
GR551x AT Command Example Application

Version: 1.3

Release Date: 2022-02-20

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces how to use and verify the ble_app_uart_at example in the GR551x Software Development
Kit (SDK), to help users quickly get started with secondary development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Hobbyist developer

Release Notes

This document is the fourth release of GR551x AT Command Example Application, corresponding to GR551x System-
on-Chip (SoC) series.

Revision History

Version Date Description

1.0 2021-02-23 Initial release

1.1 2021-04-20 Optimized descriptions in “Initial Operation” and “Application Details”.

1.2 2021-08-09 Changed the section "Supported Development Platform" into "Preparation".

1.3 2022-02-20 Modified the file name of the example firmware based on SDK changes.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Profile Overview... 2

3 Initial Operation..3

3.1 Preparation.. 3
3.2 Firmware Programming... 3
3.3 Test and Verification..4

4 Application Details.. 8

4.1 Running Procedures...8
4.2 Major Code..10

4.2.1 Event Handler Function.. 10
4.2.2 Checking and Updating Environment Variables of AT Command...11
4.2.3 Performing Bluetooth LE Operations Specific to AT Command..12
4.2.4 Writing AT Command Execution Result to ble to uart Buffer...13
4.2.5 Reading Ring Buffers and Transmitting Data.. 14

5 Custom Commands... 16

6 FAQ... 18

6.1 Why Do I Fail to Set GAP Roles Through AT Commands?...18
6.2 Why Do I Fail to Set Device Information?...18
6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command into GRUart?.............................18

7 Appendix...19

7.1 AT Command Table..19
7.2 Error Code... 21

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. II

Introduction

1 Introduction
GR551x Software Development Kit (SDK) provides an AT-command-related example, ble_app_uart_at, to help
developers quickly build a Bluetooth module and enable Bluetooth Low Energy (Bluetooth LE) communications. The
example allows developers to control hardware through simple AT commands based on actual demands, freeing them
up from modifying source code. AT commands feature easy extension and can be easily customized by users based on
actual demands.

AT commands can be used to start/stop advertising, set advertising parameters, start/stop scanning, set scanning
parameters, and get device name/address. In addition, the commands support control of devices equipped with SoCs
through terminals. This makes integration of ble_app_uart_at into third-party microcontrollers possible.

This document introduces how to use and verify the ble_app_uart_at example in the GR551x SDK.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

Name Description

GR551x Developer Guide Introduces GR551x SDK and how to develop and debug applications based on the SDK.

J-Link/J-Trace User Guide
Provides J-Link operational instructions. Available at www.segger.com/downloads/jlink/

UM08001_JLink.pdf.

Keil User Guide Offers detailed Keil operational instructions. Available at www.keil.com/support/man/docs/uv4/.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 1

https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.keil.com/support/man/docs/uv4/

Profile Overview

2 Profile Overview
Based on Goodix UART Service (GUS), the ble_app_uart_at example is mainly used to enable passthrough. As the most
easy-to-use means of Bluetooth LE communications, passthrough features:

• Unaltered service data during transmission

• Bidirectional data transfer

The GUS is identified by its vendor-specific Universally Unique Identifier (UUID), A6ED0201-D344-460A-8075-
B9E8EC90D71B.

GUS includes three characteristics:

• GUS TX characteristic: Transmits data.

• GUS RX characteristic: Receives data.

• GUS Flow Control characteristic: Controls data flow.

These characteristics are described in detail as follows:

Table 2-1 GUS characteristics

Characteristic UUID Type Support Security Property

GUS TX A6ED0203-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None Notify

GUS RX A6ED0202-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None Write

GUS Flow Control A6ED0204-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None Write/Notify

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 2

Initial Operation

3 Initial Operation
This chapter introduces how to run and verify the ble_app_uart_at example in the GR551x SDK.

 Note:

SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Perform the following tasks before running the ble_app_uart_at example.

• Hardware preparation

Table 3-1 Hardware preparation

Name Description

Development board GR5515 Starter Kit Board (SK Board); two boards are required.

Connection cable Micro USB 2.0 cable

• Software preparation

Table 3-2 Software preparation

Name Description

Windows Windows 7/Windows 10

J-Link driver A J-Link driver. Available at www.segger.com/downloads/jlink/.

Keil MDK5
An integrated development environment (IDE). MDK-ARM Version 5.20 or later is

required. Available at www.keil.com/download/product/.

GProgrammer (Windows) A programming tool. Available in SDK_Folder\tools\GProgrammer.

GRUart (Windows) A serial port debugging tool. Available in SDK_Folder\tools\GRUart.

3.2 Firmware Programming

The source code of the ble_app_uart_at example is in SDK_Folder\projects\ble\ble_multi_role\ble_
app_uart_at.

You can programme ble_app_uart_at.bin to an SK Board through GProgrammer. For details, see GProgrammer User
Manual.

For a project involving modification on source code of ble_app_uart_at, re-compile the project to generate a new
ble_app_uart_at.bin file, and then programme the file to the SK Board. For details, refer to GR551x Developer Guide.

 Note:

• The ble_app_uart_at.bin is in SDK_Folder\projects\ble\ble_multi_role\ble_uart_at\buil
d.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 3

https://www.segger.com/downloads/jlink/
https://www.keil.com/download/product/

Initial Operation

3.3 Test and Verification

In this test, two SK Boards are required, with one named as SK Board A (as Client) and the other as SK Board B (as
Server). The two boards communicate with each other through Bluetooth LE.

After the SK Boards and GRUart are ready, start GRUart. Wait until GRUart displays device address information and
Goodix UART(AT) example start. This indicates the ble_app_uart_at firmware operates properly. The figure below
shows the proper operation of the firmware on SK Board B.

Figure 3-1 GRUart information displaying proper operation of firmware

 Note:

The device address displayed on GRUart is the one generated after modifying source code of the ble_app_uart_at
example. The actual device address used by users prevails.

After the firmware of the ble_app_uart_at example operates normally, deliver AT commands to perform specific
Bluetooth LE operations.

1. Send AT:ADV_STOP command to SK Board B to stop advertising, after which send AT:ADV_START command
to restart advertising.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 4

Initial Operation

Figure 3-2 Stopping advertising Figure 3-3 Restarting advertising

2. Send AT:SCAN_START command to SK Board A to start scanning. When SK Board A discovers the GUS, send A
T:CONN_INIT= command to initiate a connection with SK Board B.

Figure 3-4 Starting scanning Figure 3-5 Initiating a connection after discovering GUS

3. After SK Board A is successfully connected to SK Board B, execute specific AT commands to get the address and
role information of the two boards.

• Send AT:ADDR? command to get address information.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 5

Initial Operation

Figure 3-6 Getting device address information of SK Board A Figure 3-7 Getting device address information of SK Board B

• Send AT:GAP_ROLE? command to get role information.

Figure 3-8 Getting role information of SK Board A Figure 3-9 Getting role information of SK Board B

4. Enable data transmission via GUS.

• SK Board B (Server) sends Goodix_BLE to SK Board A (Client).

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 6

Initial Operation

Figure 3-10 Server sends data to Client Figure 3-11 Client receives data from Server

• SK Board A (Client) sends Hello Word! to SK Board B (Server).

Figure 3-12 Client sends data to Server Figure 3-13 Server receives data from Client

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 7

Application Details

4 Application Details
This chapter introduces the running procedures and major code of the ble_app_uart_at example.

4.1 Running Procedures

This section elaborates on the running procedures of the ble_app_uart_at example, aiming to help users deeply
understand the operational mechanism of the example.

The following figure displays the running procedures of the ble_app_uart_at example:

Execute the Bluetooth LE
operaon corresponding to the

AT command.

Write to-be-transmied data
to ring buffers.

Read the ring buffers to
check whether there is data

to be transmied.

Transmit data.

Receive data.

AT command or not?

Check and update
environment variables of the

AT command.

Start

Yes

Yes

No

No

A to-be-executed AT command
is involved.

Figure 4-1 ble_app_uart_at running procedures

1. Judge whether the received data is an AT command. If yes, check and update the environment variables of the AT
command. If no, perform Step 4.

2. Read the environment variables of the AT command. When there is an AT command to be executed and its
command handler is not null, perform Step 3.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 8

Application Details

3. Perform Bluetooth LE operations corresponding to the AT command.

4. Write to-be-transmitted data to ring buffers. The ring buffers comprise two types: ble to uart buffer (for storing
received data) and uart to ble buffer (for storing to-be-transmitted data).

• When AT commands are sent via GRUart, the command execution result is cached to the ble to uart buffer.

• When non-AT commands are sent via GRUart, the data transmission mechanism is explained by taking
two SK Boards running ble_app_uart_at firmware as an example. Connect the two SK Boards to a PC and
enable Bluetooth on the boards. SK Board A (Client) sends non-AT commands to the SK Board B (Server) via
GRUart. The to-be-transmitted data will be cached into the uart to ble buffer before transmission by the
Client, and the Server caches the received data to the ble to uart buffer.

5. Read the ring buffers to check whether there is data to be transmitted. If yes, transmit the data. Otherwise,
return to Step 1.

The following figure displays how to execute an AT command.

Inialize AT command.

Receive and check an AT
command.

AT command to be parsed or
not?

Is the input AT command
complete?

Get parameters and ID of
the AT command.

Is the AT command ID valid?

Change the environment
variable state to Pending

Execuon.

Execute the corresponding
Bluetooth LE operaon.

Call command complete cb
to write data to ble to uart

buffer.

Update the AT command
status.

Yes

Yes

Yes

No

No

No

Figure 4-2 AT command execution procedures

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 9

Application Details

1. Initialize AT command. Complete registration of the AT command attribute table, command complete cb, and
app timer.

 Note:

• AT command attribute table records AT command information such as AT Command ID, AT Command Tag, AT
Command Tag Length, and AT Command Handler.

• command complete cb writes the command execution result to the ble to uart buffer. If an error exists in the
command response, the error code is regarded as to-be-transmitted data. If there is no error, the command
response data is regarded as to-be-transmitted data.

• app timer manages timeouts.

2. Check the received AT command. If the command is to be parsed, change the status of the command from
Pending Parsing to In Parsing and perform Step 3. Otherwise, update the error code and perform Step 7.

3. Check whether the input AT command is complete. A complete AT command starts with AT: and ends with \r\
n. If the command is complete, perform Step 4. Otherwise, update the error code, and perform Step 7.

4. Get parameters and ID of the AT command.

5. Check whether the AT command ID is valid. If the command ID is valid, change the status of the command to
Pending Execution. Otherwise, update the error code, and perform Step 7.

6. Execute the AT command. If the AT Command Handler is not null, call the handler to perform related Bluetooth
LE operation. Otherwise, update the error code, and perform Step 7.

7. Call command complete cb to write the command execution result to the ble to uart buffer.

4.2 Major Code

This section introduces the major code of the ble_app_uart_at example.

4.2.1 Event Handler Function

Path: user_app\user_app.c

Name: gus_service_process_event();

When a data receiving event occurs, the event handler function checks whether the received data is an AT command.
If yes, call at_cmd_parse. If no, write the data to ble to uart buffer.

void at_cmd_schedule(void)
{
 uint8_t ble_rx_data[AT_CMD_BUFFER_SIZE_MAX];
 switch (p_evt->evt_type)
 {
 ...
 case GUS_EVT_RX_DATA_RECEIVED:
 if (0 == memcmp(p_evt->p_data, "AT:" , 3))
 {
 memcpy(ble_rx_data, p_evt->p_data, p_evt->length);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 10

Application Details

 if ((0x0d ! = p_evt->p_data[p_evt->length - 2]) ||\
 (0x0a ! = p_evt->p_data[p_evt->length - 1]))
 {
 ble_rx_data[p_evt->length] = 0x0d;
 ble_rx_data[p_evt->length + 1] = 0x0a;
 }

 at_cmd_parse(AT_CMD_SRC_BLE, ble_rx_data, p_evt->length + 2);
 }
 else
 {
 ble_to_uart_buff_data_push(p_evt->p_data, p_evt->length);
 }

 break;
 ...
 }
}

4.2.2 Checking and Updating Environment Variables of AT Command

Path: gr_libraries\at_cmd.c under the project directory

Name: at_cmd_parse();

If the received data is an AT command, check and update the environment variables of the command. If
the command passes all checks, set the environment variable state of the command to Pending Execution
(AT_CMD_IN_WAITE_EXECUTE). The code snippet is as follows:

void at_cmd_parse(at_cmd_src_t cmd_src, const uint8_t *p_data, uint16_t length)
{
 AT_CMD_RSP_DEF(cmd_rsp);

 s_at_cmd_env.cmd_src = cmd_src;

 // Check parse cmd is allowed or not
 if (AT_CMD_IN_READY_PARSE ! = s_at_cmd_env.cmd_state)
 {
 cmd_rsp.error_code = AT_CMD_ERR_PARSE_NOT_ALLOWED;
 at_cmd_execute_cplt(&cmd_rsp);
 return;
 }
 else
 {
 s_at_cmd_env.cmd_state = AT_CMD_IN_PARSING;
 }

 // Check cmd input is integrity or not
 if (!at_cmd_integrity_check(p_data, length, &s_parse_rlt))
 {
 cmd_rsp.error_code = AT_CMD_ERR_INVALID_INPUT;
 at_cmd_execute_cplt(&cmd_rsp);
 return;
 }

 // Get cmd parameters
 at_cmd_args_get(&s_parse_rlt);

 // Get cmd Id
 at_cmd_id_get(&s_parse_rlt);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 11

Application Details

 // Check cmd id is valid or not
 if (AT_CMD_INVALID == s_parse_rlt.cmd_id)
 {
 cmd_rsp.error_code = AT_CMD_ERR_UNSUPPORTED_CMD;
 at_cmd_execute_cplt(&cmd_rsp);
 return;
 }

 s_at_cmd_env.cmd_state = AT_CMD_IN_WAITE_EXECUTE;
}

4.2.3 Performing Bluetooth LE Operations Specific to AT Command

Path: gr_libraries\at_cmd.c under the project directory

Name: at_cmd_schedule();

Read the environment variables of the AT command. If the command is in Pending Execution state with the Command
Handler being not null, perform Bluetooth LE operations such as advertising, scanning, and connection based on the
attribute table of the AT command. If the AT command is used to modify device name, call the command handler
function, uart_at_gap_name_set, to modify the device name.

void at_cmd_schedule(void)
{
 if (AT_CMD_IN_WAITE_EXECUTE == s_at_cmd_env.cmd_state)
 {
 s_at_cmd_env.cmd_state = AT_CMD_IN_EXECUTING;

 if (s_at_cmd_env.p_cmd_attr[s_parse_rlt.cmd_idx].cmd_handler)
 {
 if (s_at_cmd_env.cmd_time_cb)
 {
 s_at_cmd_env.cmd_time_cb();
 }

 s_at_cmd_env.p_cmd_attr[s_parse_rlt.cmd_idx].cmd_handler(&s_parse_rlt);
 }
 else
 {
 AT_CMD_RSP_DEF(cmd_rsp);
 cmd_rsp.error_code = AT_CMD_ERR_NO_CMD_HANDLER;
 at_cmd_execute_cplt(&cmd_rsp);
 }
 }
}

Path: user_app\at_cmd_handler.c under the project directory

Name: uart_at_gap_name_set();

The code snippet is as follows:

void uart_at_gap_name_set(at_cmd_parse_t *p_cmd_param)
{
 AT_CMD_RSP_DEF(cmd_rsp);
 sdk_err_t error_code;
 uint32_t index;

 if (2 ! = p_cmd_param->arg_count)

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 12

Application Details

 {
 cmd_rsp.error_code = AT_CMD_ERR_INVALID_PARAM;
 }
 else
 {
 if (at_cmd_decimal_num_check(&p_cmd_param->p_buff[p_cmd_param->arg_idx[0]],
 p_cmd_param->arg_length[0],&index))
 {
 error_code = ble_gap_device_name_set((gap_dev_name_write_perm_t)index,
 &p_cmd_param->p_buff[p_cmd_param->arg_idx[1]],p_cmd_param-
>arg_length[1]);

 cmd_rsp.error_code = at_cmd_ble_err_convert(error_code);
 }
 else
 {
 cmd_rsp.error_code = AT_CMD_ERR_INVALID_PARAM;
 }
 }

 if (AT_CMD_ERR_NO_ERROR == cmd_rsp.error_code)
 {
 cmd_rsp.length = at_cmd_printf_bush(cmd_rsp.data, "OK");
 }

 at_cmd_execute_cplt(&cmd_rsp);
}

4.2.4 Writing AT Command Execution Result to ble to uart Buffer

Path: gr_libraries\at_cmd.c under the project directory

Name: at_cmd_execute_cplt();

After the AT Command Handler is executed successfully, update the to-be-transmitted data based on the return value
of the AT command. Call cmd_cplt_cb to write the execution result of the command to the ble to uart buffer. The code
snippet is as follows:

void at_cmd_execute_cplt(at_cmd_rsp_t *p_cmd_rsp)
{
 uint8_t length = 0;

 if (AT_CMD_ERR_NO_ERROR != p_cmd_rsp->error_code)
 {
 switch(p_cmd_rsp->error_code)
 {
 ...
 case AT_CMD_ERR_UNSUPPORTED_CMD:
 length = at_cmd_printf_bush(at_cmd_rsp_buff, "ERR: Unsupported AT CMD.");
 break;
 ...
 }
 }
 else
 {
 memcpy(at_cmd_rsp_buff, p_cmd_rsp->data, p_cmd_rsp->length);
 length = p_cmd_rsp->length;
 }

 at_cmd_rsp_buff[length] = 0x0d;

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 13

Application Details

 at_cmd_rsp_buff[length + 1] = 0x0a;

 if (s_at_cmd_env.cmd_cplt_cb)
 {
 if (AT_CMD_SRC_UART == s_at_cmd_env.cmd_src)
 {
 s_at_cmd_env.cmd_cplt_cb(AT_CMD_RSP_DEST_UART, at_cmd_rsp_buff, length + 2);
 }
 else if (AT_CMD_SRC_BLE == s_at_cmd_env.cmd_src)
 {
 s_at_cmd_env.cmd_cplt_cb(AT_CMD_RSP_DEST_BLE, at_cmd_rsp_buff, length + 2);
 }
 }

 s_at_cmd_env.cmd_state = AT_CMD_IN_READY_PARSE;
 ...
}

Path: user_app\at_cmd_handler.c under the project directory

Name: user_at_cmd_callback();

static void user_at_cmd_callback(at_cmd_rsp_dest_t rsp_dest, const uint8_t *p_data,
 uint8_t length)
{
 s_curr_rsp_dest = rsp_dest;

 if (AT_CMD_RSP_DEST_UART == s_curr_rsp_dest)
 {
 ble_to_uart_buff_data_push(p_data, length);
 }
 else if (AT_CMD_RSP_DEST_BLE == s_curr_rsp_dest)
 {
 uart_to_ble_buff_data_push(p_data, length);
 }

 app_timer_delete(&s_at_cmd_timing_id);
}

4.2.5 Reading Ring Buffers and Transmitting Data

Path: user_app\transport_scheduler.c under the project directory

Name: transport_schedule();

When Notify and Flow Control characteristics on the device are enabled, if data exists in the ring buffers, read the
data; then transmit the read data.

void transport_schedule(void)
{
 uint16_t items_avail = 0;
 uint16_t read_len = 0;

 // read data from s_uart_to_ble_buffer, then notify or write to peer.
 if (transport_flag_cfm(GUS_TX_NTF_ENABLE) && transport_flag_cfm(BLE_TX_CPLT) &&
 transport_flag_cfm(BLE_TX_FLOW_ON))
 {
 items_avail = ring_buffer_items_count_get(&s_uart_to_ble_buffer);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 14

Application Details

 if (items_avail > 0)
 {
 read_len = ring_buffer_read(&s_uart_to_ble_buffer, s_ble_tx_data,
 s_mtu_size - 3);

 transport_flag_set(BLE_TX_CPLT, false);

 if (BLE_GAP_ROLE_PERIPHERAL == uart_at_curr_gap_role_get())
 {
 gus_tx_data_send(0, s_ble_tx_data, read_len);
 }
 else if (BLE_GAP_ROLE_CENTRAL == uart_at_curr_gap_role_get())
 {
 gus_c_tx_data_send(0, s_ble_tx_data, read_len);
 }
 }
 }

 // read data from s_ble_to_uart_buffer, then send to uart.
 items_avail = ring_buffer_items_count_get(&s_ble_to_uart_buffer);

 if (items_avail > 0)
 {
 read_len = ring_buffer_read(&s_ble_to_uart_buffer, s_uart_tx_data,
 ONCE_SEND_DATA_SIZE);
 uart_tx_data_send(s_uart_tx_data, read_len);
 }
}

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 15

Custom Commands

5 Custom Commands
This chapter depicts how to customize AT commands when using and verifying the ble_app_uart_at example.

Add necessary elements of custom commands into the AT command attribute table. The elements include AT
Command ID, AT Command, AT Command Length, and AT Command Handler. After that, implement the Command
Handler(s).

 Note:

You can find the AT command attribute table in user_app\at_cmd_handler.c under the project directory.

Take the custom AT command for MTU exchange as an example. Follow the steps below to add the command to the
attribute table.

1. Add the required AT Command ID to the at_cmd_id_t structure in the at_cmd.h file (available in SDK_Folder\
components\libraries\at_cmd).

2. Update the AT command attribute table in code, and add necessary command elements to s_at_cmd_attr_table.

The updated AT command attribute table is displayed below:

static at_cmd_attr_t s_at_cmd_attr_table[] =
{
 {AT_CMD_INVALID, "", 0, NULL},
 {AT_CMD_TEST, "TEST", 4, uart_at_test},
 {AT_CMD_VERSION_GET, "VERSION?" , 8, uart_at_version_get},
 {AT_CMD_RESET, "RESET", 5, uart_at_app_reset},
 {AT_CMD_BAUD_SET, "BAUD=", 5, uart_at_baud_set},
 {AT_CMD_ADDR_GET, "ADDR?" , 5, uart_at_bd_addr_get},
 {AT_CMD_GAP_ROLE_GET, "GAP_ROLE?" , 9, uart_at_gap_role_get},
 {AT_CMD_GAP_ROLE_SET, "GAP_ROLE=", 9, uart_at_gap_role_set},
 {AT_CMD_GAP_NAME_GET, "GAP_NAME?" , 9, uart_at_gap_name_get},
 {AT_CMD_GAP_NAME_SET, "GAP_NAME=", 9, uart_at_gap_name_set},
 {AT_CMD_ADV_PARAM_SET, "ADV_PARAM=", 10, uart_at_adv_param_set},
 {AT_CMD_ADV_START, "ADV_START", 9, uart_at_adv_start},
 {AT_CMD_ADV_STOP, "ADV_STOP", 8, uart_at_adv_stop},
 {AT_CMD_SCAN_PARAM_SET, "SCAN_PARAM=", 11, uart_at_scan_param_set},
 {AT_CMD_SCAN_START, "SCAN_START", 10, uart_at_scan_start},
 {AT_CMD_SCAN_STOP, "SCAN_STOP", 9, uart_at_scan_stop},
 {AT_CMD_CONN_PARAM_SET, "CONN_PARAM=", 11, uart_at_conn_param_set},
 {AT_CMD_CONN_INIT, "CONN_INIT=", 10, uart_at_conn_init},
 {AT_CMD_CONN_CANCEL, "CONN_CANCEL", 11, uart_at_conn_cancle},
 {AT_CMD_DISCONN, "DISCONN", 7, uart_at_disconnect},
 {AT_CMD_MTU_EXCHANGE, "MTU_EXC", 7, uart_at_mtu_exchange},
};

 Note:

Added code is in bold.

3. Implement AT Command Handler.

void uart_at_mtu_exchange(at_cmd_parse_t *p_cmd_param)
{
 AT_CMD_RSP_DEF(cmd_rsp);
 sdk_err_t error_code;

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 16

Custom Commands

 error_code = ble_gattc_mtu_exchange(0);
 cmd_rsp.error_code = at_cmd_ble_err_convert(error_code);

 if (AT_CMD_ERR_NO_ERROR ! = cmd_rsp.error_code)
 {
 at_cmd_execute_cplt(&cmd_rsp);
 }
}

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 17

FAQ

6 FAQ

6.1 Why Do I Fail to Set GAP Roles Through AT Commands?

• Description

Users cannot set GAP roles by using AT commands.

• Analysis

The device is not in standby state, resulting in failure to set GAP roles through AT commands.

• Solution

Ensure the device is in standby state when using AT commands to set GAP roles.

6.2 Why Do I Fail to Set Device Information?

• Description

Users cannot set device information by using AT commands.

• Analysis

When setting device information such as modifying GAP roles and names, a space exists after "=" in an AT
command.

• Solution

Make sure there is no space after "=" in an AT command.

6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command
into GRUart?

• Description

GRUart prompts that the input AT command is invalid.

• Analysis

An AT command shall end with \r\n. When users type an AT command on GRUart, NewLine in the Single tab
under Send data is unchecked.

• Solution

Remember to check NewLine in the Single tab under Send data on GRUart.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 18

Appendix

7 Appendix

7.1 AT Command Table

The table below shows the AT commands involved in the ble_app_uart_at example.

Table 7-1 Supported AT commands for ble_app_uart_at

Command Type AT Command Description Return Value Example

Test AT:TEST
Tests whether AT command operates

properly.
OK AT:TEST

Version AT:VERSION? Gets the device version number. Version number AT:VERSION?

System reset AT:RESET Resets system. - AT:RESET

Baud rate
AT:BAUD=

<NEW_VALUE>

Configures baud rate.

NEW_VALUE: baud rate; range: [0,

2000000]

Successful: OK

Failed: ERR: Invalid

parameters.

AT:BAUD=4900

Device address AT:ADDR? Gets device address.

Successful: Device address

Failed: No device

information is returned.

AT:ADDR?

AT:GAP_ROLE? Gets role information of the device.

Device roles including

NONE, OBSERVER,

BROADCASTER,

CENTRAL,

PERIPHERAL,

ALL

AT:GAP_ROLE?

GAP role

AT:GAP_ROLE=

<NEW_ROLE>

Sets device role.

NEW_ROLE: device role. Options

include N, n, O, o, B, b, C, c, P, p, A,

and a.

Successful: OK

Failed: ERR: Command

request is not allowed.

AT:GAP_ROLE=O

AT:GAP_NAME? Gets device name.
Successful: Device name

Failed: Specific error code
AT:GAP_NAME?

GAP name
AT:GAP_NAME=<INDEX,

NEW_NAME>

Sets the device name.

INDEX: Write permission of the

device name; options: 0, 1, 2, 3, and

4

• 0: Write not allowed

• 1: Link neither encrypted nor
authenticated

Successful: OK

Failed: Specific error code
AT:GAP_NAME=1,Goodix

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 19

Appendix

Command Type AT Command Description Return Value Example

• 2: Link encrypted but not
authenticated

• 3: Link encrypted and
authenticated (MITM)

• 4: Link encrypted and
authenticated (secure
connections)

NEW_NAME: Custom advertising

name

AT:ADV_PARAM=

<ADV_INTERVAL,

ADV_DURATION>

Sets advertising parameters.

• ADV_INTERVAL: Advertising
interval; unit: 0.625 ms; range: >
32.

• ADV_DURATION: Advertising
duration; unit: 10 ms;

When ADV_DURATION = 0, the

device will continue advertising

until the host disables it. For Limited

Discoverable Mode, the parameter

value ranges from 1 to 18000; for

directed advertising with high duty

cycle, the parameter value ranges

from 1 to 128.

Successful: OK

Failed: Specific error code
AT:ADV_PARAM=80,0

AT:ADV_START Starts advertising.
Successful: OK

Failed: Specific error code
AT:ADV_START

Advertise

AT:ADV_STOP Stops advertising.
Successful: OK

Failed: Specific error code
AT:ADV_STOP

AT:SCAN_PARAM=

<SCAN_INTERVAL,

SCAN_DURATION>

Sets scanning parameters.

• SCAN_INTERVAL: Scanning
interval; unit: 0.625 ms; range: 4
to 16384

• SCAN_DURATION: Scanning
duration; unit: 0.625 ms; range: 1
to 65535

Successful: OK

Failed: Specific error code

AT:SCAN_PARAM=

176,1000

AT:SCAN_START Starts scanning.
Successful: OK

Failed: Specific error code
AT:SCAN_START

Scan

AT:SCAN_STOP Stops scanning. Successful: OK AT:SCAN_STOP

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 20

Appendix

Command Type AT Command Description Return Value Example

Failed: Specific error code

AT:CONN_PARAM=

<CONN_INTERVAL,

CONN_LATENCY,

CONN_SUP_TIMEOUT>

Sets connection parameters.

• CONN_INTERVAL: Connection
interval; range: 6 to 3200

• CONN_LATENCY: Number
of connection events that
can be ignored; range: <
(CONN_SUP_TIMEOUT/
CONN_INTERVAL) – 1

• CONN_SUP_TIMEOUT:
Supervision timeout; range: 10 to
3200

Successful: OK

Failed: Specific error code

AT:CONN_PARAM=

12,5,3200

AT:CONN_INIT= Initiates a connection.
Successful: CONNECTED

Failed: Specific error code
AT:CONN_INIT=

Connect

AT:CONN_CANCEL Terminates a connection.
Successful: OK

Failed: Specific error code
AT:CONN_CANCEL

Disconnect AT:DISCONN Disconnects a connection.
Successful: DISCONNECTED

Failed: Specific error code
AT:DISCONN

MTU exchange AT:MTU_EXC Exchanges an MTU.
Successful: MTU

Failed: Specific error code
AT:MTU_EXC

7.2 Error Code

When a failure occurs during executing AT commands, error code will be returned. The table below lists error code
involved when using and verifying the ble_app_uart_at example.

Table 7-2 Error code definitions

Name Description

AT_CMD_ERR_INVALID_INPUT The input information is invalid.

AT_CMD_ERR_UNSUPPORTED_CMD The input AT command is not supported.

AT_CMD_ERR_PARSE_NOT_ALLOWED The AT command cannot be parsed.

AT_CMD_ERR_CMD_REQ_ALLOWED

The command request is not allowed; for instance, if the device is not in standby state

when users set GAP roles through AT commands, AT_CMD_ERR_CMD_REQ_ALLOWED

is returned.

AT_CMD_ERR_NO_CMD_HANDLER The AT Command Handler is null.

AT_CMD_ERR_INVALID_PARAM The input AT command parameter is invalid.

AT_CMD_ERR_HAL_ERROR A timeout occurs for HAL operations.

AT_CMD_ERR_TIMEOUT A timeout occurs when the AT command is executed.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 21

Appendix

Name Description

AT_CMD_ERR_OTHER_ERROR Other errors

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 22

	Preface
	Contents
	1 Introduction
	2 Profile Overview
	3 Initial Operation
	3.1 Preparation
	3.2 Firmware Programming
	3.3 Test and Verification

	4 Application Details
	4.1 Running Procedures
	4.2 Major Code
	4.2.1 Event Handler Function
	4.2.2 Checking and Updating Environment Variables of AT Command
	4.2.3 Performing Bluetooth LE Operations Specific to AT Command
	4.2.4 Writing AT Command Execution Result to ble to uart Buffer
	4.2.5 Reading Ring Buffers and Transmitting Data

	5 Custom Commands
	6 FAQ
	6.1 Why Do I Fail to Set GAP Roles Through AT Commands?
	6.2 Why Do I Fail to Set Device Information?
	6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command into GRUart?

	7 Appendix
	7.1 AT Command Table
	7.2 Error Code

