

GR551x ANCS Profile Example Application

Version: 1.9

Release Date: 2022-02-20

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co., Ltd. is prohibited.

Trademarks and Permissions

GODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as "Goodix") makes no representation or guarantee for this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any other means.

Shenzhen Goodix Technology Co., Ltd.

Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 FAX: +86-755-33338099

Website: www.goodix.com

Preface

Purpose

This document introduces how to use and verify the ANCS example in the GR551x Software Development Kit (SDK), to help users quickly get started with secondary development.

Audience

This document is intended for:

- GR551x user
- GR551x developer
- GR551x tester
- iOS developer
- Hobbyist developer
- Technical writer

Release Notes

This document is the seventh release of *GR551x ANCS Profile Example Application*, corresponding to GR551x Systemon-Chip (SoC) series.

Revision History

Version	Date	Description
1.0	2019-12-08	Initial release
1.3	2020-03-16	Updated the release time in the footers.
1.5	2020-05-30	Updated code in "Interaction Process and Major Code".
1.6	2020-06-30	 Modified the pin code in "Bluetooth Connection" and "Connection, Pairing, and Bonding". Updated the code in "Control Command".
1.7	2021-04-20	Optimized descriptions in "Initial Operation" and "Application Details".
1.8	2021-08-06	Changed the section "Supported Development Platform" into "Preparation".
1.9	2022-02-20	Modified the file name of the example firmware based on SDK changes.

Contents

I
1
2
3
3
3
4
8
8
9
9
9
10
12
12
12
12

1 Introduction

Apple Notification Center Service (ANCS) is applied to intelligent Bluetooth-enabled devices, such as wristbands and smart watches that connect to iOS devices. Through a Bluetooth Low Energy (Bluetooth LE) link, the Bluetooth devices can access media notifications from iOS devices, and send ANCS-related control commands to iOS devices.

This document introduces how to implement ANCS Client based on a GR551x System-on-Chip (SoC).

Before getting started, you can refer to the following documents.

Name	Description
ANCS Specification	Provides ANCS protocols. Available at <u>Apple Notification Center Service (ANCS) Specification</u> .
GR551x Developer Guide	Introduces GR551x Software Development Kit (SDK) and how to develop and debug applications based on the SDK.
Bluetooth Core Spec	Offers official Bluetooth standards and core specification from Bluetooth SIG.
Bluetooth GATT Spec	Provides details about Bluetooth profiles and services. Available at http://www.bluetooth.com/ specifications/gatt
J-Link/J-Trace User Guide	Provides J-Link operational instructions. Available at <u>http://www.segger.com/downloads/jlink/</u> <u>UM08001_JLink.pdf.</u> .
Keil User Guide	Offers detailed Keil operational instructions. Available at <u>http://www.keil.com/support/man/docs/uv4/</u> .

Table 1-1 Reference documents

2 Profile Overview

The ANCS Profile defines two device roles:

- 1. Server: iOS devices serve as the Central, providing services and data sources.
- 2. Client: Bluetooth devices serve as the Peripheral capable of detecting services from iOS devices (the Central) as well as reading and writing data after being connected to an iOS device.

The interaction process between the Server and the Client is presented in the figure below:

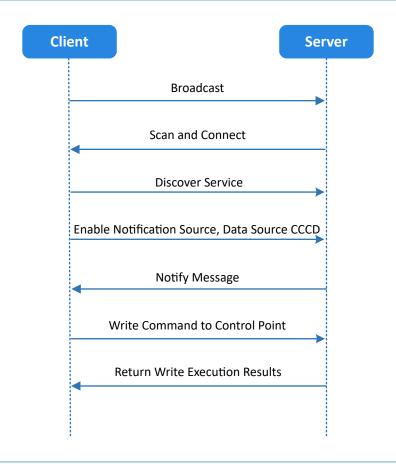


Figure 2-1 Client-Server interaction process

ANCS includes three characteristics as below.

Table 2-1 ANCS characteristics

Characteristic	UUID	Туре	Support	Security	Property
Notification Source	9FBF120D-6301-42D9-8C58-25E699A21DBD	128 bits	Mandatory	None	Notify
Control Point	69D1D8F3-45E1-49A8-9821-9BBDFDAAD9D9	128 bits	Mandatory	None	Write
Data Source	22EAC6E9-24D6-4BB5-BE44-B36ACE7C7BFB	128 bits	Mandatory	None	Notify

3 Initial Operation

This chapter introduces how to rapidly verify an ANCS Client example in the GR551x SDK.

Note:

SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Perform the following tasks before running an ANCS example.

• Hardware preparation

Table 3-1 Hardware preparation

Name	Description
J-Link debug probe	JTAG emulator launched by SEGGER. For more information, visit
J-LIIK debug probe	www.segger.com/products/debug-probes/j-link/.
Development board	GR5515 Starter Kit Board (SK Board)
Connection cable	Micro USB 2.0 cable
iOS device	Any iOS device supporting Bluetooth LE 4.0 and later, such as iPhone 4S and iPad 3

• Software preparation

Table 3-2 Software preparation

Name	Description		
Windows	Windows 7/Windows 10		
J-Link driver	A J-Link driver. Available at <u>www.segger.com/downloads/jlink/</u> .		
Keil MDK5	An integrated development environment (IDE). MDK-ARM Version 5.20 or later is required. Available at <u>www.keil.com/download/product/</u> .		
GProgrammer (Windows)	A programming tool. Available in SDK_Folder\tools\GProgrammer.		
GRUart (Windows)	A serial port debugging tool. Available in SDK_Folder\tools\GRUart.		

3.2 Firmware Programming

The source code of the ANCS example is in SDK_Folder\projects\ble\ble_peripheral\ble_app_ancs _c.

You can programme *ble_app_ancs_c.bin* to the SK Board through GProgrammer. For details, see *GProgrammer User Manual*.

G@DiX

🛄 Note:

• The *ble_app_ancs_c.bin* is in SDK_Folder\projects\ble\ble_peripheral\ble_app_ancs_c\bu ild\.

3.3 Test and Verification

Follow the steps below to test the ANCS example:

1. Establish connection.

Power the SK Board on. Turn on **Bluetooth** on an iOS device to scan nearby Bluetooth devices. The device discovers an SK Board with an advertising name of **Goodix_ANCS_C** as shown in Figure 3-1.

Note:

This document is based on tests on an iPhone 7 running on iOS 11.03. The interface can be different depending on the device and operating system in use.

Settings	Bluetooth
Bluetooth	
Now discoverable as	"iPhone".
DEVICES	
Android Blueabo	1
autotest	
Goodix_ANCS_0	0
Goodix_ZZM	
gouwei_phone	
honor Band 3-c	76
Honor Magic 2	
NANCHEN	
M Bluetooth Ne	ckband Earphones ANC
Mobile Phone	

Figure 3-1 Discovering Goodix_ANCS_C

Tap **Goodix_ANCS_C** to connect the device to the SK Board. As a pairing request box pops up as below, enter **123456**, and tap **Pair**.

Setti	ngs Bluet	ooth	
Blueto	ooth		
Now d	Bluetooth Pai "Goodix_ANCS_C" wa	•	
MY DE	your iPhone. Enter t "Goodix_A	he code shown on	
Gooc			100
-			
OTHE	Cancel	Pair	
Andro	id Blueabc		
autote	nst		
autote	ıst		
autote	nst		
Goodi	K,ZZM		
gouw	si_phone		
honor	Band 3-c7d		
Honor	Magic 2		

Figure 3-2 Entering pairing password

After pairing, Goodix_ANCS_C displays as Connected under MY DEVICES.

Settings Bluetooth	
Bluetooth	
Now discoverable as "iPhone".	
MY DEVICES	
Goodix_AMS_C	Connected 🚺
OTHER DEVICES ()	
autotest	
ELON手机	
goodix-cd	
honor Band 3-2b1	
NANCHEN	
mið	
Mobile Phone	
Mobile Phone	

Figure 3-3 Successful pairing

2. Test and Verification

Users can verify whether ANCS runs normally according to serial port printing information on GRUart. This section describes how to verify ANCS operations by taking a notification as an example, as shown in the figure below. For details, refer to <u>Apple Notification Center Service (ANCS) Specification</u>.

🔄 GRUart						- 0) ×
	Receive Data						
Serial Port Setting	Format:	⊕ ASCII	○ Hex	Show	fime 🗆	Font Si	ze 10
PortName COM3 ILink CDC 1	Background:	⊛ White	○ Black				Search
CONC JEIN COC	APP_I: Local Boar	d EA:CB:3E:CF:	00:00.				
BaudRate 115200	APP_I: Apple Noti: APP_I: Connected						
DataBits 8	APP_I: Notification						
a cabita o	APP I: Event:	Added					
Parity None	APP_I: Category I						
none none	APP_I: Category C						
StopBits 1	APP_I: UID: APP I: Flags:	0					
COPPLED 1	APP I: Silent						
	APP_I: Pre-exist	ing					
Flow Control 🗌 RTS 👘 🗆 D		Action					
	APP_I: Notification						
Close Port	APP I: Event:	Added					
	APP_I: Category I						
	ADD T. Cotomover O	****					
					Save	Pause	Clea:
TxRx Data Size	Send data						
	Single Multi						
Tx Count 0 By	tes Format: • ASC	CII O Hex	Loop 🗆	Period 50	÷.,	ns 🗆 New	Line
Rx Count 8 By	es						
Бу							
Clear							
	file path			Browse	Send	Pause	Clear
	> patti			Dr OWSE	ound	, ause	orear

Figure 3-4 Serial port printing information on GRUart

Output information from serial ports is described as below:

Name	Description
Notification	Indicates this is a notification
Event: Added	Event type: Added
Category ID: Social	Information category: Social
Category Cnt: 1	Type quantity: 1
UID: 0	Unique identifier (UID) of the notification: 0
Flags: Silent	Information type: Silent
Pre-existing	Exists in buffer
Negative Action	Indicates delete operation is allowed

Table 3-3 Notification description

Take making and answering a phone call for example. Make a phone call on another phone to the tested iPhone 7. When the call is put through, the tested iPhone 7 sends a notification to the SK Board immediately; the board then processes the received notification, and the ANCS Client example prints information on GRUart.

To check the incoming call number, users can press **OK** on the board, and GRUart displays the following information (including the incoming call number).

🥌 GRUart							-		×
Serial Po	ort Setting	Receive Data Format:	⊛ ASCII	○ Hex	Show	Fime □	Font :	Size	10
PortName	COM3 JLink CDC U/ ~	Background:	⊛ White	○ Black				Sea	irch
BaudRate	115200 ~	Notification APP_I: Event: APP_I: Category ID: APP_I: Category Cnt							
DataBits	8 ~	APP_I: Flags: APP_I: Important	715						
Parity	None	APP_I: Positive Ac APP_I: Negative Ac	tion						
StopBits	1 ~	APP_I: UID=715, ATT com. apple. mobilepho APP_I: UID=715, ATT	one	ntifier					
Flow Cont	rol □rts □dtr	(028) 6519 8758: APP_I: UID=715, ATT	-	e					
		四川 成都: APP_I: UID=715, ATI 呼入电话	IR_ID: Message						
•	Close Port	APP_I: APP_I: UID=715, ATT 12	IR_ID: Message	Size					
		APP_I: UID=715, ATT 20190530T200830							
		APP_I: UID=715, ATT 接听:	-						
		APP_I: UID=715, ATT 拒绝:	IK_ID: Negativ	e Action Label					
						Save	Pause	. (Clea:
TxRx Data	a Size	Send data							
		Single Multi							
Tx Count	0 Bytes	Format: ASC	II O Hex	Loop 🗆	Period 50	÷ 1	ns 🗆 N	ewLin	e
Rx Count	8 Bytes								
	Clear								

Figure 3-5 Printed information on GRUart

To answer the phone call, press **RIGHT** on the board, then the call is connected. To decline the phone call, press **LEFT**.

Dote:

For more information about buttons on an SK Board, see GR551x Starter Kit User Guide.

4 Application Details

This chapter introduces the running procedures and major code of the ANCS Client example.

4.1 Running Procedures

After proper running, the ANCS Client example successively performs advertising, pairing and bonding, ANCS discovery, Client Characteristic Configuration Descriptor (CCCD) enablement, notification handling, as well as interactive command operations. Using ANCS Client as an example, this section elaborates on the interaction process between an ANCS Server and an ANCS Client, as illustrated in the figure below.

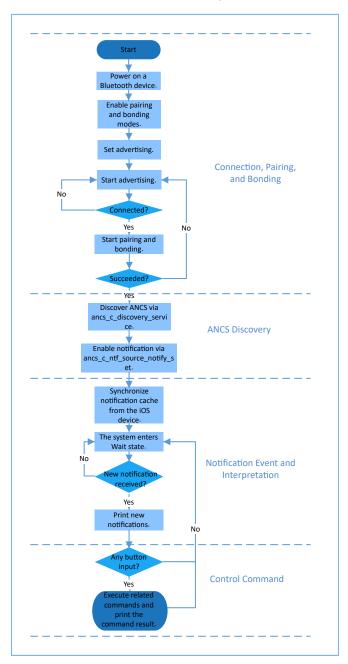


Figure 4-1 ANCS Client-Server interaction process

4.2 Major Code

Write the control information to the Control Point of ANCS Server via ANCS Client. Details about a particular notification can be retrieved from the Data Source returned from the iOS device. In following subsections, relevant control commands are described in detail.

4.2.1 Accessing Notification Attributes

Path: gr_profiles\ancs_protocol.h under the project directory

Name: ancs_protocol.h

The macro listed below helps to access alternative values of the notification attributes.

```
typedef enum
{
   ANCS NOTIF ATTR ID APP IDENTIFIER = 0,
                                              /**< Identifies that the
   attribute data is of an "App Identifier" type. */
   ANCS NOTIF ATTR ID TITLE,
                                               /**< Identifies that the
   attribute data is a "Title". */
   ANCS NOTIF ATTR ID SUBTITLE,
                                               /**< Identifies that the
   attribute data is a "Subtitle". */
   ANCS NOTIF ATTR ID MESSAGE,
                                               /**< Identifies that the
   attribute data is a "Message". */
   ANCS NOTIF ATTR ID MESSAGE SIZE,
                                               /**< Identifies that the
   attribute data is a "Message Size". */
   ANCS NOTIF ATTR ID DATE,
                                               /**< Identifies that the
   attribute data is a "Date". */
   ANCS NOTIF ATTR ID POSITIVE ACTION LABEL, /**< The notification has a
   "Positive action" that can be executed associated with it. */
   ANCS NOTIF ATTR ID NEGATIVE ACTION LABEL, /**< The notification has a
   "Negative action" that can be executed associated with it. */
} ancs notification attr t;
```

Path: gr_profiles\ancs_protocol.c under the project directory

Name: ancs_notify_attr_get();

This function helps to access the corresponding notification attribute according to its UID. Take an e-mail sent from the iOS device for example. The ANCS Client example is capable of inquiring the detailed contents, receiving time, and the sender of the e-mail via this function.

```
void ancs_notify_attr_get(int uid, char noti_attr)
{
    int len = 0;
    uint8_t buf[8];
    buf[0] = CTRL_POINT_GET_NTF_ATTRIBUTE;
    memcpy(&buf[1], &uid, 4);
    buf[5] = noti_attr;
    len = CFG_ANCS_ATTRIBUTE_MAXLEN;
    buf[6] = (len & 0xff);
    buf[7] = (len>>8) & 0xff;
    ancs_c_write_control_point(0, buf, 8);
}
```

4.2.2 Execution

Path: gr_profiles\ancs_protocol.h under the project directory

Name: ancs_protocol.h

Two alternatives are available for users on the operation for each notification: 0 indicates agreement, and 1 indicates rejection.

```
typedef enum
{
    ACTION_ID_POSITIVE = 0, /**< Positive action. */
    ACTION_ID_NEGATIVE /**< Negative action. */
} ancs c action id t;</pre>
```

Path: gr_profiles\ancs_protocol.c under the project directory

Name: ancs_action_perform();

This function is used to process notifications.

```
void ancs_action_perform(int uid, int action)
{
    uint8_t buf[6];
    buf[0] = CTRL_POINT_PERFORM_NTF_ACTION;
    memcpy(&buf[1], &uid, 4);
    buf[5] = action;
    ancs_c_write_control_point(0, buf, 6);
}
```

4.2.3 Interaction

To help users perform an interaction test on ANCS Client, this example implements the button-based commands, enabling users to operate on Control Point by pressing specific buttons.

Path: user_app\user_gui.c under the project directory

Name: app_key_evt_handler();

The following functions provide the process in which the response is triggered by using buttons on the SK Board. When users press specific buttons, the ANCS Client example generates corresponding interaction commands.

Functionalities of each button are presented below:

- **OK**: Obtains and prints attribute values in various types. Such attribute values include details about text messages and e-mails, and the sending time.
- **RIGHT**: Represents Yes or agree. When there is an incoming call, Yes means answering the call.
- LEFT: Represents No or decline. When there is an incoming call, No means declining the call.

For detailed test methods for commands, refer to Apple Notification Center Service (ANCS) Specification.

}

```
ancs_notify_attr_get(uid, ANCS_NOTIF_ATTR_ID_TITLE);
             ancs_notify_attr_get(uid, ANCS_NOTIF_ATTR_ID_MESSAGE);
         }
     }
     else if (BSP KEY LEFT ID == key id)
     {
         APP LOG INFO("pressed key left");
         uid = ancs get uid();
         if (uid > 0)
         {
             ancs_action_perform(uid, ACTION_ID_NEGATIVE);
         }
     }
     else if (BSP_KEY_RIGHT_ID == key_id)
     {
         APP LOG INFO("pressed key right");
         uid = ancs_get_uid();
         if (uid > \overline{0})
         {
             ancs_action_perform(uid, ACTION_ID_POSITIVE);
         }
    }
}
```

GODIX

FAQ

5 FAQ

This chapter describes problems, reasons, and solutions when verifying and using the ANCS Client example.

5.1 Why Is There No Output Information from GRUart?

Description

No printed information displays on GRUart, or GRUart encounters garbled printing.

Analysis

The *ble_app_ancs_c.bin* firmware is not programmed on the board correctly, or the **BaudRate** on the GRUart is incorrect, resulting in GRUart's failure to print information.

Solution

Confirm on GRUart, the **BaudRate** is 115200 with **DataBits** of 8, **StopBits** of 1, None **Parity**, and no **Flow Control**. Confirm the serial ports have been connected correctly.

If there is nothing wrong with the serial port connection, redo the firmware programming, and ensure no modification has been done on the project, then directly download the firmware to the Bluetooth device using GProgrammer.

5.2 Why Does an iOS Device Fail to Scan Any Bluetooth Advertising from Goodix_ANCS_C?

Description

An iOS device with Bluetooth enabled fails to find advertising from **Goodix_ANCS_C**.

Analysis

Exceptions occur in the Bluetooth antenna connection or firmware.

- Solution
 - 1. Check whether the Bluetooth function on the iOS device is enabled. If the Bluetooth function is enabled, check whether the antenna of the GR551x platform is connected successfully.
 - 2. If the Bluetooth functions properly and the connection is successful, check the hardware problem by downloading the factory default test firmware.

5.3 Why Does an iOS Device Fail to Access Notification after Connection?

Description

After being connected to a Bluetooth device, the iOS device cannot receive any notification.

Analysis

The Bluetooth function on the iOS device may be turned off. The Bluetooth device may have been connected to the phone previously. Or the notification function on the iOS device is disabled.

Solution

G@DiX

- 1. In **Settings** of the iOS device, check whether the Bluetooth device has been connected to the mobile phone before. If connection has been established previously, tap **Goodix_ANCS_C** to **Forget This Device**, and redo the scanning, pairing, and bonding.
- 2. Ensure the notification function of the iOS device is enabled.