Abstraction Layer (HAL) drivers; the HAL Driver layer is between the APP Driver layer and the LL Driver
layer. HAL drivers offer a set of standard APIs, to allow the APP driver layer to access the LL peripheral resources
by calling HAL APIs.

 Note:

Generally, HAL APIs are used for developing LL drivers and system services, not for developing common applications.
Therefore, it is not recommended for developers to directly call HAL APIs.

• Bluetooth LE SDK

SDK that provides easy-to-use Mesh APIs, Bluetooth LE APIs, system APIs, and APP Driver APIs

◦ Mesh APIs: Include APIs required for developing Mesh applications.

◦ Bluetooth LE APIs: Include L2CAP, GAP, SM, and GATT APIs.

◦ System APIs: Provide APIs for Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system
power management, and generic system-level access.

◦ APP Driver: the application driver layer, which encapsulates common functionalities of various peripherals
into APIs based on HAL drivers. These APIs not only retain the characteristics of HAL drivers, but also
feature more stable, secure, and user-friendly. Generally, developers are recommended to use the APIs at
the APP layer.

• Mesh Model

It contains example implementation code for standard Mesh Model (such as Lightness Model) from Bluetooth
SIG. You can refer to the example code to develop Mesh applications.

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; you can download these files to GR5405 SoCs for operation and test. In addition, GRToolbox (Android)
provides rich functionalities to allow users to test most Bluetooth applications with ease.

2.3 Memory Mapping

The memory mapping of a GR5405 SoC is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 5

GR5405 Bluetooth LE Software Platform

Reserved

Reserved

0x0010 0000

0x00117FFF
0x00118000

0x001FFFFF
0x00200000

0x011FFFFF

Reserved
0x01200000

0x021FFFFF
0x0220 0000

16384 KB

ExFlash Alias

0x031F FFFF
0x0320 0000

16384 KB

Reserved

0x2000 0000

473088 KB

RAM

0x20018000
0x20017FFF

96 KB

0x2200 0000
0x21FF FFFF

32672 KB

RAM BitBanding

0x22280000
0x2227FFFF

2560 KB

0x4000 0000

488960 KB

Peripheral

0x400FFFFF
0x40100000

Reserved
0x41FFFFFF

1024 KB

31744 KB

Peripheral BitBanding

0x42000000

0x43FF FFFF
0x4400 0000

32768 KB

Reserved
2555904 KB

0xDFFF FFFF
0xE000 0000

ARM Private

0xE00F FFFF
0xE010 0000

Reserved
0xFFFF FFFF

1024 KB

523264KB

TIMER0

TIMER1

DUAL_TIMER

WATCHDOG

AON CTRL

AON_GPIO

AON_PWR

AON WD TIMER

AON PMU

AON RF

SPI_M

SPI_S

I2C0

I2C1

UART0

UART1

PWM0

PWM1

CACHE-XQSPI

MCU_AUX(SNS-ADC eg.)

CLK_CAL_1

Private peripheral bus
(internal)

Private peripheral bus
debugging (external)

ITM
DWT
FPB

SYS_TICK
NVIC
MPU
FPU
SCB
DAP

TPIU
ETM

ROM TABLE

0x1FFF FFFF

0x3FFF FFFF

(0x4000_0000-0x4000_0FFF)

(0x4000_1000-0x4000_1FFF)

(0x4000_2000-0x4000_2FFF)

(0x4000_8000-0x4000_8FFF)

(0x4000_A000-0x4000_A3FF)

(0x4000_A400-0x4000_A4FF)

AON SLP TIMER (0x4000_A500-0x4000_A5FF)

AON CLDR (0x4000_A600-0x4000_A6FF)

(0x4000_A800-0x4000_A8FF)

(0x4000_A700-0x4000_A7FF)

(0x4000_A900-0x4000_A9FF)

(0x4000_AA00-0x4000_AAFF)

(0x4000_C000-0x4000_C0FF)

(0x4000_C100-0x4000_C1FF)

(0x4000_C300-0x4000_C3FF)

(0x4000_C400-0x4000_C4FF)

(0x4000_C500-0x4000_C5FF)

(0x4000_C600-0x4000_C6FF)

(0x4000_CB00-0x4000_CBFF)

(0x4000_CC00-0x4000_CCFF)

HTABLE_AMCM (0x4000_CD00-0x4000_CDFF)

(0x4000_D000-0x4000_DFFF)

(0x4000_E000-0x4000_E3FF)

(0x4000_E400-0x4000_E4FF)

DVS (0x4000_E800-0x4000_E8FF)

PAD_CTRL (0x4000_E900-0x4000_E9FF)

CLK_CAL_0

(0x4000_E500-0x4000_E5FF)

GPIO0

GPIO1

DMA

TRNG

BLE

(0x4001_0000-0x4001_0FFF)

(0x4001_1000-0x4001_1FFF)

(0x4001_4000-0x4001_7FFF)

(0x4001_8400-0x4001_8FFF)EFUSE CTRL

(0x4001_9000-0x4001_97FF)

(0x400E_0000-0x400F_FFFF)

EFUSE ARRAY (0x4001_8000-0x4001_83FF)

ROM

Reserved

RAM Alias

224 KB

800 KB

96 KB

Reserved
928 KB

ExFlash

16384 KB

0x000F FFFF
0x0003 8000
0x0003 7FFF

0x0000 0000

Figure 2-3 GR5405 memory mapping

• RAM: 96 KB in total; 0x0010_0000 to 0x0011_7FFF, or 0x2000_0000 to 0x2001_7FFF.

◦ 0x2000_0000 to 0x2001_7FFF: Variables of the SDK including RW, ZI, HEAP, and STACK are in this range.
The 16 KB storage area at the end of SRAM can be used as Exchange Memory (EM) for baseband when you
configure Bluetooth LE projects. The actual area used as EM is determined by the maximum Bluetooth LE
service volume configured in custom_config.h. The unused EM area will form a contiguous address space
with other SRAM areas. In addition, bit field operations are supported in the region from 0x2000_0000 to
0x2001_3FFF, mapping to the region from 0x2200_0000 to 0x2227_FFFF, in which atomic operations are
supported.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 6

GR5405 Bluetooth LE Software Platform

◦ 0x0010_0000 to 0x0011_7FFF: This region features higher access efficiency thanks to the Cortex®-M4F
architecture. Therefore, executable code RAM_CODE is in this area.

• Flash: Internal Flash of GR5405 SoCs is 512 KB, from 0x0020_0000 to 0x0027_FFFF.

2.4 Flash Memory Mapping

GR5405 packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout for typical GR5405 application scenarios is shown below.

End of Flash

NVDS_START_ADDR

0x0020_2000

0x0020_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store configurations such as system boot parameters

• User App: an area to store application firmware

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

 Note:

• You can configure the start address of NVDS and the number of occupied sectors according to Flash memory
layout of products. For more information about the configuration, refer to “Section 4.3.2.1 Configuring
custom_config.h”.

• The start address of NVDS shall be aligned with that of the Flash sectors.

• Developers can implement non-volatile data storage by porting open-source components such as LittleFS
according to their actual needs.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It mainly stores flags and
other system configuration parameters used during system boot.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 7

GR5405 Bluetooth LE Software Platform

During firmware download, the download algorithm or GProgrammer will generate Image Info based on the
BUILD_IN_APP_INFO structure in the application firmware, and program the Image Info (stored in SCA) to Flash along
with the application firmware. During system boot, Bootloader will check the boot information in SCA, and then jump
to the entry address of the firmware if the check passes.

The BUILD_IN_APP_INFO structure is defined and configured as follows:

Tip:

The BUILD_IN_APP_INFO structure is in SDK_Folder\platform\soc\common\gr_platform.c, and
SDK_Folder is the root directory of GR5405 SDK.

const APP_INFO_t BUILD_IN_APP_INFO __attribute__((at(APP_INFO_ADDR))) = {
 .app_pattern = APP_INFO_PATTERN_VALUE,
 .app_info_version = APP_INFO_VERSION,
 .chip_ver = CHIP_VER,
 .load_addr = APP_CODE_LOAD_ADDR,
 .run_addr = APP_CODE_RUN_ADDR,
 .app_info_sum = CHECK_SUM,
 .check_img = BOOT_CHECK_IMAGE,
 .boot_delay = BOOT_LONG_TIME,
 .sec_cfg = SECURITY_CFG_VAL,
#ifdef APP_INFO_COMMENTS
 .comments = APP_INFO_COMMENTS,
#endif
.reserved1 = {APP_INFO_RESERVED}
};

• app_pattern: a fixed value 0x47525858

• app_info_version: firmware version information, corresponding to APP_INFO_VERSION

• chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h

• load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

• run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

• app_info_sum: checksum of firmware information, which is automatically calculated by CHECK_SUM

• check_img: system boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h.
When check_img is set to 1, Bootloader will check the firmware at booting.

• boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When
boot_delay is set to 1, the system cold boot will be launched after a one-second delay.

• sec_cfg: security configuration parameter, reserved

• comments: firmware information, up to 12 bytes

The SCA layout is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 8

GR5405 Bluetooth LE Software Platform

0x0020_0000

0x0020_1000

0x0020_2000

Boot_Info sector

3588B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

Reserved

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

Img_Info_10
(40B)

3632B

400B

Figure 2-5 SCA layout

• Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.

• The firmware boot information is stored in the Boot_Info (32 B) area. During system boot, Bootloader will check
the boot information, and then jump to the entry address of the firmware if the check passes.

◦ Boot Config: This area stores the system boot configuration information.

◦ SPI Access Mode: This area stores the SPI access mode configuration. It is a fixed configuration of the
system and cannot be modified.

◦ Run Addr: Indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.

◦ Load Addr: Indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

◦ CheckSum: This area stores the firmware checksum which is calculated automatically by the download
algorithm after firmware is generated.

◦ APP Size: This area stores the firmware size which is calculated automatically by the download algorithm
after firmware is generated.

• Up to 10 pieces of firmware information can be stored in Img_Info areas. Firmware information is stored in
Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

◦ Comments: This area stores the descriptive information (up to 12 characters) about firmware. Every time a
firmware file is generated, the file name will be saved in the Comments area by the download algorithm.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 9

GR5405 Bluetooth LE Software Platform

◦ Boot Info (24 B): This area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ Version: This area stores the firmware version, corresponding to VERSION in the custom_config.h.

◦ Pattern: This area stores a fixed value 0x4744.

2.4.2 NVDS

Non-volatile Data Storage (NVDS) is a lightweight key-value pair data storage system that uses the Flash read/write
APIs provided by the Flash Hardware Abstraction Layer (Flash HAL) to store data in Flash memory, ensuring that data
will not get lost even if the system is powered off.

NVDS is an ideal choice for storing small data blocks, for example, application configuration parameters, calibration
data, state information, and user information. Bluetooth LE Stack stores parameters such as device binding parameters
in NVDS.

NVDS features:

• Each storage item (tag) has a unique tag ID for identification. User applications can read and change data
according to tag IDs, regardless of physical storage addresses.

• It is optimized based on media characteristics of Flash memory and supports data check, garbage collection, and
wear-leveling.

• The size and start address of NVDS area are configurable. Flash is divided into sectors, with each sector being 4
KB in size. NVDS area can be configured to occupy several sectors, and the start address shall be 4 KB aligned.

By default, GR5405 SDK uses the last several sectors in Flash for NVDS, with the start address being the Flash end
address minus the NVDS area size. You can specify the start address and the number of sectors by configuring
NVDS_START_ADDR and NVDS_NUM_SECTOR in custom_config.h. Note that NVDS_NUM_SECTOR excludes the NVDS
garbage collection area. The total number of sectors occupied by NVDS is NVDS_NUM_SECTOR + 1.

 Note:

For details and instructions on NVDS, refer to GR54xx NVDS User Manual.

2.5 RAM Mapping

The RAM start address is 0x2000_0000, and it comprises six RAM blocks, each with a size of 16 KB, totaling 96 KB. Each
RAM block can be independently powered on or off by software.

The 96 KB RAM layout is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 10

GR5405 Bluetooth LE Software Platform

RAM_16K_0

RAM_16K_1

RAM_16K_2

RAM_16K_3

RAM_16K_4

RAM_16K_5

0x2000_0000

0x2000_4000

0x2000_8000

0x2000_C000

0x2001_0000

0x2001_4000

0x2001_7FFF

Figure 2-6 96 KB RAM layout

Applications run in Execute in Place (XIP) mode. User applications are stored in on-chip Flash, and applications use the
same space for running and loading. When the system is powered on, it fetches and executes commands from Flash
directly through the Cache Controller.

2.5.1 Typical RAM Layout

The typical RAM layout with Bluetooth LE projects in running is shown below. Developers are able to modify the RAM
layout based on product needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 11

GR5405 Bluetooth LE Software Platform

Stack

Unused RAM Space

HEAP

RW
ZI

FPB_TABLE

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

EM

0x0010_2000

0x2000_0000

RAM_CODE
0x2000_2000

0x2001_8000

Size=8 KB

Max_Size= 16KB

SYSTEM_STACK_SIZE

SYSTEM_HEAP_SIZE

Figure 2-7 RAM layout in XIP mode (with Bluetooth LE projects)

• RAM_CODE saves code that is executed in RAM. To boost the efficiency in execution, it is recommended to define
this region in the Aliasing memory (at physical address 0x00100000).

• EM is used by the Bluetooth LE core. It is managed together with SRAM used by the MCU, located at the highest
address space of SRAM. EM size is determined by the Bluetooth service volume configured in custom_config.h. If
no Bluetooth LE service is included in the project, the value of the BLE_SUPPORT macro in custom_config.h can
be set to 0.

• Stack stores the task call stack. In peripheral projects without Bluetooth LE services, Stack is defined at the
highest address of RAM. In projects with Bluetooth LE services, Stack is defined after the address of EM. The
Stack size is defined by the SYSTEM_STACK_SIZE macro. You need to determine the size according to the function
call depth and the consumption of the call stack in the project.

2.5.2 RAM Power Management

Each RAM block has three power modes: Full Power, Retention Power, and Power Off.

• Full Power: The system is in active state; MCU is permitted to read from and write to RAM blocks.

• Retention Power: The system is in sleep state; data in RAM blocks does not get lost and is ready for use by the
system when it switches from sleep state to active state.

• Power off: The system is in power-off state; RAM blocks will be powered off and the data in the blocks will get
lost. Therefore, you need to save the data before the system is powered off.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 12

GR5405 Bluetooth LE Software Platform

By default, the PMU in the GR5405 enables all RAM power sources when the system starts. The GR5405 SDK also
provides a complete set of RAM power management APIs. You can configure the power state of RAM blocks based on
application needs.

By default, the system enables automatic RAM power management mode during boot: It automatically implements
power mode control of RAM blocks according to RAM usage of applications. The configuration rules are provided as
follows:

• When the system is in active state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Full Power mode.

• When the system is in sleep state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Retention Power mode.

Recommended RAM configurations in practice are described below:

• In Bluetooth LE applications, the first 8 KB of RAM_16K_0 are reserved for Bootloader and Bluetooth LE Stack
only, not available for applications. When the system is in active state, RAM_16K_0 shall be in Full Power mode;
when the system is in sleep state, RAM_16K_0 shall be in Retention Power mode. Non-Bluetooth LE MCU
applications can use this RAM block.

• Purposes of RAM_16K_1 and subsequent RAM blocks are defined by applications. The GR5405 RAM has
been reasonably arranged according to execution efficiency and SRAM utilization. You can also re-configure
it according to actual application requirements. The power mode of these RAM blocks can be enabled, or be
controlled by applications.

 Note:

• An MCU access is permitted only when a RAM block is in Full Power mode.

• Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

2.6 SDK Directory Structure

The folder directory structure of GR5405 SDK is shown as follows.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 13

GR5405 Bluetooth LE Software Platform

GR5405 SDK

projects

ble

drivers

src

inc

external

freertos

segger_r
mbedtls

hal_drv

source

include

arch
boards

plaorm

include
soc

common
include
linker
src

peripheral

documentaon
GR5405_API_Reference

components

drivers_ext
libraries
mesh
profiles
sdk

build

config
gcc
iar
keil

mesh

Figure 2-8 GR5405 SDK directory structure

Detailed description of folders in GR5405 SDK is shown below.

Table 2-1 GR5405 SDK folders

Folder Description

build\config
Project configuration directory that stores the custom_config.h template file. This file is used to

configure project parameters.

build\gcc GCC tools

build\keil Keil MDK tools

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 14

GR5405 Bluetooth LE Software Platform

Folder Description

build\iar IAR tools

components\drivers_ext Drivers of third-party components on the development board

components\libraries Libraries provided in GR5405 SDK

components\profiles Source files of GATT Services/Service Clients implementation examples

components\mesh Mesh API header files, library files, and source files to implement Mesh model applications

components\sdk API header files

documentation GR5405 API Reference Manual

drivers\inc Driver API header files which are easy to use for application developers

drivers\src Driver API source code which is easy to use for application developers

external\freertos Source code of FreeRTOS (a third-party program)

external\mbedtls Source code of Mbed TLS (a third-party program)

external\segger_rtt Source code of SEGGER RTT (a third-party program)

hal_drv\include Header files of HAL driver APIs

hal_drv\source Source files of HAL driver APIs

platform\arch Toolchain files of CMSIS

platform\boards
Source files for initializing GR5405 Starter Kit Board. The files are used for initializing basic

peripherals at board level.

platform\include Common header files related to platform

platform\soc\common
Public source files compatible to GR5405 SoCs. The files include gr_interrupt.c, gr_platform.c, and

gr_system.c.

platform\soc\linker Symbol table files and library files for the linker

platform\soc\include
Common header files closely related to underlying driver configurations such as registers and

clock configurations

platform\soc\src
gr_soc.c which is about initialization processes closely related to SoC implementation. The

processes include initializing Flash and NVDS, configuring crystal, and calibrating PMU.

projects\ble Bluetooth LE application project examples, such as ble_app_template

projects\mesh Mesh demo project example

projects\peripheral Peripheral project examples of an SoC

2.7 Tools

Developers can use the following tools to develop and debug GR5405 applications.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 15

GR5405 Bluetooth LE Software Platform

Table 2-2 Development/Debugging tools

Name Description Recommended Version

GProgrammer

A firmware programming tool that supports functionalities such as

firmware download, Flash read/write, and eFuse download.

Available on both Windows and Linux platforms.

V2.0.2 and later

GRUart
A serial port debugging tool.

Available on Windows platform only.
V2.1 and later

GRDirect Test Mode Tool

An RF test tool that controls the Device Under Test (DUT) to perform

Direct Test Mode (DTM) tests by delivering HCI commands.

Available on Windows platform only.

V1.5.5 and later

GRPLT

A mass production configuration tool for the online mass production

programming board (PLT) that supports batch firmware download, Flash

data programming, crystal calibration, and functionality testing.

Available on Windows platform only.

V1.6.0.0.03 and later

GRCalibration

A GR5xx Bluetooth crystal oscillator calibration tool that is designed for

calibrating the frequency offset of the 32 MHz crystal oscillator on the

GR551x SoC, GR5405 SoC, and the PLT production programming board.

Available on Windows platform only.

V1.1.0 and later

GRToolbox

A mobile APP that enables users to scan for Bluetooth devices, set

connection parameters, demonstrate standard profiles, and debug

profiles/services from Goodix Bluetooth LE platform.

Both Android and iOS versions are supported.

V2.21 and later

GRMesh

A mobile APP for configuring, managing, and controlling Goodix

Bluetooth Mesh network.

Only Android version is supported.

V1.07 and later

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 16

http://www.goodix.com/en/software_tool/gprogrammer_ble
http://www.goodix.com/en/download?objectId=43&objectType=software
http://www.goodix.com/en/download?objectId=81&objectType=software
http://www.goodix.com/en/software_tool/grplt
http://www.goodix.com/en/software_tool/grcalibration
http://www.goodix.com/en/software_tool/grtoolbox
https://www.goodix.com/en/download?objectId=83&objectType=software

Bootloader

3 Bootloader
The GR5405 code runs in XIP mode. When the system is powered on, the Bootloader first reads the system boot
configuration information from SCA, then performs application firmware integrity check and initialize Cache and XIP
controller accordingly, and finally jumps to the code running space to run firmware.

The application boot procedures of the GR5405 SDK are shown as follows.

Inialize Flash.

Reset_Handler

Read boot informaon
and check the integrity of

Applicaon Image.

Is Applicaon
 Image integral?

Inialize instrucon cache.

Boot Start

Start DFU service.

Yes

No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR5405 SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 to extract the extended stack pointer (ESP)
of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes Reset_Handler in ROM to enter the Bootloader.

2. Bootloader initializes Flash.

3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

4. If the integrity check fails, the Bootloader enters J-Link DFU mode. You can update application firmware in Flash
with GProgrammer and J-Link.

5. If the integrity check passes, the Bootloader jumps to the run address of the application firmware in Flash to
execute the code after completing the XIP configuration.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 17

Development and Debugging with SDK in Keil

4 Development and Debugging with SDK in Keil
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the SDK in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM® for Cortex® and ARM
devices. You can download and install the Keil installation package from the Keil official website https://www.keil.com/
demo/eval/arm.htm. For the GR5405 SDK, Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, refer to online manuals provided by ARM: https://
www.keil.com/support/man_arm.htm.

The main interface of Keil is as shown below.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are listed below:

Table 4-1 Frequently used function buttons of Keil

Button Description

Options for Target

Start/Stop Debug Session

Download

Build

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 18

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm
https://www.keil.com/support/man_arm.htm

Development and Debugging with SDK in Keil

4.2 Installing SDK

GR5405 SDK is in a .zip file. You can access the details after extracting the file.

 Note:

• SDK_Folder is the root directory of GR5405 SDK.

• Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to quickly build a custom Bluetooth LE application with Keil and GR5405 SDK.

4.3.1 Preparing ble_app_example

This section elaborates on how to create a project based on the template project provided in GR5405 SDK.

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and
rename it as ble_app_example. Change the base name of .uvoptx and .uvprojx files in ble_app_example\Keil_
5 to ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and the Options for Target
'GRxx_Soc' window opens. Choose the Output tab, and type ble_app_example in the Name of Executable field, to
name the output file as ble_app_example.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 19

Development and Debugging with SDK in Keil

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

Figure 4-4 ble_app_example groups

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups are detailed as follows:

Table 4-2 SDK groups

SDK Group Name Description

gr_startup System boot file

gr_arch Initialization configuration files and system interrupt API implementation files for System Core and PMU

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 20

Development and Debugging with SDK in Keil

SDK Group Name Description

gr_soc
gr_soc.c which is used for initializing and calibrating modules such as Clock, PMU, and Vector before

entering the main() function

gr_board Board-level description file which is used for implementing components such as log, key, and LED

gr_stack_lib A SDK .lib file

gr_app_drivers
Driver API source files which are easy to use for application developers. You can add related application

drivers on demand.

gr_libraries Open source files of common assistant software modules and peripheral drivers provided in the SDK

hal_drivers Source files for HAL driver APIs. You can add necessary HAL drivers for projects on demand.

gr_profiles
Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects on

demand.

external
Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party programs

on demand.

• User groups

The User groups are detailed as follows:

Table 4-3 User groups

User Group Name Description

user_platform
Software and hardware resource setting and application initialization; you need to execute

corresponding APIs on demand.

user_app

main() function entries and other source files created by developers, which are used to configure

runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, and other configuration items.

4.3.2.1 Configuring custom_config.h

custom_config.h is used to configure parameters of application projects. Developers can directly modify the
configurations in the file or configure parameters in the Configuration Wizard interface of Keil.

Tip:

custom_config.h of each application example project is in Src\config under project directory.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 21

Development and Debugging with SDK in Keil

• Modify the configurations in custom_config.h.

GR5405 SDK provides a template configuration file custom_config.h (in SDK_Folder\build\config\cust
om_config.h). You can directly modify the template file to configure parameters for application projects.

Table 4-4 Parameters in custom_config.h

Macro Description

SOC_GR5405 Define the SoC version number.

CHIP_TYPE

Specify the SoC model.

◦ 0: GR5405

Note:

During project compilation, configure this macro according to the SoC model in

use.

CFG_APP_DRIVER_SUPPORT

Use the peripheral APP driver or not.

◦ 0: No

◦ 1: Yes

ENABLE_BACKTRACE_FEA

Enable/Disable the stack backtrace functionality.

◦ 0: Disable

◦ 1: Enable

APP_LOG_ENABLE

Enable/Disable the APP LOG module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_STORE_ENABLE

Enable/Disable the APP LOG STORE module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_PORT

Set the output mode of APP LOG module.

◦ 0: UART

◦ 1: J-Link RTT

◦ 2: ARM ITM

PLATFORM_SDK_INIT_ENABLE

Enable/Disable platform initialization.

◦ 0: Disable

◦ 1: Disable

PMU_CALIBRATION_ENABLE

Enable/Disable PMU calibration.

When PMU calibration is enabled, the system monitors temperature and voltage

automatically with adaptive adjustment. It is recommended to enable macro by

default.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 22

Development and Debugging with SDK in Keil

Macro Description

◦ 0: Disable

◦ 1: Enable

Note:

PMU calibration shall be enabled in high/low temperature scenarios.

NVDS_START_ADDR
Start address of NVDS in Flash; default: 0

If no address is specified, the end area in Flash will be used by default.

NVDS_NUM_SECTOR Number of Flash sectors for NVDS; default: 3

SYSTEM_STACK_SIZE

Size of Call Stack required by applications. The default value is 8 KB.

You can set the value as needed.

Note:

After compilation of ble_app_example, the Maximum Stack Usage is provided in K

eil_5\Objects\ble_app_example.htm for reference.

SYSTEM_HEAP_SIZE
Size of Heap required by applications. The default value is 0 KB.

You can set the value as needed.

CHIP_VER Version of the SoC that the firmware runs on; default: 0x5405

APP_CODE_LOAD_ADDR*

Start address of the application storage area

Note:

This address shall be within the Flash address range.

APP_CODE_RUN_ADDR*

Start address of the application running space

Note:

The value shall be the same as APP_CODE_LOAD_ADDR, and applications run in

XIP mode.

SYSTEM_CLOCK*

Set the system clock frequency.

◦ 0: 64 MHz

◦ 1: 32 MHz

◦ 2: 16 MHz (XO)

◦ 3: 16 MHz

◦ 4: 8 MHz

◦ 5: 2 MHz

RF_TX_PA_SELECT

Select an RF power amplifier.

◦ 1: SPA (supported TX power: –20 dBm to 5 dBm)

◦ 2: HPA (supported TX power: –10 dBm to 15 dBm)

SYSTEM_POWER_MODE
Set the system power supply mode.

◦ 0: Supplied by DC-DC

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 23

Development and Debugging with SDK in Keil

Macro Description

◦ 1: Supplied by SYS_LDO

The system is supplied by SYS_LDO when an HPA is selected.

CFG_LF_ACCURACY_PPM
Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to

500 (unit: ppm).

CFG_LPCLK_INTERNAL_EN

Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep

clock.

If the OSC clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 ppm by

force.

◦ 0: Disable

◦ 1: Enable

BOOT_LONG_TIME*

Set 1-second delay (during SoC boot before implementing the second half

Bootloader).

◦ 0: No delay

◦ 1: Delay for 1 second.

BOOT_CHECK_IMAGE

Determine whether to check the image during cold boot in XIP mode.

◦ 0: Do not check.

◦ 1: Check.

BLE_SUPPORT

Support Bluetooth LE or not.

◦ 0: MCU only, no Bluetooth LE supported

◦ 1: Support Bluetooth LE.

CFG_CONTROLLER_ONLY

Support Bluetooth LE controller (for external host or HCI UART transmission) only

or not.

◦ 0: Support Bluetooth LE controller and host.

◦ 1: Support Bluetooth LE controller only.

CFG_BT_BREDR

Support generating Bluetooth Classic link keys through the LE link or not.

◦ 0: No

◦ 1: Yes

DTM_TEST_V1_CMD_ENABLE

Enable/Disable DTM test command V1.

◦ 0: Disable

◦ 1: Enable

DTM_TEST_V2_CMD_ENABLE

Enable/Disable DTM test command V2.

◦ 0: Disable

◦ 1: Enable

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 24

Development and Debugging with SDK in Keil

Macro Description

DTM_TEST_V3_CMD_ENABLE

Enable/Disable DTM test command V3.

◦ 0: Disable

◦ 1: Enable

DTM_TEST_V4_CMD_ENABLE

Enable/Disable DTM test command V4.

◦ 0: Disable

◦ 1: Enable

DTM_TEST_PRIVATE_CMD_ENABLE

Enable/Disable DTM test private commands.

◦ 0: Disable

◦ 1: Enable

CFG_MAX_PRFS

Maximum number of supported GATT Profiles/Services.

You can set the value on demand. A larger value means more RAM space will be

occupied.

Range: 1–64

CFG_MAX_BOND_DEVS Maximum number of devices that can be bonded; default: 4, minimum value: 1

CFG_MAX_CONNECTIONS

Maximum number of devices that can be connected; the number shall be no

greater than 8.

You can set the value on demand. A larger value means more RAM space will be

occupied by Bluetooth LE Stack Heaps.

The size of Bluetooth LE Stack Heaps is defined by the following four macros in

flash_scatter_config.h:

◦ ENV_HEAP_SIZE

◦ ATT_DB_HEAP_SIZE

◦ KE_MSG_HEAP_SIZE

◦ NON_RET_HEAP_SIZE

Note:

The above four macros cannot be changed by developers.

CFG_MAX_ADVS

Maximum number of supported Bluetooth LE legacy advertising and extended

advertising

Range: 0–4

Note:

The maximum number of supported Bluetooth LE legacy advertising and

extended advertising shall be no greater than 4.

CFG_MAX_SCAN
Maximum number of supported Bluetooth LE device used for scanning

Range: 0–1

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 25

Development and Debugging with SDK in Keil

Macro Description

CFG_MUL_LINK_WITH_SAME_DEV

Support a device connecting to multiple slave devices or not.

◦ 0: No

◦ 1: Yes

CFG_CCC_SC_OOB_PAIR_SUPPORT

Support CCC 3.0 Bluetooth LE OOB secure pairing or not.

◦ 0: No

◦ 1: Yes

CFG_MASTER_SUPPORT

Support master role or not.

◦ 0: No

◦ 1: Yes

CFG_SLAVE_SUPPORT

Support slave role or not.

◦ 0: No

◦ 1: Yes

CFG_SUPPER_ADV_SUPPORT

Support a minimum interval of 5 ms for low-duty-cycle advertisement or not.

◦ 0: No; the minimum interval shall be 20 ms according to specifications.

◦ 1: Yes

CFG_LEGACY_PAIR_SUPPORT

Support legacy pairing or not.

◦ 0: No

◦ 1: Yes

CFG_SC_PAIR_SUPPORT

Support secure pairing or not.

◦ 0: No

◦ 1: Yes

CFG_COC_SUPPORT

Support Connection-oriented Channel (COC) or not.

◦ 0: No

◦ 1: Yes

CFG_GATTS_SUPPORT

Support GATT Server or not.

◦ 0: No

◦ 1: Yes

CFG_GATTC_SUPPORT

Support GATT Client or not.

◦ 0: No

◦ 1: Yes

CFG_CONN_AOA_AOD_SUPPORT

Support connection-based AoA/AoD or not.

◦ 0: No (default)

◦ 1: Yes

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 26

Development and Debugging with SDK in Keil

Macro Description

Note:

The macro is configured to a fixed value of '0'.

CFG_CONNLESS_AOA_AOD_SUPPORT

Support connectionless AoA/AoD or not.

◦ 0: No

◦ 1: Yes

Note:

The macro is configured to a fixed value of '0'.

CFG_MESH_SUPPORT

Support Mesh or not.

◦ 0: No

◦ 1: Yes

SECURITY_CFG_VAL

Configure the algorithm security level.

◦ 0: Enable Level 1 algorithm.

◦ 1: Enable Level 2 algorithm.

WDT_RUN_ENABLE

Enable/Disable background running of WDT.

◦ 0: Disable

◦ 1: Enable

 Note:

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure which
is defined at 0x200 in the firmware and is initialized with the macros in custom_config.h. When system boots, the
Bootloader reads value from 0x200 and uses it as a boot parameter.

• Configure parameters in the Configuration Wizard interface.

Comments in custom_config.h are compliant with Configuration Wizard Annotations of Keil, making it possible
for developers to configure macros in custom_config.h in the Configuration Wizard interface of Keil.

Tip:

It is recommended to configure parameters in the Configuration Wizard interface, to prevent inputting invalid
parameters.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 27

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

Development and Debugging with SDK in Keil

Figure 4-5 custom_config.h in the Configuration Wizard interface

4.3.2.2 Configuring Memory Layout

In a Keil project, the memory area for the linker is defined in Scatter (.sct) files. The GR5405 SDK provides an
example Scatter file (SDK_Folder\platform\soc\linker\keil\flash_scatter_common.sct) to
help developers quickly configure memory layout. The macros used by flash_scatter_common.sct are defined in
flash_scatter_config.h.

 Note:

In Keil, __attribute__((section("name"))) can be used to define a function or a variable in a specific
memory segment, in which name can be customized by developers. The scatter (.sct) file defines the location for
customized fields. For example, to define the Zero-Initialized (ZI) data of applications in the segment named as
.bss.app, you can set attribute to attribute ((section(".bss.app "))).

You can follow the steps below to configure the memory layout:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar of the Linker tab, click ... to browse and select the flash_scatter_common.sct file in SDK_
Folder\platform\soc\linker\keil. You can also copy the scatter (.sct) file and the configuration (.h)
file to the ble_app_example project directory and then select the scatter file.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 28

Development and Debugging with SDK in Keil

 Note:

• #! armcc -E –I in flash_scatter_common.sct specifies the directory of the header file on which
flash_scatter_common.sct depends. A wrong path results in a linker error.

• In flash_scatter_common.sct of the GR5405 SDK, you can use the macro definition BLE_SUPPORT in
custom_config.h to determine whether it is necessary to configure EM for Bluetooth LE in the end area of SRAM.
You need to define BLE_SUPPORT based on whether the project includes Bluetooth LE services.

3. Click Edit... to open the .sct file, and modify corresponding code based on practical product memory layout.

Figure 4-6 Configuration of scatter file

4. Click OK to save the settings.

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
 STACK_HEAP_INIT(heaps_table);
…
int main (void)
{
 // Initialize user peripherals.
 app_periph_init();

 // Initialize ble stack.
 ble_stack_init(ble_evt_handler, &heaps_table);

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 29

Development and Debugging with SDK in Keil

 // loop
 while (1)
 {
 app_log_flush();
 pwr_mgmt_schedule();
 }
}

• STACK_HEAP_INIT(heaps_table) defines seven global arrays as Heaps for Bluetooth LE Stack. Do not
modify the definition; otherwise, Bluetooth LE Stack may not work properly. The Heap size is determined by the
Bluetooth LE service volume in “Section 4.3.2.1 Configuring custom_config.h”.

• app_periph_init() is used to initialize peripherals. In development and debugging phases,
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address; pwr_mgmt_mode_set()
sets the MCU operation mode (SLEEP/IDLE/ACTIVE) during automatic power management; app_periph_init() is
implemented in user_periph_setup.c, and the example code is as follows.

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
 SYS_SET_BD_ADDR(s_bd_addr);
 board_init();
 pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}

• Add main loop code of applications to while(1) { }, for example, code to handle external input and update
GUI.

• To use the APP LOG module, call app_log_flush() in the main loop, to ensure logs are output completely
before the system enters sleep state. For more information about the APP LOG module, refer to “Section 4.6.3
Outputting Debug Logs”.

• Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Service Logics

Bluetooth LE service logics of applications are driven by a number of Bluetooth LE events which are defined in GR5405
SDK. Therefore, applications need to implement the corresponding event handlers in GR5405 SDK to obtain operation
results or state change notifications of Bluetooth LE Stack. The event handlers are called in the interrupt context of
Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking function
call and infinite loop; otherwise, the system is blocked, causing Bluetooth LE Stack and the SDK Bluetooth LE module
unable to run in a normal timing.

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 30

Development and Debugging with SDK in Keil

 Note:

The Bluetooth LE events supported by GR5405 SDK can be found in SDK_Folder\components\sdk\ble_even
t.h.

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only
those event handlers required for products are to be implemented.

Tip:

For details about the usage of Bluetooth LE APIs and event APIs, refer to the source code of Bluetooth LE examples in
SDK_Folder\documentation\GR5405_API_Reference and SDK_Folder\projects\ble.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Bluetooth LE Stack is the core to implement Bluetooth LE protocols. It can directly operate the Bluetooth 5.3 Core
(refer to “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall
IRQ, which ensures that Bluetooth LE Stack runs strictly in a timing specified in Bluetooth Core Spec.

A state change of Bluetooth LE Stack triggers the BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler,
the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of
Bluetooth LE Stack and related service data to applications. Avoid time-consuming operations when using these event
handlers. Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK_
Folder\components\libraries\app_queue, or your own application framework, to transfer events from
Bluetooth LE event handlers to the main loop.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 31

Development and Debugging with SDK in Keil

Bluetooth LE
Stack

BLE_Stack_IRQ

SDK
Bluetooth LE

BLE_SDK_IRQ

Applicaon
Callback

Applicaon
Queue

Applicaon
Main Loop

Bluetooth LE Event
Handler

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-7 System schedule (without OS)

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click (Build) on the Keil toolbar to build a project.

After project compilation is completed, two firmware files (in .bin and .hex formats) are created in Listings and Ob
jects respectively in the project directory.

Table 4-5 Firmware files generated

Name Description

ble_app_example.bin Binary application firmware, can be downloaded to Flash through GProgrammer for running

ble_app_example.hex Binary application firmware, can be downloaded to Flash through Keil or GProgrammer for running

Tip:

Both the two types of firmware can be downloaded to Flash through GProgrammer for running. Refer to
GProgrammer User Manual for details.

4.5 Downloading .hex Files to Flash

After a firmware file is are generated, you need to download the file to Flash. Specific steps are provided below:

1. Configure Keil Flash programming algorithm.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 32

Development and Debugging with SDK in Keil

(1) Copy SDK_Folder\build\Keil\GR5xxx_16MB_Flash.FLM to Keil_Folder\ARM\Flash.

(2) Click (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-8 Debug tab

(3) In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Figure 4-9 Default configurations in the Download Function pane

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 33

Development and Debugging with SDK in Keil

(4) Click Add to add SDK_Folder\build\keil\GR5xxx_16MB_Flash.FLM to Programming
Algorithm.

 Note:

To facilitate multi-chip inheritance development for users, GR5xxx_16MB_Flash.FLM is used for all the Goodix GR5xx
Bluetooth LE SoC series which share the same download algorithm.

Figure 4-10 Adding GR5xxx_16MB_Flash.FLM to Programming Algorithm

(5) Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR5405 in the Start input field: 0x20000000. Enter 0x8000 in
the Size input field.

Figure 4-11 Settings of RAM for Algorithm

(6) Click OK to save the settings.

2. Download firmware.

After completing configuration, click (Download) on the Keil toolbar to download ble_app_example.axf to
Flash. After download is completed, the following results are displayed in the Build Output window of Keil.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 34

Development and Debugging with SDK in Keil

Figure 4-12 Download results

 Note:

During file download, if No Cortex-M SW Device Found pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this

case, developers need to press RESET on the GR5405 SK Board and wait for about 1 second; then click (Download)
to download the file again.

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select the Debug tab. In the window, software simulation debugging configurations
display on the left side, and online hardware debugging configurations display on the right side.

Bluetooth LE example projects adopt the online hardware debugging. Related default configurations of the debugger
are shown as follows:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 35

Development and Debugging with SDK in Keil

Figure 4-13 Configuring the debugger

The default initialization file sram.ini is in SDK_Folder\build\keil. You can use this file directly, or copy it to the
project directory.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the
Initialization File bar, click Edit... on the right side, to open sram.ini.

Example code of sram.ini is provided as follows:

/**
**
*GR55xx object loading script through debugger interface (e.g.Jlink, etc).
*The goal of this script is to load the Keils's object file to the GR55xx RAM
*assuring that the GR55xx has been previously cleaned up.
**
*/

//Debugger reset(check Keil debugger settings)
//Preselected reset type (found in Options->Debug->Settings)is Normal(0);
//-Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
RESET

//Load current object file
LOAD %L

//Load stack pointer
SP = _RDWORD(0x00000000)

//Load program counter
$ = _RDWORD(0x00000004)

//Write 0 to vector table register, remap vector
_WDWORD(0xE000ED08, 0x00000000)

//_WDWORD(0xE000E180, 0xFFFFFFFF)

//Write run address to 0xA000C578 register,For the debug mode;

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 36

Development and Debugging with SDK in Keil

//boot code will check the value of 0xA000C578 firstly,if the value of 0xA000C578 is
 valid,gr551x will jump to run

//_WDWORD(0xA000C578, 0x00810000)

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup is enabled, the debugger first loads
the file under Options for Target ‘GRxx_Soc’ > Output > Name of Executable.

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g,main is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that Connect is set to Normal and Reset Options is set to Core, as shown below. This is to ensure when you
click Reset on the Keil toolbar after enabling Debug Session, the program can run normally.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 37

Development and Debugging with SDK in Keil

Figure 4-14 Setting Connect and Reset

4.6.3 Outputting Debug Logs

GR5405 SDK provides an APP LOG module and supports outputting debug logs of applications from hardware ports
based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM
ITM).

To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and configure APP_LOG_PORT based on
the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to call app_log_init() during peripheral initialization to initialize the APP LOG module,
including setting log parameters, and registering log output APIs and flush APIs.

The APP LOG module supports using printf() (a C standard library function) and APP LOG APIs to output
debug logs. If you choose APP LOG APIs, you can optimize logs by setting log level, log format, filter type, or other
parameters; if you choose printf(), set log parameters as NULL.

Call the initialization function of corresponding module (refer to SDK_Folder\platform\boards\board_SK
.c for details) and register corresponding log output and flush APIs (see bsp_log_init() for reference) according to the
configured output port.

If UART is the output port, bsp_log_init() is implemented as follows:

void bsp_log_init(void)
{
#if APP_LOG_ENABLE

#if (APP_LOG_PORT == 0)

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 38

Development and Debugging with SDK in Keil

 bsp_uart_init();
#elif (APP_LOG_PORT == 1)
 SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0, SEGGER_RTT_MODE_NO_BLOCK_TRIM);
#endif

#if (APP_LOG_PORT <= 2)
 app_log_init_t log_init;

 log_init.filter.level = APP_LOG_LVL_DEBUG;
 log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
 log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_LVL;
#ifdef APP_LOG_NO_PFX
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_NULL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_NULL;
#else
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_LVL;
#endif

#if (APP_LOG_PORT == 0)
 app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);
 app_log_assert_flush_init(bsp_uart_assert_flush);
#elif (APP_LOG_PORT == 1)
 app_log_init(&log_init, bsp_segger_rtt_send, NULL);
#elif (APP_LOG_PORT == 2)
 app_log_init(&log_init, bsp_itm_send, NULL);
#endif /* APP_LOG_PORT */

#endif /* APP_LOG_PORT <= 2 */

#endif /* APP_LOG_ENABLE == 1 */

 app_assert_init();
}

 Note:

• The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API.

• The input parameter of app_log_assert_flush_init() is the flush API designed for the APP ASSERT module. The
implementation of the APP ASSERT module is in SDK_Folder\components\libraries\app_assert.

When debug logs are output through UART, the implemented log output API and flush API are bsp_uart_send() and
bsp_uart_flush() respectively.

• bsp_uart_send() is the basis for two log output APIs: app_uart synchronization (app_uart_transmit_sync) and
app_uart asynchronization (app_uart_transmit_async). Users can control the APIs by adding or removing the
macro APP_LOG_ASYNC. Users can choose the output methods as needed.

• bsp_uart_flush() is used to output the log data that is cached in memory in app_uart asynchronization method.

• bsp_uart_assert_flush() is used to output the log data that is cached in memory when an assertion occurs.

 Note:

You can rewrite the above three APIs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 39

Development and Debugging with SDK in Keil

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is
bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARNING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() to output all the debug logs cached, to ensure that all debug logs are
output before the SoC is reset or the system enters the sleep mode.

To output logs through J-Link RTT, it is recommended to make the following modifications in SEGGER_RTT.c:

Figure 4-15 Creating RTT Control Block and placing it at 0x20005000

The figure below shows the reference configurations for J-Link RTT Viewer.

Figure 4-16 Configurations in J-Link RTT Viewer

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 40

Development and Debugging with SDK in Keil

The address of RTT Control Block can be specified by clicking Address and then entering a custom value, and the input
value can be set to the address of the _SEGGER_RTT structure in the .map file generated by the compiled project, as
shown in the figure below. If creating RTT Control Block through the method recommended in Figure 4-15 and placing
it at 0x20005000, you need to set Address to 0x20005000.

Figure 4-17 Obtaining RTT Control Block address

4.6.4 Debugging with GRToolbox

GR5405 SDK provides an Android App, GRToolbox, to debug GR5405 Bluetooth LE applications. GRToolbox features the
following:

• General Bluetooth LE scanning and connecting; characteristics read/write

• Demos for standard profiles, including Heart Rate

• Goodix-customized applications

Tip:

You can obtain the GRToolbox installation file from Goodix official website or download it from the application store.

4.7 Download and Debugging with IAR

GR5405 SDK provides not only Keil projects, but also IAR projects, allowing users to quickly compile an example
project with IAR to generate application firmware. For example, the IAR project of ble_app_template is in SDK_Fo
lder\projects\ble\ble_peripheral\ble_app_template\IAR; compile ble_app_template.eww to
generate ble_app_template.bin.

Figure 4-18 IAR project directory

Steps for firmware download and debugging with IAR are as follows:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 41

http://www.goodix.com/en/software_tool/grtoolbox

Development and Debugging with SDK in Keil

1. On the menu bar of IAR IDE, select Project > Options to open the configuration window; select Debugger from
the Category list on the left, and then select J-Link/J-Trace in the Driver pane of the Setup tab. Check Use macro
file(s) and enter $PROJ_DIR$\..\..\..\..\..\build\iar\GR5xxx.mac.

2. Copy the download algorithm files GR5xxx_IAR_16M.board, GR5xxx_IAR_16M.flash, and
GR5xxx_IAR_flashloader_16M.out in SDK_Folder/build/iar to IAR_Install/arm/config/flash
loader/Goodix ("IAR_Install" is the IAR software installation directory, and "Goodix" is a new folder).

3. In IAR IDE, select Project > Options > Debugger > Download, to set Override default .board file as
GR5xxx_IAR_16M.board (in IAR_Install/arm/config/flashloader/Goodix).

4. In IAR IDE, select Project > Options > Debugger > J-Link/J-Trace > Setup, and then select Core in the Reset pane.

5. On the menu bar of IAR IDE, select Project > Download > Download Active Application, and then click OK in the
pop-up dialog box to start firmware download, and then enter debug mode.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 42

Glossary

5 Glossary
Table 5-1 Glossary

Name Description

API Application Programming Interface

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DFU Device Firmware Update

DTM Direct Test Mode

DUT Device Under Test

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

HPA High Power Amplifier

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

SPA Small Power Amplifier

UART Universal Asynchronous Receiver/Transmitter

XIP Execute in Place

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 43

	Preface
	Contents
	1 Introduction
	1.1 GR5405 SDK
	1.2 Bluetooth LE Protocol Stack

	2 GR5405 Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout
	2.5.2 RAM Power Management

	2.6 SDK Directory Structure
	2.7 Tools

	3 Bootloader
	4 Development and Debugging with SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Service Logics
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	4.7 Download and Debugging with IAR

	5 Glossary

