GOODIiX

GR5405 Developer Guide

Version: 1.1

Release Date: 2025-04-22

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

GOODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 26F, Goodix Headquarters, No.1 Meikang Road, Futian District, Shenzhen, China

TEL: +86-755-33338828 Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

GOODiX Preface

Preface
Purpose

This document introduces the Software Development Kit (SDK) of the Goodix GR5405 automotive Bluetooth Low
Energy (Bluetooth LE) System-on-Chip (SoC) and Keil/IAR for program development and debugging, to help you quickly
get started with secondary development of automotive applications.

Audience

This document is intended for:
. Device user

. Developer

o Test engineer

o Technical support engineer

Release Notes

This document is the second release of GR5405 Developer Guide, corresponding to GR5405 SoCs.

Revision History

Version Date Description
1.0 2024-08-30 Initial release
¢ Added Mesh-related descriptions.

e Updated "Tools".

11 2025-04-22 e Revised "Configuring custom_config.h".

¢ Revised the code example for bsp_log_int() and the notes about outputting debug logs through
UART.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. |

GOODiX Contents

Contents
=Y - ol |
L INErOAUCEHION.eeeeeiiieenieeniierrerre s s ss s s s s s ssssssssssss s e st e s s e s s assssssssasssssssssssssssssssssssssssssnnnnnnnnannassans 1
1.1 GR5A0S5 SDK..uuutieeiieeeiie ettt e ettt ettt e sate e sttt e tt e e s teeebteesabeesabee e bteesabeesabee e nteeeabee e beeeeabeeebeeenheeeeabeeenteennbeeebaeesareenane 1
1.2 BlUEtOOTh LE ProtOCOl STACK. ittt ettt et st e et e e st e e sate e sabe e sbe e e sabeesabeeeneeenatas 1
2 GR5405 Bluetooth LE Software Platform.............mmmmiiiiiiiiieicin e 3
2.0 HardWare ArCRITECTUIE.ii ittt ettt ettt e b ettt e s bt e e bt e e st e e s bt e e aabee e beeesbeeesabeesbeeesaseesaseesneeanns 3
2.2 SOFEWAIE ArCRITECIUIE. .. ettt ettt e s e e bt e e s b bt e sabe e e bt e e sabeesabeeeneeesabeeebeeesnneenane 4
P I\ =10 0 To] VY - T o] o 11 - OO PPPPSPPPPN 5
D A T T\, =Y o VoYV Y P o o] =SS 7
2041 SCA ettt ettt bttt e e e bt e e eh bt e e be e e bt e e ettt e heeeaateeebeeeaheee e beeeabeeeeabeeebeeeaateeebeeenareas 7
28,2 NVDS. .ttt ettt ettt ettt e h e et e ettt e h et e ettt e bt e e ea bt e e bt e e aae e e et et e bee e aaEe e e beeeahbeesubee e beeeeabeeebeeeaneeeanbeeaas 10
2.5 RAM VAP PiN . cciiiieiiiiiitiieee e s seecitittee e e e e e sssatb ittt eeeeessesasbaaeeaeeesssaasssaeeaaaeeeeessassbaaaaeeeessasassssseaaeeeeesssssssssaanaeesssnnnas 10
2.5.1 TYPICAI RAM LAYOUL....eeiiiiiiieiiciiiee e seee s sttt e e st e e e et e e s et e e e esaeteeessasaeeesanseeeeeasnsaeesannseeeesnssenessnssneessnnsnnes 11
2.5.2 RAM POWEr MaANAZEMENT...ciiiiiiiiiiiiiiiiieiiiiii s s s s s s s s s s s s e s s s e e e e e e e e e eeeaaaaaaaaaaaaaeaaaaaaaanaaannns 12
2.6 SDK DiIr€CtOIY STIUCTUIE.....uiiiiiiiiiiie ittt ettt e e s sttt e e e s s s s bbb etaeeeeesssaabbbbaeeeeesssssssbbnaaeeeessnssnnnsenaens 13
2.7 TOOIS. ettt ettt e bt e e h et e bt e e heeeeat e e et et e hee e e be e e be e e eabe e eab e e e heeeeateeebeeeanbeeebeeenbeeeeareenn 15
2 5T T [T- o =T N 17
4 Development and Debugging with SDK in Keil.......cceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiesseesensnieerennnennsnnnnnssnssssssssssens 18
4.1 INSEAIlING KEIl IMIDK ...eiiiiiee ettt ettt sttt ettt ettt e s e e st e e b te e s abe e e bte e sabeesabeeeaeeesasaessbeeesnbeesabeeesaneesaneesnns 18
4.2 INSEAIINEG SDK...eeiiiiieeite ettt ettt et e s e ettt e st e e s bt e e bt e e s at e e sabee e aeeesabeeebeeesabeesabeeensteesasaesnbeeeanteesnbeeenreeens 19
4.3 Building @ BlUuetooth LE APPICAtioN.......ciiiiiiiiieiiie ettt et ettt st s esbe e e sareesarae s 19
4.3.1 Preparing ble_app_@XamMPle.......ci ittt et et ettt s b e e ate e s teeebaeenareesane 19
4.3.2 CONFIGUIING @ PrOJECE...ciiiiieiiie ettt sttt ettt e st e bt e e sabe e s bt e e aeeesabaesbaeesabeesabaeessseesabeesane 21
4.3.2.1 ConfigUuring CUSEOM _CONFIG.N....ccouuiiiiiiiiiieie ettt ettt et be e e sabe e bt e saeeesaeas 21
4.3.2.2 Configuring MEMOTY LAYOUL.....ccuuiiiiiiiiiieiiee ettt ettt ettt ste e sbe e et e e sate e sbae e sabeesbeeeaees 28
4.3.3 AJAING USEI COUC. .. uuiiiiiieiiieitee ettt et e ettt e st e ettt e st beesbe e e beeesabeesaste e abeesabaeebbeesabeesbteesaseesaseeenseennses 29
4.3.3.1 Modifying the Main() FUNCLION......oouiiiie ettt s 29
4.3.3.2 Implementing BlUetooth LE SErvice LOGICS......cuuiruiiiriieniieiiie ettt sttt st 30
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.......cccccceeruerriiirinieenieeeee e 31
4.4 GeNerating FirMWaIE. ittt ettt e e e e e e s bttt e e e e s s e s bbbttt e e e e seaasnnebeeeeeseesaannnbaneeeeesssnnns 32
4.5 Downloading .hex FIles t0 FIAsh ..ottt ettt ettt e sbe e sbee e s abeesaeee 32
R DY o TUT =44 - RO PSPPP 35
4.6.1 CoNfiUIING the DEDUGEETii ettt ettt e st e e et e e sbe e s bt e e s beesbeessateesabeeens 35
I - Tad [T= N DY oYU T={ 4 o = PR PPRUTRPRRPPPRPP 37
4.6.3 OULPULEING DEDUG LOGS. .. uuviiiiieiiiiiiiee ettt s ettt st sat e sabe e st e e s ate e sbeeebeeesabeesabeeesaseesaseesseeanns 38
4.6.3.1 MOdUle INFHIAHZAION. c..ciiiiiiie ettt et e st e e st e stae e bte e sabeesnbeas 38
T B A 1Y o o] LTor- 1 4o o PRSP 40

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1]

GOODiX Contents
4.6.4 Debugging With GRTOOIDOX.......cciiiiiieieiiiie e e e e e re e e e satee e e e ra e e e ssnraeee e nnteeeesnteeeesnsennenans 41

4.7 Download and Debugging WIth TAR.........cci it e s e e s e e e sere e e e s nreeeesnteeeesnnteeeesnssneesnnnes 41

LI C] (o T T 7 O UPRTRE 43
I

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

GOODiX Introduction

1 Introduction

The Goodix GR5405 is an automotive Bluetooth LE 5.3 SoC designed to operate across a wide temperature range from
—40°C to 105°C, and is AEC-Q100 Grade 2 certified. It is suitable for various automotive applications, including digital
key and Tire Pressure Monitoring System (TPMS). Additionally, it supports Bluetooth Mesh networking protocols.

Based on Arm’ Cortex -MA4F CPU core running at 64 MHz, the GR5405 integrates a 2.4 GHz RF transceiver, Bluetooth
LE 5.3 protocol stack, 512 KB on-chip Flash memory, 96 KB system SRAM, and a rich set of peripherals. It provides
outstanding RF performance, with a maximum TX power of +15 dBm, an RX sensitivity of -99 dBm in Bluetooth LE 1
Mbps mode, achieving an overall link budget of up to 114 dB.

The GR5405 supports connection between multiple centrals and multiple peripherals. It can be configured as a
Broadcaster, an Observer, a Peripheral, or a Central, and supports the combination of all the above roles.

1.1 GR5405 SDK

The GR5405 Software Development Kit (SDK) provides comprehensive software development support for GR5405
SoCs. The SDK contains Bluetooth LE APIs, Mesh APls, System APIs, peripheral drivers, a tool for debugging and
download, project example code, and related user documents.

1.2 Bluetooth LE Protocol Stack

The Bluetooth LE Protocol Stack (Bluetooth LE Stack) architecture is as shown in the figure below.

Bluetooth LE Protocol Stack

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Figure 1-1 Bluetooth LE Stack architecture

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1

GOODiX introduction

The Bluetooth LE Stack consists of the Controller, the Host Controller Interface (HCl), and the Host.

Controller

o Physical Layer (PHY): Supports 1 Mbps, 2 Mbps, 500 kbps, and 125 kbps adaptive frequency hopping and
Gaussian Frequency Shift Keying (GFSK).

. Link Layer (LL): Controls the RF state of devices. Devices are in one of the following five states, and can switch
between the states on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

o HCI: Enables communication between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCl commands and events are transferred
between Host and Controller through HCI.

Host

. Logical Link Control and Adaptation Protocol (L2CAP): Provides channel multiplexing and data segmentation and

reassembly services for upper layers. It also supports logic end-to-end data communication.

. Security Manager (SM): Defines pairing and key distribution methods, providing upper-layer protocol stacks and

applications with end-to-end secure connection and data exchange functionalities.

o Generic Access Profile (GAP): Provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, fulfilling functionalities such as advertising, scanning, connection initiation, service

discovery, connection parameter update, secure process initiation, and response.
o Attribute Protocol (ATT): Defines service data interaction protocols between a server and a client.

. Generic Attribute Profile (GATT): Based on the top of ATT, it defines a series of communication procedures for

upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

fi“\Tip:

o For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website:
https://www.bluetooth.com.

o Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and

code which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 2

https://www.bluetooth.com

GR5405 Bluetooth LE Software Platform

GOODiX

2 GR5405 Bluetooth LE Software Platform

The GR5405 SDK is designed for GR5405 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
LE 5.3 APIs, System APlIs, and peripheral driver APls, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR5405 SDK.

2.1 Hardware Architecture

The GR5405 hardware architecture is shown as follows.

Bluetooth Subsystem

RF Transceiver

Hixosam ——» SHK

v

PA — SXPLL l
.J:LNA — Mixer — BB — ADC

PMU Subsystem

Bluetooth LE

Bluetooth LE
MAC

Digital Front End Packet Buffer

Modem

1/0

AON I/0 MSIO

AON_LDO POR

Timers

CORE_LDO 10_LDO

SYS_LDO

- - CaChe

. Radio Power Domain

HFRC_192M CPLL_192M

RNG_0OSC HFXO_32M

LFRC_32K LFXO_32K
CGU Subsystem

. System Power Domain

AON WDT
SPI Master

SPI Slave

Sense ADC

MCU Subsystem

Always-on Domain

AON SLP
Timer

Analog

Temperature
sensor

AON RTC

Comparator

Figure 2-1 GR5405 hardware architecture

° Arm’ Cortex -M4F: GR5405 CPU. Bluetooth LE Stack and application code run on the CPU.

o SRAM: static random access memory that provides memory space for program execution

o ROM: read-only memory, containing the software code (cannot be modified after being programmed) for

Bootloader and Bluetooth LE Stack

o Flash: Flash memory unit embedded in the SoC. It stores user code and data, and supports the Execute in Place

(XIP) mode for user code.

. Peripherals: GPIO, DMA, 12C, SPI, UART, PWM, Timer, ADC, TRNG, and more

o RF Transceiver: 2.4 GHz RF transceiver

o Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller, enabling communication between the

software protocol stack and 2.4 GHz RF hardware

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

GOODiX GR5405 Bluetooth LE Software Platform

. Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC-DC, SYS_LDO, 10-LDO, CORE_LDO, and RF Subsystem, based on configuration parameters

and the current operating state of the system, so that the power can be managed automatically.

[\ Tip:

For more details about device modules, refer to GR5405 Datasheet.

2.2 Software Architecture

The software architecture of GR5405 SDK is shown below.

Software
Application
I A A A
Mesh Model
SDK
4 4) 4
Mesh API Bluetooth LE API System API APP Driver
i A A i
Mesh Stack HAL Driver
Bluetooth LE Stack Bootloader LL Driver
Hardware
4) 4
Bluetooth 5.3 Core Arme Cortex®- M4F Peripheral

Figure 2-2 GR5405 software architecture

o Bootloader
A boot program built in GR5405 SoCs, used for GR5405 software and hardware environment initialization, and to

check and start applications

. Bluetooth LE Stack
The core to implement Bluetooth LE protocols. It consists of Controller, HCI, and Host protocols (including LL, HCI,
L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

. Mesh Stack

The core to implement Bluetooth LE Mesh protocols. It integrates Bearer Layer, Network Layer, Lower Transport

Layer, Upper Transport Layer, Access Layer, and some functionalities of the Foundation Model Layer.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 4

GOODiX GR5405 Bluetooth LE Software Platform

. LL Driver

Low Layer (LL) drivers which control and manage peripherals by registers

. HAL Driver
Hardware Abstraction Layer (HAL) drivers; the HAL Driver layer is between the APP Driver layer and the LL Driver
layer. HAL drivers offer a set of standard APls, to allow the APP driver layer to access the LL peripheral resources
by calling HAL APIs.

" Note:
Generally, HAL APIs are used for developing LL drivers and system services, not for developing common applications.

Therefore, it is not recommended for developers to directly call HAL APIs.

o Bluetooth LE SDK
SDK that provides easy-to-use Mesh APIs, Bluetooth LE APIs, system APIs, and APP Driver APls

° Mesh APIs: Include APIs required for developing Mesh applications.
° Bluetooth LE APIs: Include L2CAP, GAP, SM, and GATT APIs.

° System APIs: Provide APIs for Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system

power management, and generic system-level access.

° APP Driver: the application driver layer, which encapsulates common functionalities of various peripherals
into APIs based on HAL drivers. These APIs not only retain the characteristics of HAL drivers, but also
feature more stable, secure, and user-friendly. Generally, developers are recommended to use the APIs at
the APP layer.

. Mesh Model

It contains example implementation code for standard Mesh Model (such as Lightness Model) from Bluetooth

SIG. You can refer to the example code to develop Mesh applications.

. Application
The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary

files; you can download these files to GR5405 SoCs for operation and test. In addition, GRToolbox (Android)
provides rich functionalities to allow users to test most Bluetooth applications with ease.

2.3 Memory Mapping

The memory mapping of a GR5405 SoC is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 5

GOODiX

GR5405 Bluetooth LE Software Platform

OXFFFF FFFF

0xE010 0000
OxEOOF FFFF

0xE000 0000
OXDFFF FFFF

0x4400 0000
Ox43FF FFFF

0x42000000
OX41FFFFFF

0x40100000
OX400FFFFF

0x4000 0000
OX3FFF FFFF

0x22280000
0x2227FFFF

0x2200 0000
OX21FF FFFF

0x20018000
0x20017FFF

0x2000 0000
OXLFFF FFFF

0x0320 0000
0x031F FFFF

0x0220 0000
0x021FFFFF

0x01200000
OxO11FFFFF

0x00200000
OXO01FFFFF

0x00118000
0x00117FFF

0x0010 0000
0x000F FFFF

0x0003 8000
0x0003 7FFF

0x0000 0000

Reserved
523264KB

ARM Private

1024 KB

Reserved
2555904 KB

Peripheral BitBanding

32768 KB

Reserved
31744 KB

Peripheral

1024 KB

Reserved
488960 KB

RAM BitBanding

2560 KB

Reserved
32672 KB

RAM

96 KB

Reserved
473088 KB

ExFlash Alias

16384 KB

Reserved
16384 kB

ExFlash
16384 KB

Reserved
928 KB

RAM Alias
96 kB

Reserved
800 kB

ROM

224 KB

Private peripheral bus
debugging (external)

Private peripheral bus
(internal)

BLE
TRNG
EFUSE CTRL
EFUSE ARRAY
DMA
GPIO1
GPIOO
PAD_CTRL
DVS
CLK_CAL_1
CLK_CAL_0
MCU_AUX(SNS-ADC eg.)
CACHE-XQSPI
HTABLE_AMCM
PWM1
PWMO
UART1
UARTO
12¢1
12c0
SPI_S
SPI_M
AON_GPIO
AON RF
AON PMU
AON WD TIMER
AON CLDR
AON SLP TIMER
AON_PWR
AON CTRL
WATCHDOG
DUAL_TIMER
TIMERL
TIMERO

(0X400E_0000-0x400F_FFFF)
(0x4001_9000-0x4001_97FF)
(0x4001_8400-0x4001_8FFF)
(0x4001_8000-0x4001_83FF)
(0x4001_4000-0x4001_7FFF)
(0x4001_1000-0x4001_1FFF)
(0x4001_0000-0x4001_OFFF)
(0x4000_E900-0x4000_ESFF)
(0x4000_E800-0x4000_E8FF)
(0x4000_E500-0x4000_ESFF)
(0X4000_E400-0x4000_E4FF)
(0x4000_E000-0x4000_E3FF)
(0x4000_D000-0x4000_DFFF)
(0x4000_CD00-0x4000_CDFF)
(0x4000_CCO0-0x4000_CCFF)
(0x4000_CB0O-0x4000_CBFF)
(0x4000_C600-0x4000_C6FF)
(0x4000_C500-0x4000_CSFF)
(0x4000_C400-0x4000_CAFF)
(0x4000_C300-0x4000_C3FF)
(0x4000_C100-0x4000_C1FF)
(0x4000_C000-0x4000_COFF)
(0X4000_AA00-0x4000_AAFF)
(0x4000_A900-0x4000_A9FF)
(0x4000_A800-0x4000_ASFF)
(0x4000_A700-0x4000_A7FF)
(0x4000_A600-0x4000_AG6FF)
(0x4000_A500-0x4000_ASFF)
(0X4000_A400-0x4000_A4FF)
(0x4000_A000-0x4000_A3FF)
(0x4000_8000-0x4000_8FFF)
(0x4000_2000-0x4000_2FFF)
(0x4000_1000-0x4000_1FFF)
(0x4000_0000-0x4000_OFFF)

Figure 2-3 GR5405 memory mapping

ROM TABLE
ETM
TPIU

DAP
SCB
FPU
MPU
NVIC
SYS_TICK
FPB
DWT
IT™

. RAM: 96 KB in total; 0x0010_0000 to 0x0011_7FFF, or 0x2000_0000 to 0x2001_7FFF.

° 0x2000_0000 to 0x2001_7FFF: Variables of the SDK including RW, ZI, HEAP, and STACK are in this range.
The 16 KB storage area at the end of SRAM can be used as Exchange Memory (EM) for baseband when you

configure Bluetooth LE projects. The actual area used as EM is determined by the maximum Bluetooth LE

service volume configured in custom_config.h. The unused EM area will form a contiguous address space

with other SRAM areas. In addition, bit field operations are supported in the region from 0x2000_0000 to
0x2001_3FFF, mapping to the region from 0x2200_0000 to 0x2227_FFFF, in which atomic operations are

supported.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

GOODiX GR5405 Bluetooth LE Software Platform

° 0x0010_0000 to 0x0011_7FFF: This region features higher access efficiency thanks to the Cortex -MA4F
architecture. Therefore, executable code RAM_CODE is in this area.

. Flash: Internal Flash of GR5405 SoCs is 512 KB, from 0x0020_0000 to 0x0027_FFFF.

2.4 Flash Memory Mapping

GR5405 packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes

based on application scenarios.

The Flash memory layout for typical GR5405 application scenarios is shown below.

End of Flash
Non-volatile Data Storage (NVDS)

NVDS_START_ADDR

Unused Space

User App

0x0020_2000

System Configuration Area (SCA)
0x0020_0000

Figure 2-4 Flash memory layout

. System Configuration Area (SCA): an area to store configurations such as system boot parameters
o User App: an area to store application firmware

o Unused Space: a free area for developers. For example, developers can store new application firmware in the

Unused Space temporarily during DFU.

" Note:

. You can configure the start address of NVDS and the number of occupied sectors according to Flash memory
layout of products. For more information about the configuration, refer to “Section 4.3.2.1 Configuring

custom_config.h”.
. The start address of NVDS shall be aligned with that of the Flash sectors.

o Developers can implement non-volatile data storage by porting open-source components such as LittleFS

according to their actual needs.

2.4.1SCA

SCAis in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It mainly stores flags and

other system configuration parameters used during system boot.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 7

GOODiX GR5405 Bluetooth LE Software Platform

During firmware download, the download algorithm or GProgrammer will generate Image Info based on the
BUILD_IN_APP_INFO structure in the application firmware, and program the Image Info (stored in SCA) to Flash along
with the application firmware. During system boot, Bootloader will check the boot information in SCA, and then jump
to the entry address of the firmware if the check passes.

The BUILD_IN_APP_INFO structure is defined and configured as follows:

\Tip:
The BUILD_IN_APP_INFO structure is in SDK_Fol der\ pl at f or M soc\ common\ gr _pl atform c, and
SDK_Folder is the root directory of GR5405 SDK.

const APP INFO t BUILD IN APP INFO _ attribute ((at(APP_INFO ADDR))) = {
.app_pattern = APP INFO PATTERN VALUE,
.app_info version = APP INFO VERSION,
.chip ver = CHIP VER,
.load addr = APP_CODE LOAD ADDR,
.run_addr = APP CODE_RUN ADDR,
.app_info sum = CHECK SUM,
.check_img = BOOT CHECK IMAGE,
.boot _delay = BOOT LONG TIME,
.sec_cfg = SECURITY CFG VAL,

#ifdef APP_INFO COMMENTS
.comments = APP INFO COMMENTS,

#endif

.reservedl = {APP_INFO RESERVED}

i

. app_pattern: a fixed value 0x47525858

. app_info_version: firmware version information, corresponding to APP_INFO_VERSION

. chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h
. load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

. run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

. app_info_sum: checksum of firmware information, which is automatically calculated by CHECK_SUM

o check_img: system boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h.
When check_img is set to 1, Bootloader will check the firmware at booting.

. boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When

boot_delay is set to 1, the system cold boot will be launched after a one-second delay.
. sec_cfg: security configuration parameter, reserved
o comments: firmware information, up to 12 bytes

The SCA layout is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 8

GOODiX GR5405 Bluetooth LE Software Platform

2
/ 36328 Reserved
Comments(12B)
0x0020_2000 Boot Config(4B)
Boot Info o Boot Info(24B)
Bachp . e q SPI Access Mode(4B)
4 Version(2B)
() Run Addr(4B)
0x0020_1000 / Pattern(2B)
Img_Info_10 Load Addr(4B)
Boot_|Info (‘403)-
(0x1000) CheckSum(4B)
0x0020_0000 4008 Reserved(8B) APP Size(4B)
Img_Info_1 Boot Config(4B)
(40B)
SPI Access Mode(4B)
Reserved =< Run Addr(4B)
G28) Load Addr(4B)
Boot Info] CheckSum(4B)
“a (328) APP Size(4B)

Boot_Info sector

Figure 2-5 SCA layout

. Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.

. The firmware boot information is stored in the Boot_Info (32 B) area. During system boot, Bootloader will check

the boot information, and then jump to the entry address of the firmware if the check passes.
° Boot Config: This area stores the system boot configuration information.

° SPI Access Mode: This area stores the SPI access mode configuration. It is a fixed configuration of the
system and cannot be modified.

° Run Addr: Indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.
° Load Addr: Indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

° CheckSum: This area stores the firmware checksum which is calculated automatically by the download
algorithm after firmware is generated.

° APP Size: This area stores the firmware size which is calculated automatically by the download algorithm
after firmware is generated.

. Up to 10 pieces of firmware information can be stored in Img_Info areas. Firmware information is stored in
Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

° Comments: This area stores the descriptive information (up to 12 characters) about firmware. Every time a

firmware file is generated, the file name will be saved in the Comments area by the download algorithm.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 9

GOODiX GR5405 Bluetooth LE Software Platform

° Boot Info (24 B): This area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

° Version: This area stores the firmware version, corresponding to VERSION in the custom_config.h.

° Pattern: This area stores a fixed value 0x4744.

2.4.2 NVDS

Non-volatile Data Storage (NVDS) is a lightweight key-value pair data storage system that uses the Flash read/write
APIs provided by the Flash Hardware Abstraction Layer (Flash HAL) to store data in Flash memory, ensuring that data
will not get lost even if the system is powered off.

NVDS is an ideal choice for storing small data blocks, for example, application configuration parameters, calibration
data, state information, and user information. Bluetooth LE Stack stores parameters such as device binding parameters

in NVDS.
NVDS features:

. Each storage item (tag) has a unique tag ID for identification. User applications can read and change data
according to tag IDs, regardless of physical storage addresses.

o It is optimized based on media characteristics of Flash memory and supports data check, garbage collection, and
wear-leveling.

. The size and start address of NVDS area are configurable. Flash is divided into sectors, with each sector being 4

KB in size. NVDS area can be configured to occupy several sectors, and the start address shall be 4 KB aligned.

By default, GR5405 SDK uses the last several sectors in Flash for NVDS, with the start address being the Flash end
address minus the NVDS area size. You can specify the start address and the number of sectors by configuring
NVDS_START_ADDR and NVDS_NUM_SECTOR in custom_config.h. Note that NVDS_NUM_SECTOR excludes the NVDS
garbage collection area. The total number of sectors occupied by NVDS is NVDS_NUM_SECTOR + 1.

" Note:

For details and instructions on NVDS, refer to GR54xx NVDS User Manual.

2.5 RAM Mapping

The RAM start address is 0x2000_0000, and it comprises six RAM blocks, each with a size of 16 KB, totaling 96 KB. Each
RAM block can be independently powered on or off by software.

The 96 KB RAM layout is shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 10

GOODiX GR5405 Bluetooth LE Software Platform

0x2001_7FFF

RAM_16K_5

,,,,,,,, 0x2001_4000
RAM_16K_4

,,,,,,,, 0x2001_0000
RAM_16K_3

,,,,,,,, 0x2000_C000
RAM_16K_2

,,,,,,,, 0x2000_8000
RAM_16K_1

,,,,,,,, 0x2000_4000
RAM_16K_0

,,,,,,,, 0x2000_0000

Figure 2-6 96 KB RAM layout

Applications run in Execute in Place (XIP) mode. User applications are stored in on-chip Flash, and applications use the
same space for running and loading. When the system is powered on, it fetches and executes commands from Flash
directly through the Cache Controller.

2.5.1 Typical RAM Layout

The typical RAM layout with Bluetooth LE projects in running is shown below. Developers are able to modify the RAM
layout based on product needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 11

GOODiX GR5405 Bluetooth LE Software Platform

0x2001_8000

EM Max_Size= 16KB
Stack SYSTEM_STACK_SIZE
HEAP SYSTEM_HEAP_SIZE

Unused RAM Space

FPB_TABLE

RW
Zl

RAM_CODE
0x2000_2000

ROM reserved RAM
including .bss and .data Size=8 KB

(retention) 0x2000_0000

RAM_CODE
0x0010_2000

Figure 2-7 RAM layout in XIP mode (with Bluetooth LE projects)

RAM_CODE saves code that is executed in RAM. To boost the efficiency in execution, it is recommended to define

this region in the Aliasing memory (at physical address 0x00100000).

EM is used by the Bluetooth LE core. It is managed together with SRAM used by the MCU, located at the highest
address space of SRAM. EM size is determined by the Bluetooth service volume configured in custom_config.h. If
no Bluetooth LE service is included in the project, the value of the BLE_SUPPORT macro in custom_config.h can
be set to 0.

Stack stores the task call stack. In peripheral projects without Bluetooth LE services, Stack is defined at the
highest address of RAM. In projects with Bluetooth LE services, Stack is defined after the address of EM. The
Stack size is defined by the SYSTEM_STACK_SIZE macro. You need to determine the size according to the function
call depth and the consumption of the call stack in the project.

2.5.2 RAM Power Management

Each RAM block has three power modes: Full Power, Retention Power, and Power Off.

Full Power: The system is in active state; MCU is permitted to read from and write to RAM blocks.

Retention Power: The system is in sleep state; data in RAM blocks does not get lost and is ready for use by the

system when it switches from sleep state to active state.

Power off: The system is in power-off state; RAM blocks will be powered off and the data in the blocks will get

lost. Therefore, you need to save the data before the system is powered off.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 12

GOODiX GR5405 Bluetooth LE Software Platform

By default, the PMU in the GR5405 enables all RAM power sources when the system starts. The GR5405 SDK also
provides a complete set of RAM power management APIs. You can configure the power state of RAM blocks based on

application needs.

By default, the system enables automatic RAM power management mode during boot: It automatically implements
power mode control of RAM blocks according to RAM usage of applications. The configuration rules are provided as
follows:

o When the system is in active state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Full Power mode.

. When the system is in sleep state, set the unused RAM blocks to Power off mode, and RAM blocks to be used to
Retention Power mode.

Recommended RAM configurations in practice are described below:

. In Bluetooth LE applications, the first 8 KB of RAM_16K_0 are reserved for Bootloader and Bluetooth LE Stack
only, not available for applications. When the system is in active state, RAM_16K_0 shall be in Full Power mode;
when the system is in sleep state, RAM_16K_0 shall be in Retention Power mode. Non-Bluetooth LE MCU
applications can use this RAM block.

o Purposes of RAM_16K_1 and subsequent RAM blocks are defined by applications. The GR5405 RAM has
been reasonably arranged according to execution efficiency and SRAM utilization. You can also re-configure
it according to actual application requirements. The power mode of these RAM blocks can be enabled, or be
controlled by applications.

' Note:
. An MCU access is permitted only when a RAM block is in Full Power mode.

e Details about RAM power management APIs are in SDK_Fol der\ conponent s\ sdk\ pl at f or m_sdk. h.

2.6 SDK Directory Structure

The folder directory structure of GR5405 SDK is shown as follows.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 13

GOODiX GR5405 Bluetooth LE Software Platform

3 GR5405 SDK

3 build

config
™ gee
iar
™ keil

3 components

drivers_ext
libraries
mesh
profiles
sdk

7 documentation
GR5405_API_Reference

3 drivers

—_

external

7 freertos

™ mbedtls

™0 segger rtt
59 hal_drv

]

include

-
source

1 platform

™7 arch

™ boards

™7 include

-
soc

-
common
-
include
-
linker
-
src

=3 projects
™ ble

-
mesh
™ peripheral

Figure 2-8 GR5405 SDK directory structure
Detailed description of folders in GR5405 SDK is shown below.
Table 2-1 GR5405 SDK folders

Folder Description

Project configuration directory that stores the custom_config.h template file. This file is used to

build\config

configure project parameters.
build\gcc GCC tools
build\keil Keil MDK tools

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 14

GOODiX

GR5405 Bluetooth LE Software Platform

Folder

build\iar

components\drivers_ext

components\libraries
components\profiles
components\mesh
components\sdk
documentation
drivers\inc
drivers\src
external\freertos
external\mbedtls
external\segger_rtt
hal_drv\include
hal_drv\source

platform\arch
platform\boards
platform\include
platform\soc\common
platform\soc\linker

platform\soc\include

platform\soc\src

projects\ble
projects\mesh

projects\peripheral

2.7 Tools

Developers can use the following tools to develop and debug GR5405 applications.

Description

IAR tools

Drivers of third-party components on the development board

Libraries provided in GR5405 SDK

Source files of GATT Services/Service Clients implementation examples

Mesh APl header files, library files, and source files to implement Mesh model applications

API header files

GR5405 API Reference Manual

Driver API header files which are easy to use for application developers

Driver API source code which is easy to use for application developers

Source code of FreeRTOS (a third-party program)
Source code of Mbed TLS (a third-party program)
Source code of SEGGER RTT (a third-party program)
Header files of HAL driver APIs

Source files of HAL driver APIs

Toolchain files of CMSIS

Source files for initializing GR5405 Starter Kit Board. The files are used for initializing basic

peripherals at board level.

Common header files related to platform

Public source files compatible to GR5405 SoCs. The files include gr_interrupt.c, gr_platform.c, and

gr_system.c.

Symbol table files and library files for the linker

Common header files closely related to underlying driver configurations such as registers and

clock configurations

gr_soc.c which is about initialization processes closely related to SoC implementation. The

processes include initializing Flash and NVDS, configuring crystal, and calibrating PMU.

Bluetooth LE application project examples, such as ble_app_template

Mesh demo project example

Peripheral project examples of an SoC

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

15

GOODiX

GR5405 Bluetooth LE Software Platform

Name

GProgrammer

GRUart

GRDirect Test Mode Tool

GRCalibration

GRToolbox

GRMesh

Table 2-2 Development/Debugging tools

Description

A firmware programming tool that supports functionalities such as
firmware download, Flash read/write, and eFuse download.

Available on both Windows and Linux platforms.

A serial port debugging tool.

Available on Windows platform only.

An RF test tool that controls the Device Under Test (DUT) to perform
Direct Test Mode (DTM) tests by delivering HCl commands.

Available on Windows platform only.

A mass production configuration tool for the online mass production
programming board (PLT) that supports batch firmware download, Flash
data programming, crystal calibration, and functionality testing.
Available on Windows platform only.

A GR5xx Bluetooth crystal oscillator calibration tool that is designed for
calibrating the frequency offset of the 32 MHz crystal oscillator on the
GR551x SoC, GR5405 SoC, and the PLT production programming board.
Available on Windows platform only.

A mobile APP that enables users to scan for Bluetooth devices, set
connection parameters, demonstrate standard profiles, and debug
profiles/services from Goodix Bluetooth LE platform.

Both Android and iOS versions are supported.

A mobile APP for configuring, managing, and controlling Goodix
Bluetooth Mesh network.

Only Android version is supported.

Recommended Version

V2.0.2 and later

V2.1 and later

V1.5.5 and later

V1.6.0.0.03 and later

V1.1.0 and later

V2.21 and later

V1.07 and later

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

16

http://www.goodix.com/en/software_tool/gprogrammer_ble
http://www.goodix.com/en/download?objectId=43&objectType=software
http://www.goodix.com/en/download?objectId=81&objectType=software
http://www.goodix.com/en/software_tool/grplt
http://www.goodix.com/en/software_tool/grcalibration
http://www.goodix.com/en/software_tool/grtoolbox
https://www.goodix.com/en/download?objectId=83&objectType=software

GOODiX Bootloader

3 Bootloader

The GR5405 code runs in XIP mode. When the system is powered on, the Bootloader first reads the system boot
configuration information from SCA, then performs application firmware integrity check and initialize Cache and XIP

controller accordingly, and finally jumps to the code running space to run firmware.

The application boot procedures of the GR5405 SDK are shown as follows.

Boot Start

v

Reset_Handler

'

Initialize Flash.

v

Read boot information
and check the integrity of
Application Image.

v

Is Application Yes
Image integral?

No
Initialize instruction cache.
Start DFU service. Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR5405 SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 to extract the extended stack pointer (ESP)
of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes Reset_Handler in ROM to enter the Bootloader.

2. Bootloader initializes Flash.
3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

4. If the integrity check fails, the Bootloader enters J-Link DFU mode. You can update application firmware in Flash

with GProgrammer and J-Link.

5. If the integrity check passes, the Bootloader jumps to the run address of the application firmware in Flash to
execute the code after completing the XIP configuration.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 17

GOODiX Development and Debugging with SDK in Keil

4 Development and Debugging with SDK in Keil

This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the SDK in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM’ for Cortex and ARM
devices. You can download and install the Keil installation package from the Keil official website https://www.keil.com/
demo/eval/arm.htm. For the GR5405 SDK, Keil V5.20 or a later version shall be installed.

" Note:

For more information about how to use Keil MDK-ARM IDE, refer to online manuals provided by ARM: https://
www.keil.com/support/man_arm.htm.

The main interface of Keil is as shown below.

e - 8 X

Fle £t View Pojet Flh Debug Perphenss Toos SVCS Window Help
EEFLIEET B i| @ acononesne MR S| @)0 0 6 @@}
LY IE]
Project.

Eero.. [@Books| (¥ runc. Oy Tem.
Build Output

Figure 4-1 Keil interface

Frequently used function buttons of Keil are listed below:

Table 4-1 Frequently used function buttons of Keil

Button Description
=~ Options for Target
@ Start/Stop Debug Session
£ Download
Build

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 18

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm
https://www.keil.com/support/man_arm.htm

GOODiX Development and Debugging with SDK in Keil
4.2 Installing SDK

GR5405 SDK is in a .zip file. You can access the details after extracting the file.

" Note:
o SDK_Folder is the root directory of GR5405 SDK.

. Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to quickly build a custom Bluetooth LE application with Keil and GR5405 SDK.

4.3.1 Preparing ble_app_example

This section elaborates on how to create a project based on the template project provided in GR5405 SDK.

Open SDK_Fol der\ proj ect s\ bl e\ bl e_peri pheral \, copy ble_app_template to the current directory, and
rename it as ble_app_example. Change the base name of .uvoptx and .uvprojx files in bl e_app_exanpl e\ Kei | _
5 to ble_app_example.

» ble_app_example » Keil 5

s

Mame

|| ble_app_sxample.uvopt:
KA ble app_example.uvprojx

Figure 4-2 ble_app_example folder
Double-click ble_app_example.uvprojx to open the project example in Keil. Click #, and the Options for Target

'GRxx_Soc' window opens. Choose the Output tab, and type ble_app_example in the Name of Executable field, to
name the output file as ble_app_example.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 19

GOODiX Development and Debugging with SDK in Keil

U Options for Target 'GRxx_Soc’ X
Device] Target Output]Listing] User] C/C++] hsm] Linker] Tebug] Utilities1
Select Folder for Objects... | Mame of Executable: lble_app_example

. {+ Create Executable: \Objects'ble_app_example
W Debug Information [~ Create Batch File
[¥ Create HEX File
[V Browse Information

" Create Library: \Objects‘ble_app_example lib

0K | Cancel Defanlts ‘ Help

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

=% Project: ble_app_template
=45 GRxx_Soc

{3 gr_startup
{1 gr_arch
[J gr_soc
L1 gr_board
[J gr_stack_lib
{3 gr_app_drivers
[J gr_libraries
L hal_drivers
3 gr_profiles
[external
L

&)

user_platform

[

L user_app
Figure 4-4 ble_app_example groups

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.
. SDK groups
The SDK groups are detailed as follows:

Table 4-2 SDK groups

SDK Group Name Description
gr_startup System boot file
gr_arch Initialization configuration files and system interrupt APl implementation files for System Core and PMU

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 20

GOODiX

Development and Debugging with SDK in Keil

SDK Group Name

gr_soc

gr_board

gr_stack_lib

gr_app_drivers

gr_libraries

hal_drivers

gr_profiles

external

o User groups

Description

gr_soc.c which is used for initializing and calibrating modules such as Clock, PMU, and Vector before
entering the main() function

Board-level description file which is used for implementing components such as log, key, and LED

A SDK .lib file

Driver API source files which are easy to use for application developers. You can add related application
drivers on demand.

Open source files of common assistant software modules and peripheral drivers provided in the SDK
Source files for HAL driver APIs. You can add necessary HAL drivers for projects on demand.

Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects on
demand.

Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party programs

on demand.

The User groups are detailed as follows:

User Group Name

user_platform

user_app

Table 4-3 User groups

Description

Software and hardware resource setting and application initialization; you need to execute
corresponding APIs on demand.

main() function entries and other source files created by developers, which are used to configure
runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code

running mode, memory layout, and other configuration items.

4.3.2.1 Configuring custom_config.h

custom_config.h is used to configure parameters of application projects. Developers can directly modify the

configurations in the file or configure parameters in the Configuration Wizard interface of Keil.

[\ Tip:

custom_config.h of each application example project is in Sr ¢\ conf i g under project directory.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 21

GOODiX

Development and Debugging with SDK in Keil

. Modify the configurations in custom_config.h.

GR5405 SDK provides a template configuration file custom_config.h (in SDK_Fol der\ bui | d\ confi g\ cust

om confi g. h). You can directly modify the template file to configure parameters for application projects.

Table 4-4 Parameters in custom_config.h

Macro

SOC_GR5405

CHIP_TYPE

CFG_APP_DRIVER_SUPPORT

ENABLE_BACKTRACE_FEA

APP_LOG_ENABLE

APP_LOG_STORE_ENABLE

APP_LOG_PORT

PLATFORM_SDK_INIT_ENABLE

PMU_CALIBRATION_ENABLE

Description

Define the SoC version number.

Specify the SoC model.

o 0: GR5405

Note:

During project compilation, configure this macro according to the SoC model in
use.

Use the peripheral APP driver or not.

o 0:No

o 1:Yes

Enable/Disable the stack backtrace functionality.
° 0:Disable

° 1:Enable

Enable/Disable the APP LOG module.

° 0:Disable

o 1:Enable

Enable/Disable the APP LOG STORE module.
o 0: Disable

o 1:Enable

Set the output mode of APP LOG module.

o 0: UART

o 1:J-Link RTT

o 2: ARMITM

Enable/Disable platform initialization.

o 0: Disable

o 1:Disable

Enable/Disable PMU calibration.

When PMU calibration is enabled, the system monitors temperature and voltage
automatically with adaptive adjustment. It is recommended to enable macro by

default.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

22

GOODiX

Development and Debugging with SDK in Keil

Macro

NVDS_START_ADDR

NVDS_NUM_SECTOR

SYSTEM_STACK_SIZE

SYSTEM_HEAP_SIZE

CHIP_VER

APP_CODE_LOAD_ADDR*

APP_CODE_RUN_ADDR*

SYSTEM_CLOCK*

RF_TX_PA_SELECT

SYSTEM_POWER_MODE

Description

o 0: Disable

o 1:Enable

Note:

PMU calibration shall be enabled in high/low temperature scenarios.

Start address of NVDS in Flash; default: 0

If no address is specified, the end area in Flash will be used by default.

Number of Flash sectors for NVDS; default: 3

Size of Call Stack required by applications. The default value is 8 KB.

You can set the value as needed.

Note:

After compilation of ble_app_example, the Maximum Stack Usage is provided in K
ei | _5\ Obj ect s\ bl e_app_exanpl e. ht mfor reference.

Size of Heap required by applications. The default value is 0 KB.

You can set the value as needed.

Version of the SoC that the firmware runs on; default: 0x5405

Start address of the application storage area

Note:

This address shall be within the Flash address range.

Start address of the application running space

Note:

The value shall be the same as APP_CODE_LOAD_ADDR, and applications run in
XIP mode.

Set the system clock frequency.

° 0:64 MHz

° 1:32 MHz

o 2:16 MHz (XO)

° 3:16 MHz

° 4:8MHz

° 5:2MHz

Select an RF power amplifier.

o 1:SPA (supported TX power: =20 dBm to 5 dBm)
o 2:HPA (supported TX power: =10 dBm to 15 dBm)

Set the system power supply mode.

o 0:Supplied by DC-DC

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

23

GOODiX

Development and Debugging with SDK in Keil

Macro

CFG_LF_ACCURACY_PPM

CFG_LPCLK_INTERNAL_EN

BOOT_LONG_TIME*

BOOT_CHECK_IMAGE

BLE_SUPPORT

CFG_CONTROLLER_ONLY

CFG_BT_BREDR

DTM_TEST_V1_CMD_ENABLE

DTM_TEST_V2_CMD_ENABLE

Description

o 1:Supplied by SYS_LDO

The system is supplied by SYS_LDO when an HPA is selected.

Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to
500 (unit: ppm).

Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep
clock.

If the OSC clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 ppm by
force.

o 0:Disable

o 1:Enable

Set 1-second delay (during SoC boot before implementing the second half
Bootloader).

o 0: No delay

o 1: Delay for 1 second.

Determine whether to check the image during cold boot in XIP mode.

° 0: Do not check.

o 1: Check.

Support Bluetooth LE or not.

o 0: MCU only, no Bluetooth LE supported

o 1:Support Bluetooth LE.

Support Bluetooth LE controller (for external host or HCI UART transmission) only
or not.

o 0: Support Bluetooth LE controller and host.

o 1:Support Bluetooth LE controller only.

Support generating Bluetooth Classic link keys through the LE link or not.

° 0:No

o 1:Yes

Enable/Disable DTM test command V1.

o 0: Disable

o 1:Enable

Enable/Disable DTM test command V2.

o 0: Disable

o 1:Enable

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

24

GOODiX

Development and Debugging with SDK in Keil

Macro

DTM_TEST_V3_CMD_ENABLE

DTM_TEST_V4_CMD_ENABLE

DTM_TEST_PRIVATE_CMD_ENABLE

CFG_MAX_PRFS

CFG_MAX_BOND_DEVS

CFG_MAX_CONNECTIONS

CFG_MAX_ADVS

CFG_MAX_SCAN

Description

Enable/Disable DTM test command V3.

o 0: Disable

o 1:Enable

Enable/Disable DTM test command V4.

o 0:Disable

o 1:Enable

Enable/Disable DTM test private commands.

° 0:Disable

o 1:Enable

Maximum number of supported GATT Profiles/Services.

You can set the value on demand. A larger value means more RAM space will be
occupied.

Range: 1-64

Maximum number of devices that can be bonded; default: 4, minimum value: 1
Maximum number of devices that can be connected; the number shall be no
greater than 8.

You can set the value on demand. A larger value means more RAM space will be
occupied by Bluetooth LE Stack Heaps.

The size of Bluetooth LE Stack Heaps is defined by the following four macros in

flash_scatter_config.h:

> ENV_HEAP_SIZE
o ATT_DB_HEAP_SIZE
o KE_MSG_HEAP_SIZE

o NON_RET_HEAP_SIZE

Note:

The above four macros cannot be changed by developers.

Maximum number of supported Bluetooth LE legacy advertising and extended
advertising

Range: 0—4

Note:

The maximum number of supported Bluetooth LE legacy advertising and
extended advertising shall be no greater than 4.

Maximum number of supported Bluetooth LE device used for scanning

Range: 0-1

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

25

GOODiX

Development and Debugging with SDK in Keil

Macro

CFG_MUL_LINK_WITH_SAME_DEV

CFG_CCC_SC_OOB_PAIR_SUPPORT

CFG_MASTER_SUPPORT

CFG_SLAVE_SUPPORT

CFG_SUPPER_ADV_SUPPORT

CFG_LEGACY_PAIR_SUPPORT

CFG_SC_PAIR_SUPPORT

CFG_COC_SUPPORT

CFG_GATTS_SUPPORT

CFG_GATTC_SUPPORT

CFG_CONN_AOA_AOD_SUPPORT

Description

Support a device connecting to multiple slave devices or not.
o 0:No

o 1:Yes

Support CCC 3.0 Bluetooth LE OOB secure pairing or not.
° 0:No

o 1:Yes

Support master role or not.

° 0:No

o 1:Yes

Support slave role or not.

° 0:No

o 1:Yes

Support a minimum interval of 5 ms for low-duty-cycle advertisement or not.
o 0: No; the minimum interval shall be 20 ms according to specifications.
o 1:Yes

Support legacy pairing or not.

° 0:No

o 1:Yes

Support secure pairing or not.

o 0:No

o 1:Yes

Support Connection-oriented Channel (COC) or not.

° 0:No

o 1:Yes

Support GATT Server or not.

° 0:No

o 1:Yes

Support GATT Client or not.

o 0:No

o 1:Yes

Support connection-based AoA/AoD or not.

o 0: No (default)

o 1:Yes

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

26

GOODiX

Development and Debugging with SDK in Keil

Macro

CFG_CONNLESS_AOA_AOD_SUPPORT

CFG_MESH_SUPPORT

SECURITY_CFG_VAL

WDT_RUN_ENABLE

Description

Note:

The macro is configured to a fixed value of '0'.

Support connectionless AoA/AoD or not.
° 0:No
° 1:Yes

Note:

The macro is configured to a fixed value of '0'.

Support Mesh or not.

° 0:No

o 1:Yes

Configure the algorithm security level.
o 0: Enable Level 1 algorithm.

o 1:Enable Level 2 algorithm.

Enable/Disable background running of WDT.

o 0: Disable

o 1:Enable

[" Note:

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure which

is defined at 0x200 in the firmware and is initialized with the macros in custom_config.h. When system boots, the

Bootloader reads value from 0x200 and uses it as a boot parameter.

o Configure parameters in the Configuration Wizard interface.

Comments in custom_config.h are compliant with Configuration Wizard Annotations of Keil, making it possible
for developers to configure macros in custom_config.h in the Configuration Wizard interface of Keil.

[\ Tip:

It is recommended to configure parameters in the Configuration Wizard interface, to prevent inputting invalid

parameters.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

27

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

GOODiX Development and Debugging with SDK in Keil

_] custom_config.h v X
Expand Al | Collapse Al | Help [Show Grd

Option Value

o conigurion | -
Chip version 1
Enable system fault trace module EMABLE
Enable app driver module EMABLE
Eanble APP log module EMABLE
Eanble APP log store module DISAELE
Enable Platform Initialize EMABLE
Enable PMU Calibration EMABLE
The Mumber of sectors for NVDS 1
Call Stack Size 0x0000 2000
Call Heap Size 00000 0000
5K_borad select QFN32

= Beotinfo configuration
Chip version 0x0000 5332
Code load address Flash address i
Code run address Flash address
System clock B4MHZ
System power mode pCDC MODE
External clock accuracy used in th.., 500
Enable internal osc as low power ... Default: Disable internal osc as low power clock j

Basic configuration

W}\ Configuration Wizard

Figure 4-5 custom_config.h in the Configuration Wizard interface

4.3.2.2 Configuring Memory Layout

In a Keil project, the memory area for the linker is defined in Scatter (.sct) files. The GR5405 SDK provides an
example Scatter file (SDK_Fol der\ pl at f ormi soc\ | i nker\kei I \fl ash_scatter_common. sct)to
help developers quickly configure memory layout. The macros used by flash_scatter_common.sct are defined in
flash_scatter_config.h.

[l Note:

InKeil, __attribute__((section("name"))) can be used to define a function or a variable in a specific
memory segment, in which name can be customized by developers. The scatter (.sct) file defines the location for
customized fields. For example, to define the Zero-Initialized (ZI) data of applications in the segment named as
.bss.app, you can set attribute to attribute ((section(".bss.app "))).

You can follow the steps below to configure the memory layout:

1. Click # (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the

Linker tab.

2. Onthe Scatter File bar of the Linker tab, click ... to browse and select the flash_scatter_common.sct file in SDK_

Fol der\ pl at f ormi soc\ | i nker\Kkei | . You can also copy the scatter (.sct) file and the configuration (.h)
file to the ble_app_example project directory and then select the scatter file.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

28

GOODiX Development and Debugging with SDK in Keil

" Note:

o #! arnctc - E -l inflash_scatter_common.sct specifies the directory of the header file on which
flash_scatter_common.sct depends. A wrong path results in a linker error.

o In flash_scatter_common.sct of the GR5405 SDK, you can use the macro definition BLE_SUPPORT in
custom_config.h to determine whether it is necessary to configure EM for Bluetooth LE in the end area of SRAM.
You need to define BLE_SUPPORT based on whether the project includes Bluetooth LE services.

3. Click Edit... to open the .sct file, and modify corresponding code based on practical product memory layout.

kA Options for Target 'GRxx_Sac' X

Device] Target] Output] Listing] User] C/T++] Asm Linker l]]ebug] Utilities]

I™ Use Memory Layout from Target Dialog X/0 Base:
™ Make RW Sections Position Independent B/O Base: |(x00000000
™ Make RO Sections Position Independent R/W Base ,_DKDDDEDDDD

I” Dont Search Standard Libraries
I¥ Report might fail' Conditions as Emors

disable Wamings: |

Scat'_:_t“eer AU platformtsocinkertkeil \flash_scatter_common sct j E Edit...

Misc G platformsocinkerkeil rom_symbol bt
controls
Linker |-cpu Cortex-Mdfpsp o A
control [ibrary_type=microlib —strict —scatter "%\ platform®socinkerkeil'\flash_scatter_common sct”
string A

| 0K | | Cancel | | Defaults |

Figure 4-6 Configuration of scatter file

4. Click OK to save the settings.

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK HEAP INIT (heaps table);

int main (void)

{
// Initialize user peripherals.
app_periph init();

// Initialize ble stack.
ble stack init(ble evt handler, &heaps table);

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 29

GOODiX Development and Debugging with SDK in Keil

// loop
while (1)
{

app_log flush();
pwr mgmt schedule () ;

e STACK HEAP_|I NI T(heaps_t abl e) defines seven global arrays as Heaps for Bluetooth LE Stack. Do not
modify the definition; otherwise, Bluetooth LE Stack may not work properly. The Heap size is determined by the

Bluetooth LE service volume in “Section 4.3.2.1 Configuring custom_config.h”.

e app_periph_init() isused to initialize peripherals. In development and debugging phases,
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address; pwr_mgmt_mode_set()
sets the MCU operation mode (SLEEP/IDLE/ACTIVE) during automatic power management; app_periph_init() is
implemented in user_periph_setup.c, and the example code is as follows.

/**@brief Bluetooth device address. */
static const uint8 t s bd addr[SYS BD ADDR LEN] = {Ox11, Ox11, Ox11, Ox11,0x11, Ox11};

void app periph init (void)
{
SYS SET BD ADDR (s bd addr);
board init () ;
pwr_mgmt mode set (PMR MGMT SLEEP MODE) ;

e Add main loop code of applications towhi | e(1) { }, for example, code to handle external input and update
GUL.

e To use the APP LOG module, callapp_l og_f | ush() inthe main loop, to ensure logs are output completely
before the system enters sleep state. For more information about the APP LOG module, refer to “Section 4.6.3
Outputting Debug Logs”.

e Callpw _nmgnt _shcedul e() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Service Logics

Bluetooth LE service logics of applications are driven by a number of Bluetooth LE events which are defined in GR5405
SDK. Therefore, applications need to implement the corresponding event handlers in GR5405 SDK to obtain operation
results or state change notifications of Bluetooth LE Stack. The event handlers are called in the interrupt context of
Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking function
call and infinite loop; otherwise, the system is blocked, causing Bluetooth LE Stack and the SDK Bluetooth LE module

unable to run in a normal timing.

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 30

GOODiX Development and Debugging with SDK in Keil

" Note:

The Bluetooth LE events supported by GR5405 SDK can be found in SDK_Fol der\ conponent s\ sdk\ bl e_even
t.h.

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only

those event handlers required for products are to be implemented.

[\ Tip:
For details about the usage of Bluetooth LE APIs and event APIs, refer to the source code of Bluetooth LE examples in
SDK_Fol der\ docunent at i on\ GR5405_API _Ref er ence and SDK_Fol der\ pr oj ect s\ bl e.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Bluetooth LE Stack is the core to implement Bluetooth LE protocols. It can directly operate the Bluetooth 5.3 Core
(refer to “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall

IRQ, which ensures that Bluetooth LE Stack runs strictly in a timing specified in Bluetooth Core Spec.

A state change of Bluetooth LE Stack triggers the BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler,
the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of
Bluetooth LE Stack and related service data to applications. Avoid time-consuming operations when using these event
handlers. Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK
Fol der\ conmponent s\ | i brari es\ app_queue, or your own application framework, to transfer events from

Bluetooth LE event handlers to the main loop.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 31

GOODiX Development and Debugging with SDK in Keil

Bluetooth LE SDK Application Application
Stack Bluetooth LE Callback Main Loop

| app_queue_init

Application
Queue

BLE_Stack_IRQ |

BLE_SDK_IRQ Bluetooth LE Event

Handler

app_queue_push

1 app_queue_pop
—

JUaA3 3|pueH

Figure 4-7 System schedule (without OS)

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click L= (Build) on the Keil toolbar to build a project.

After project compilation is completed, two firmware files (in .bin and .hex formats) are created in Li sti ngs and Cb

j ect s respectively in the project directory.

Table 4-5 Firmware files generated

Name Description

ble_app_example.bin Binary application firmware, can be downloaded to Flash through GProgrammer for running
ble_app_example.hex Binary application firmware, can be downloaded to Flash through Keil or GProgrammer for running
A\ Tip:

Both the two types of firmware can be downloaded to Flash through GProgrammer for running. Refer to

GProgrammer User Manual for details.

4.5 Downloading .hex Files to Flash

After a firmware file is are generated, you need to download the file to Flash. Specific steps are provided below:

1. Configure Keil Flash programming algorithm.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 32

GOODiX Development and Debugging with SDK in Keil

(1) Copy SDK_Fol der\ bui | d\ Kei I \ GR5xxx_16MB_Fl ash. FLMto Kei | _Fol der\ ARM Fl ash.

(2) cClick # (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

| B Options for Target 'GRxx_Soc *
Device I Target I Output I Listingl User I C/C++ I hsm I Linker Ttilities I
" Use Simulator #ith restrictions Seftings | IG‘ Use: |J-LINK/J-TRACE Cotex »| Settings | |
[~ Limit Speed to Real-Time
¥ Load Application at Startup ¥ Run ta main) [™ Load Application at Startup ¥ Fun to mainl)
Initialization File: Initialization File:
I J Edit... | I..\..\..\. A Mbuild kel hsram ini J Edit... |
Restore Debug Session Settings———————————— Restore Debug Session Settings ———————————————
[V Breakpoints V¥ Toolbox [V Breakpoints ¥ Toolbox
| ¥ Watch Windows & Peformance Analyzer V¥ Watch Windows
¥ Memary Display ¥ System Viewer ¥ Memory Display ¥ System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
| ISP.RMCMH.DLL | MPU ISARMCMB.DLL I-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
| |pcmDLL [pCM4 TcmoLL [pCma
[~ Wam if outdated Executable is loaded [Wam if outdated Executable is loaded
| Manage Component Viewer Description Files ... |

! 14 Cancel | Defaults | Help |

Figure 4-8 Debug tab

(3) In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default

configurations of Keil are shown below:

Cortex JLink/JTrace Target Driver Setup *

Debug I Trace Fash Download |

— Download Function RAM for Algorithm
LOAD " Erase Ful Chip ¥ Program
§ © ErseSecos [Verly Start: [20000000 Size: [IFFFO
" Donot Erase |¥ Reset and Run
P ing Algorithm
Description | Device Size I Device Type | Address Range I

Start: I Size:

Add I Femove I

ok | Cancel Apply

Figure 4-9 Default configurations in the Download Function pane

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 33

GOODiX

Development and Debugging with SDK in Keil

(4) Click Add to add SDK_Fol der\ bui | d\ kei | \ GR5xxx_16MB_F| ash. FLMto Programming

Algorithm.

" Note:

To facilitate multi-chip inheritance development for users, GR5xxx_16MB_Flash.FLM is used for all the Goodix GR5xx

Bluetooth LE SoC series which share the same download algorithm.

Cortex JLink/ITrace Target Driver Setup

Debug I Trace Flash Download

Download Function

LOAD

RAM for Algorithm
" Erase Full Chip [Program

¥

(¢ Erase Sectors

v Verify
[Reset and Run

Start: 0520000000

" Do not Erase

Programming Algorithm

Size: [0x8000

Description Device Size Device Type

Address Range

GRSxxx_16MB_Flash 16M Ext. Flash SPI

00200000H - 401FFFFFH

Start: |

Size:

o= |

Figure 4-10 Adding GR5xxx_16MB_Flash.FLM to Programming Algorithm

(5) Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR5405 in the Start input field: 0x20000000. Enter 0x8000 in

the Size input field.

RAM tor Algornthm

Start: | 0x20000000

Size: |0xBO00

Figure 4-11 Settings of RAM for Algorithm

(6) Click OK to save the settings.

2. Download firmware.

LidD

After completing configuration, click ¥ (Download) on the Keil toolbar to download ble_app_example.axf to
Flash. After download is completed, the following results are displayed in the Build Output window of Keil.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

34

GOODiX Development and Debugging with SDK in Keil

Build Qutput x|
Load " X X 4 projects\\ble\\ble peripheral\\ble app template\\Keil 5\\Cbjects\\ble_app example.axf"

Set JLink Project File to ") 4 projects\ble\ble peripheral\ble app_template\Keil 5\JLinkSettings.ini™

* JLink Info: Device "CORTEX-M4" selected.

JLink info:

DLL: V5.12e, compiled Apr 29 2016 15:03:58

Firmware: J-Link OB-35AM3U128 V3 compiled Apr 16 2020 17:20:41
Hardware: V3.00

5/N : 483113122

Info: Found SWD-DP with ID 0x2BA01477
Info: Found Cortex-M4 rOpl, Little endian.

Info: FPUnit: 15 code (BP) slots and 2 literal slots

Info: CoreSight components:

Info: RCMTbl 0 @ EOOFF000

Info: RCMTbl 0 [0]: FFFOF00O, CID: B10SEQOD, PID: 00OBBOOC SCS
Info: RCMTbl 0 [1]: FFF02000, CID: B10SEQ0D, PID: 003BB0O2 DWT
Info: RCMTbl 0 [2]: FFF03000, CID: 00000000, PID: 00000000 22?
Info: ROMTbl 0 [3]: FFF01000, CID: B10SEQOD, PID: 003BBOO1l ITM
Info: ROMTbl 0 [4]: FFF41000, CID: B105900D, PID: 00OBBSAl TPIU
ROMTableAddr = OxEOOFF000

ooo

Target info:
Device: RRMCM4 FP

VTarget = 3.300V

State of Pins:

TCK: 0, TDI: 1, TDO: 1, TMS: 0, TRES: 1, TRST: 1
Bardware-Breakpoints: 15

Software-Breakpoints: 8192

Watchpoints: 4
JTAG speed: 2667 kHz

Erase Done.
Programming Done.

Verify CK.

Application running ...

Flash Load finished at 17:04:35

Figure 4-12 Download results

" Note:

During file download, if No Cortex-M SW Device Found pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this

case, developers need to press RESET on the GR5405 SK Board and wait for about 1 second; then click ** (Download)
to download the file again.

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and

multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click # (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select the Debug tab. In the window, software simulation debugging configurations
display on the left side, and online hardware debugging configurations display on the right side.

Bluetooth LE example projects adopt the online hardware debugging. Related default configurations of the debugger

are shown as follows:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 35

GOODiX

Development and Debugging with SDK in Keil

iﬂ::::'::: Target 'GR

Tevice] Target] Output] Listing] User

" Use Simulator
™ Limit Speed to

Iv¥ Load Application at Startup

Initialization File:

with restrietions

Real-Time

ﬂ Settings |I

Restore Debug Session Settings
[v¥ Breakpoints

| [¥ Watch Windows & Perfformance Analyzer

¥ Memory Display

W Toolbox

[v System Viewer

|csces | hsm | Linker |Debuz |Utilities|
Setings | If-‘ Use: [J-LINK / J-TRACE Cortex
¥ Run to main() ™ Load Application at Startup v
Initialization File:
J | A build eeilsram ini
Restore Debug Session Settings
[v¥ Breakpoints ¥ Toolbox

W Watch Windows
Iv¥ Memory Display

Iv¥ System Viewer

CPU DLL: Parameter: Driver DLL: Parameter:
| |SARMCM1DLL|-MPU |SARMCM1DLL|-MPU

Dialog DLL: Parameter: Dialog DLL: Parameter:
| |DCMDLL |pCM4 FCMDLL |pCM4

™ Wam if outdated Executable is loaded

™ Wam ff outdated Executable is loaded

Manage Component Viewer Description Files ... |

0K

Cancel

Defaults |

Figure 4-13 Configuring the debugger

Help

The default initialization file sram.ini is in SDK_Fol der\ bui | d\ kei | . You can use this file directly, or copy it to the

project directory.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the

Initialization File bar, click Edit... on the right side, to open sram.ini.

Example code of sram.ini is provided as follows:

/**

KA KA AR AR A A A A AR AR AR A A A A AR A A A A A A AR A A A A A A AR A AR A A A A A Ak A Ak A Ak kA Ak kA Ak kh kK

*GR55xx object loading script through debugger interface

(e.g.Jlink,

etc) .

*The goal of this script is to load the Keils's object file to the GR55xx RAM

*assuring that the GR55xx has been previously cleaned up.
khkhkhkkhkhkhkhkkhkkhhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhkhkhhhkhhhhhkhkhkhhhkhhkhrhhkhhkhrhkhkkhhkhrrhkkhkhkhhkh*k

*/

//Debugger reset (check Keil debugger settings)

//Preselected reset type

(found in Options->Debug->Settings)is Normal (0) ;

//-Normal :Reset core & peripherals via SYSRESETREQ & VECTRESET bit

RESET

//Load current object file
LOAD SL

//Load stack pointer
SP _RDWORD (0x00000000)

//Load program counter
S _RDWORD (0x00000004)

//Write 0 to vector table register,
0x00000000)

_WDWORD (0xEQ0OEDOS,

//_WDWORD (0XE000E180, OxXFFFFFFFF)

remap vector

//Write run address to 0xA000C578 register,For the debug mode;

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

36

GOODiX Development and Debugging with SDK in Keil

//boot code will check the value of 0xA000C578 firstly,if the value of 0xA000C578 is
valid,gr551x will jump to run

// WDWORD (0xA000C578, 0x00810000)

I Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup is enabled, the debugger first loads
the file under Options for Target ‘GRxx_Soc’ > Output > Name of Executable.

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g, mai n is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click @ (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

" Note:

Make sure that Connect is set to Normal and Reset Options is set to Core, as shown below. This is to ensure when you

click Reset on the Keil toolbar after enabling Debug Session, the program can run normally.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 37

GOODiX Development and Debugging with SDK in Keil

Cortex JLink/ITrace Target Driver Setup X

Debug lTrace] Flash Dcwnload]

J-Link / J-Trace Adapter SW Device
SN: 670023970 - IDCODE Device Name
e ’W SWDI| @ 0x2BA01477 ARM CoreSight SW-DP J
aw: [vioo gif veas J
FW: [)-Link OB-STM32F072-Corte
Port: Max &
[sw ~| smHz]| ¢
Auto Clk | ‘ | |
Connect 8 Reset Options Cache Options Download Options
Connect: j Reset: ‘CO"E j ¥ Cache Code [~ Verify Code Downloac

¥ Reset after Connect ¥ Cache Memary [~ Download to Flash

Interface TCR/IP Misc
& USB © TCP/IP Network Settings

IP-Addres: Port (Auto:
Scan

7 . 0 T :| =
State: ready

Autodetect

JLink Info

S - | JLinkad‘

Figure 4-14 Setting Connect and Reset

4.6.3 Outputting Debug Logs

GR5405 SDK provides an APP LOG module and supports outputting debug logs of applications from hardware ports
based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM
ITM).

To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and configure APP_LOG_PORT based on
the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to call app_log_init() during peripheral initialization to initialize the APP LOG module,
including setting log parameters, and registering log output APIs and flush APlIs.

The APP LOG module supports using pri nt f () (a Cstandard library function) and APP LOG APIs to output

debug logs. If you choose APP LOG APlIs, you can optimize logs by setting log level, log format, filter type, or other
parameters; if you choose pri nt f (), set log parameters as NULL.

Call the initialization function of corresponding module (refer to SDK_Fol der\ pl at f or Ml boar ds\ boar d_SK
. C for details) and register corresponding log output and flush APIs (see bsp_log_init() for reference) according to the

configured output port.

If UART is the output port, bsp_log_init() is implemented as follows:
void bsp log init (void)

{

#if APP LOG ENABLE

#if (APP_LOG_PORT == 0)

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 38

GOODiX Development and Debugging with SDK in Keil

bsp uart init();
#elif (APP_LOG PORT == 1)

SEGGER _RTT ConfigUpBuffer (0, NULL, NULL, 0, SEGGER RTT MODE NO BLOCK TRIM) ;
#endif

#if (APP_LOG PORT <= 2)
app log init t log init;

log init.filter.level = APP LOG LVL DEBUG;
log init.fmt set[APP_LOG LVL ERROR] = APP LOG FMT ALL & (~APP_LOG FMT TAG);
log init.fmt set[APP_LOG LVL WARNING] = APP LOG FMT LVL;
#ifdef APP_LOG NO_PFX
log_init.fmt set[APP_LOG LVL_INFO] = APP LOG_FMT NULL;
log init.fmt set[APP_LOG LVL DEBUG] = APP LOG_FMT NULL;
#else
log_init.fmt set[APP_LOG LVL_INFO] = APP LOG_FMT LVL;
log _init.fmt set[APP_LOG LVL DEBUG] = APP_LOG FMT LVL;
#endif
#if (APP_LOG_PORT == 0)

app log init(&log init, bsp uart send, bsp uart flush);
app _log assert flush init (bsp uart assert flush);

#elif (APP_LOG_PORT == 1)
app log init(&log init, bsp segger rtt send, NULL);
#elif (APP_LOG_PORT == 2)

app log init(&log init, bsp itm send, NULL);
#endif /* APP_LOG_PORT */

#endif /* APP LOG PORT <= 2 */
#endif /* APP_LOG ENABLE == 1 */

app_assert init();

' Note:
. The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API.

. The input parameter of app_log_assert_flush_init() is the flush APl designed for the APP ASSERT module. The
implementation of the APP ASSERT module is in SDK_Fol der\ conponent s\ | i brari es\ app_assert.

When debug logs are output through UART, the implemented log output APl and flush APl are bsp_uart_send() and
bsp_uart_flush() respectively.

. bsp_uart_send() is the basis for two log output APIs: app_uart synchronization (app_uart_transmit_sync) and
app_uart asynchronization (app_uart_transmit_async). Users can control the APIs by adding or removing the
macro APP_LOG_ASYNC. Users can choose the output methods as needed.

. bsp_uart_flush() is used to output the log data that is cached in memory in app_uart asynchronization method.

. bsp_uart_assert_flush() is used to output the log data that is cached in memory when an assertion occurs.

" Note:

You can rewrite the above three APIs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 39

GOODiX

Development and Debugging with SDK in Keil

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output APl is
bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug

logs:

e APP_LOG_ERROR()

e APP_LOG_WARNING()

e APP_LOG_INFO()

e APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() to output all the debug logs cached, to ensure that all debug logs are

output before the SoC is reset or the system enters the sleep mode.

To output logs through J-Link RTT, it is recommended to make the following modifications in SEGGER_RTT.c:

//{ RTT Control Block and allocate buffers for channel @

__attribute_ ((section (".ARM. =t 0x20005680"))) SEGGER_RTT_CB _SEGGER_RTT;
//SEGGER_RTT_PUT_CB_SECTION(SEGGER_RTT_CB_ALIGN(SEGGER_RTT_CB _SEGGER_RTT));

Figure 4-15 Creating RTT Control Block and placing it at 0x20005000

The figure below shows the reference configurations for J-Link RTT Viewer.

A J-Link RTT Viewer V6.88a | Configuration ? X

Connection to J-Link

(® usB [] serial Mo

) TCRfIP

O Existing Session

Specdify Target Device

| coRTEXM4 |

Script file (optional)
| |

Target Interface & Speed
SWD * | [4000kHz -

RTT Control Block
(@) Address (O) Search Range

Enter the address of the RTT Control block.
Example: 0x20000000

| 0x20005000]

Cancel

Figure 4-16 Configurations in J-Link RTT Viewer

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 40

GOODiX Development and Debugging with SDK in Keil

The address of RTT Control Block can be specified by clicking Address and then entering a custom value, and the input
value can be set to the address of the _SEGGER_RTT structure in the .map file generated by the compiled project, as
shown in the figure below. If creating RTT Control Block through the method recommended in Figure 4-15 and placing
it at 0x20005000, you need to set Address to 0x20005000.

ultra_wfi_or_wfe ax2eee37ec @ rom_symbol.txt ABSOLUTE
sdk_gap_env Bx2000838ec @ rom_symbol_txt ABSOLUTE
_SEGGER_RTT 0x20005000 120 segger rtt.o(.ARM. _at_0x20005000)
jlink_opt_info 0x20006000 @ rom_symbol.txt ABSOLUTE
SystemCoreClock 0x2000b268 4 system_grS55xx.o(.data)

_ stdout ox2000bo44 4 app log.o(.data)

Figure 4-17 Obtaining RTT Control Block address

4.6.4 Debugging with GRToolbox

GR5405 SDK provides an Android App, GRToolbox, to debug GR5405 Bluetooth LE applications. GRToolbox features the
following:

. General Bluetooth LE scanning and connecting; characteristics read/write
o Demos for standard profiles, including Heart Rate

o Goodix-customized applications

[\ Tip:

You can obtain the GRToolbox installation file from Goodix official website or download it from the application store.

4.7 Download and Debugging with IAR

GR5405 SDK provides not only Keil projects, but also IAR projects, allowing users to quickly compile an example
project with IAR to generate application firmware. For example, the IAR project of ble_app_template is in SDK_Fo
| der\ proj ects\ bl e\ bl e _peripheral\bl e _app_tenpl at e\ | AR, compile ble_app_template.eww to
generate ble_app_template.bin.

projects » ble » ble_peripheral * ble_app_template = |AR

~
Mame Type

| | ble_app_template.ewd EWD File

| | ble_app_template.ewp EWP File

| | ble_app_template.ewt EWT File

| | ble_app_template.eww WW File

|] flash_icf config.c C File

GRS make icf.bat Windows Batch File
[gr5405.icf ICF File

[# make app dependent icf.py P File

Figure 4-18 IAR project directory

Steps for firmware download and debugging with IAR are as follows:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 41

http://www.goodix.com/en/software_tool/grtoolbox

GOODiX Development and Debugging with SDK in Keil

1. Onthe menu bar of IAR IDE, select Project > Options to open the configuration window; select Debugger from
the Category list on the left, and then select J-Link/J-Trace in the Driver pane of the Setup tab. Check Use macro
file(s) and enter SPROJ_DIRS\..\..\..\..\..\build\iar\GR5xxx.mac.

2. Copy the download algorithm files GR5xxx_IAR_16M.board, GR5xxx_IAR_16M.flash, and
GR5xxx_IAR_flashloader_16M.out in SDK_Fol der/ buil d/iar to AR Install/arm config/fl ash
| oader/ Goodi x ("IAR Install" is the IAR software installation directory, and "Goodix" is a new folder).

3. InIARIDE, select Project > Options > Debugger > Download, to set Override default .board file as
GR5xxx_IAR_16M.board (in1 AR I nstal | /arnif confi g/ fl ashl oader/ Goodi x).

4. InIAR IDE, select Project > Options > Debugger > J-Link/J-Trace > Setup, and then select Core in the Reset pane.

5. Onthe menu bar of IAR IDE, select Project > Download > Download Active Application, and then click OK in the
pop-up dialog box to start firmware download, and then enter debug mode.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 42

GOODiX

Glossary
5 Glossary
Table 5-1 Glossary

Name Description

API Application Programming Interface

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DFU Device Firmware Update

DTM Direct Test Mode

DUT Device Under Test

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

HPA High Power Amplifier

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

SPA Small Power Amplifier

UART Universal Asynchronous Receiver/Transmitter

XIP Execute in Place

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 43

	Preface
	Contents
	1 Introduction
	1.1 GR5405 SDK
	1.2 Bluetooth LE Protocol Stack

	2 GR5405 Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout
	2.5.2 RAM Power Management

	2.6 SDK Directory Structure
	2.7 Tools

	3 Bootloader
	4 Development and Debugging with SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Service Logics
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	4.7 Download and Debugging with IAR

	5 Glossary

