G@WDIX

GR551x AT Command Example Application

Version: 1.3

Release Date: 2022-02-20

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

GCDD]X and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other

trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F.,, Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

GA@DIiX preface

Preface
Purpose

This document introduces how to use and verify the ble_app_uart_at example in the GR551x Software Development

Kit (SDK), to help users quickly get started with secondary development.

Audience

This document is intended for:
o GR551x user

o GR551x developer

. GR551x tester

o Hobbyist developer

Release Notes

This document is the fourth release of GR551x AT Command Example Application, corresponding to GR551x System-
on-Chip (SoC) series.

Revision History

Version Date Description

1.0 2021-02-23 Initial release

1.1 2021-04-20 Optimized descriptions in “Initial Operation” and “Application Details”.

1.2 2021-08-09 Changed the section "Supported Development Platform" into "Preparation".
1.3 2022-02-20 Modified the file name of the example firmware based on SDK changes.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. |

GA@DIiX Contents

Contents

o = ol |
L INEPOAUCTHION. cccee e i cciieiireeieieeeeeeeeereereernnanessseeeeeeeeeseennnnsssssssssseseeessnnnessssssssssseeeesnsnnnssssssssssseensennnnnsssssssssssnaensnnnnn 1
2 Profile OVEIVIEW.....ciiiiiiiiiiienenniiiiiiiiiiiiienennnesiiiesieiiittessssnsssssssesssssesssssssssssssssssssssesssnsssssssssssssssssssnnsnssssssssssssassanns 2
3 INItIal OPEIatioN....cciieeiiiieeiiiireeertrteeertrnneeettenneeesrennsseserennssssssansssssssnnssssseennssssssennssssssensssssssnnsssssssnnsssssssnnnnns 3
0 R o /=T o= = 1 o o TSP UPPRP PP 3
A ST 0 VY Y I e oY = =T o100 11 = TR 3
T [T AT o Yo IR =T g Tr= Y d o T o D PRSP 4

LY o T o] ot 1T T4 T 0 T=3 - T S 8
R U oY o 1T Ve o o Tol =Y [YU RR 8
A \V Yo] g o T =T OO ST TOTPRRPRRUPRN 10
4.2.1 Event Handler FUNCLION........ooiiiie ettt ettt e e e tte e e e e tre e e et e e e e e ntaeeesstaeessnsteeesensseeeeenseeeann 10

4.2.2 Checking and Updating Environment Variables of AT Command.......cc.cccooviiiniiiiniinniee e e 11

4.2.3 Performing Bluetooth LE Operations Specific to AT COMMaNd........ccceviiiiriiiriiee et 12

4.2.4 Writing AT Command Execution Result to ble to uart Buffer.........ccoccevviiiiiiiniiinieeeeeen 13

4.2.5 Reading Ring Buffers and TransSmitting Data........ccoceeeriiiriiieiiiie ettt e e e e 14

5 CUSEOM COMMEANAS...iiiieenueniiiiiieiiiiietrennmesiiiieissiiiimesssssssssssssssssssssessassansssssssssssssssssanns 16
B FAQL..cciiuruuuniiiiiiiiniiiiienansssssssssienitmmerssssssssssssssssstsressssssssssssssessssseessssssssssssssssssssesssssssssssssssssssssesssssssssssssssssssssersans 18
6.1 Why Do | Fail to Set GAP Roles Through AT COmMMaAaNdS?......ccceeiiiiiiiiiiieeeeceeccirieee e e e e ssrrrrre e e e e e e e eranreeeeeaeeens 18
6.2 Why Do | Fail to Set Device INformation?.........c..uuiiiiieii ittt e e e e e st e e e e e e e e nanaaaaeens 18
6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command into GRUart?........cccccceeevveeenneee. 18

7 - Y o T3 o L 19
2% Y I oY '] 4 F= Y o B =1 o /R R 19
2 2 =L o G o o [T SRSt 21

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 1]

G@Dix Introduction

1 Introduction

GR551x Software Development Kit (SDK) provides an AT-command-related example, ble_app_uart_at, to help
developers quickly build a Bluetooth module and enable Bluetooth Low Energy (Bluetooth LE) communications. The
example allows developers to control hardware through simple AT commands based on actual demands, freeing them
up from modifying source code. AT commands feature easy extension and can be easily customized by users based on

actual demands.

AT commands can be used to start/stop advertising, set advertising parameters, start/stop scanning, set scanning
parameters, and get device name/address. In addition, the commands support control of devices equipped with SoCs

through terminals. This makes integration of ble_app_uart_at into third-party microcontrollers possible.
This document introduces how to use and verify the ble_app_uart_at example in the GR551x SDK.

Before getting started, you can refer to the following documents.
Table 1-1 Reference documents
Name Description

GR551x Developer Guide Introduces GR551x SDK and how to develop and debug applications based on the SDK.

Provides J-Link operational instructions. Available at www.segger.com/downloads/jlink/

J-Link/J-Trace User Guide
UMO08001_JLink.pdf.

Keil User Guide Offers detailed Keil operational instructions. Available at www.keil.com/support/man/docs/uv4/.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.keil.com/support/man/docs/uv4/

G@D]X Profile Overview

2 Profile Overview

Based on Goodix UART Service (GUS), the ble_app_uart_at example is mainly used to enable passthrough. As the most

easy-to-use means of Bluetooth LE communications, passthrough features:
o Unaltered service data during transmission
. Bidirectional data transfer

The GUS is identified by its vendor-specific Universally Unique Identifier (UUID), AGED0201-D344-460A-8075-
BOESEC90D71B.

GUS includes three characteristics:

. GUS TX characteristic: Transmits data.

o GUS RX characteristic: Receives data.

o GUS Flow Control characteristic: Controls data flow.
These characteristics are described in detail as follows:

Table 2-1 GUS characteristics

Characteristic uuIiD Type Support Security Property
GUS TX A6ED0203-D344-460A-8075-B9EBECI0D71B 128 bits Mandatory | None Notify

GUS RX A6ED0202-D344-460A-8075-B9ESEC90D71B 128 bits Mandatory | None Write

GUS Flow Control A6ED0204-D344-460A-8075-B9ESECI0D71B 128 bits Mandatory | None Write/Notify

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 2

G@Dix Initial Operation

3 Initial Operation

This chapter introduces how to run and verify the ble_app_uart_at example in the GR551x SDK.

L Note:
SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Perform the following tasks before running the ble_app_uart_at example.
. Hardware preparation

Table 3-1 Hardware preparation

Name
Development board

Connection cable

Description
GR5515 Starter Kit Board (SK Board); two boards are required.

Micro USB 2.0 cable

e Software preparation

Table 3-2 Software preparation

Name Description
Windows Windows 7/Windows 10
J-Link driver A J-Link driver. Available at www.segger.com/downloads/jlink/.

An integrated development environment (IDE). MDK-ARM Version 5.20 or later is
Keil MDK5
required. Available at www.keil.com/download/product/.

GProgrammer (Windows) A programming tool. Available in SDK_Fol der\ t ool s\ GPr ogr ammer .

GRUart (Windows) A serial port debugging tool. Available in SDK_Fol der\t ool s\ GRUart .

3.2 Firmware Programming

The source code of the ble_app_uart_at example is in SDK_Fol der\ proj ects\ble\ble multi _role\ble_
app_uart _at.

You can programme ble_app_uart_at.bin to an SK Board through GProgrammer. For details, see GProgrammer User
Manual.

For a project involving modification on source code of ble_app_uart_at, re-compile the project to generate a new
ble_app_uart_at.bin file, and then programme the file to the SK Board. For details, refer to GR551x Developer Guide.

" Note:

e Theble_app_uart_at.binisin SDK_Fol der\ projects\ble\ble multi _role\ble uart_at\buil
d.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 3

https://www.segger.com/downloads/jlink/
https://www.keil.com/download/product/

G@Dix Initial Operation

3.3 Test and Verification

In this test, two SK Boards are required, with one named as SK Board A (as Client) and the other as SK Board B (as
Server). The two boards communicate with each other through Bluetooth LE.

After the SK Boards and GRUart are ready, start GRUart. Wait until GRUart displays device address information and
Goodix UART(AT) example start. This indicates the ble_app_uart_at firmware operates properly. The figure below
shows the proper operation of the firmware on SK Board B.

[E9 GRUart — O ¥
Receive Data
Serial Port Setting Format: ® ASCII (O Hex Show Time [] Font Size |10
Portlame coyan TLink COC Backgrowd @ Vhite O Black || searen
P_I. Local Board EA:CB:3E: 45:23:01.
BaudRate 115200 P_I: Goodix UART(AT) example start.
DataBits &

Farity None

StopBits |

Flow Control

. Close Port

Save Pauze Clear
TzBx Data Size Send data
Single Multi
Tx Count [Bytes Format: ® ASCIT (O Hex Loop [] Periodd0 ims [Newline
Fx Count 78 Bytes
Clear
file path Browse Send Pauze Clear

Port Opened CTS=1 DSR=1 DCD=0

Figure 3-1 GRUart information displaying proper operation of firmware

" Note:

The device address displayed on GRUart is the one generated after modifying source code of the ble_app_uart_at
example. The actual device address used by users prevails.

After the firmware of the ble_app_uart_at example operates normally, deliver AT commands to perform specific
Bluetooth LE operations.

1. Send AT: ADV_STOP command to SK Board B to stop advertising, after which send AT: ADV_START command
to restart advertising.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 4

GA@DIiX

GRUart - u] x

Initial Operation

Receive Data

Receive Data
Serial Port Setting Format @ 4sCII O Hex Show Time [] Font Size

Serial Port Setting Bameis ® AscIl O Hex Show Time [] Font Size

Lo |

Porthame (e Tiu G Background; @ Vhite () Black] sea Portlane [xG7iis 71 ins GOE Backgrownd: @ Vhite O Black [] searn
[4PP_I: Local Board EA:CE:3E:46:23:0L. [4PP_I: Local Board EA:CE: 3E: 45:23: 0L

BaudRate | jooqn APP_T: Goodix UART(AT) exanple start. BaudRate | jooqy 4FF_T. Goodix UART(AT) example start.
pE] oK

DataBits & DataBits &

Parity [llone Parity |Home

StopBits |1 StopBits |1

Flow Control Flow Comtrel

@ Close Port @ Close Port

Save Pauze | Clear Save Pause Clear

IxRx Data Size Send data TxRx Data Size Sond data
Single Jalti Single Julti

Tx Count |13 Bytes Format: @ ASCIT O Hex Loop [Perisd 50 Sins [Newline Iz Count 36 Brtes Format: @ ASCII O Hex Loop [Period30 * ns [Nevline

[AT-ADV_STOP AT-ADV_START]
Rx Count 82 Btes [ATADV_STOP | Rx Cownt 50 Bytes | -

Clear Clear

file path Browse

Pause = Clear file path Browse Pause | Clear

Port Opened CTS=1 DSR=1 DCD=0 Port Opened CTS=1 DSR=1 DCD=0

Figure 3-2 Stopping advertising Figure 3-3 Restarting advertising

2. Send AT: SCAN_START command to SK Board A to start scanning. When SK Board A discovers the GUS, send A
T: CONN_I NI T= command to initiate a connection with SK Board B.

GRUart - [u] x GRUart

- o x
Receive Data Receive Data
Serial Port Setting Format @® ascIl O Hex Show Time [] Font Size |10 Serial Port Setting Format, @ 43c1T O Hex Show Time [Font Size
Porthane oo Lik GO0 Background: @ White (O Black Search Portliane | <iiia Tiink Gc Background: @ White (O Blac earc
4PP_I. Local Board EA:CE: 3E: 22: 1L: 00, 4PP_T: Local Board EA:CE: 3E: 22: 11:00.
BaudRate [{yggog APP_I: Goodix UART(AT) example start. BaudRate [jygagy WFP_TI. Goodix UART(AT) example start.
ok oK
WFP_T: Goodix Uart Service discovery completely.
Parity None Parity HNone WFP_T: Enabled TX Notification.
WFP_T: Enzbled Flow Comtrol Notification.
StopBits |1 StopBits ||
Flow Control Flow Control
@ Close Port @ | Close Port
Save || Pause | Clear Save | Pause | Clear
TRz Data Size Send data TxRx Data Size Send data
Single Multi Single fhalti
Tz Coumt 15 Bytes Format: @ 43CTT O Hex Loop [Period 5 S ns B Newline Tz Count 30 Bytes Format: @ ASCIT (O Hex Loop [] Peried 30 *ns [Neulins
T-SCAN_SIART \T-CONN_INIT=
R Count 270 Bytes = Rx Comt 416 Bytes -
Clear Clear
tils path Brovse Pause | Clear fils path Brovse |[Send || Pause | Clear

Port Opened CTS=1DSR=1DCD=0 Port Opened CTS=1 DSR=1DCD=0

Figure 3-4 Starting scanning Figure 3-5 Initiating a connection after discovering GUS

3. After SK Board A is successfully connected to SK Board B, execute specific AT commands to get the address and
role information of the two boards.

o Send AT: ADDR? command to get address information.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

GA@DIiX

Initial Operation

Serial Port Setting

Portlame [Gopis Think GDC
BaudRate 115200
DataBits |8

Parity Hone

StopBits

Flow Control

@ Close Fort

TxBx Data Size
Tx Count 49 Bytes

Rx Count 463 Bytes

Clear

Port Opened CTS=1 DSR=1 DCD=0

Receive Data

Format: @ 4SCTT O Hex

® White (O Black

Show Time [J Font Size [10

L]

Background: Search

4PP_I: Local Board EA:CB:3E:22:11:00.

APP_I: Goodix UART(AT) example start.

oK

Target Device Found

CONNECTED

APP_I: Goodix Uart Service discovery completely.
APP_I: Enmabled TX Notification.

|APP_I: Enabled Flow Contrel Notification.

Save | Pause | Clear

Send data
Single Multi

Format: @ ASCIT () Hex

Loop [] Period0 3 ms [Wewline

AT:ADDR?

file path Browse | Send Pause Clear

Figure 3-6 Getting device address information of SK Board A

GRUart

Serial Port Setting

PortName [GGiE0 JLink COC
BandRate {5505
DataBits §

Parity Home

StopBits

Flow Control

@ | Close Port

TxEx Data Size
Tx Count 10 Bytes

Rx Cownt 255 Bytes

Clear

Port Opened CTS=1 DSR=1 DCD=0

Receive Data

- o x

Send data
Single Multi

Format: @ ASCII O Hex Laoop [J

Format @® asct1 O Hex Show Time [] Font Size |10
Background: @ White O Black [] searen
APF_I: Local Board EA:CB: 3E: 45:23:01.
APP_I: Goodiz UART(AT) example start.
I CE:7E: 45: 23. 01
Save | Pause | Clear

Period 0 ~|ns [Beuline

\T:ADDR?

file path

Brovse Pause | Clear

Figure 3-7 Getting device address information of SK Board B

o Send AT: GAP_RCLE? command to get role information.

Serial Port Setting

PortNans [GoN3E Jlink COC
Baudate [§ico0g
DataBite 6

Parity [Hone

StopBits

Flow Contral

@ Close Port

TzRx Data Size
Tx Count |63 Bytes

R Count 472 Bytes

Clear

Port Opened CTS=1 DSR=1DCD=0

Receive Data
@ 43CII O Hex

® Vhite O Black

Show Time [] Font Size

L 1

Fornat:

Lo |

Background Search

APP_I: Local Board EA:CB:3E:22:11:00,

APP_I: Goodix UART(AT) exanple start.,

oK

Target Device Found

(CONNECTED

APF_T: Goodix Uart Service discovery completely.
APP_I: Enmabled TX Notification,

APP_I: Enabled Flow Control Notification.

0-EA: CB: 3E: 22:11: 00

Save | Pause | Clear
Send data

Single Multi

Format: @ ASCTT O Hex

\T-GAP_ROLE

Loop [Period 30 S ims [Wewline

file path Browse = Send Pauze Clear

Figure 3-8 Getting role information of SK Board A

4. Enable data transmission via GUS.

GRUart

Serial Port Setting

Portlane [oayan 11 ink cOC
BaudRate ({550
DatsBits &

Parity Hone

StopBits
Flow Comtrol

@ Close Port

TzRx Data Size

Tx Count 24 Bytes

e Count 267 Bytes

Clear

Port Opened CTS=1 DSR=1DCD=0

Receive Data

—) X

Send data
Single Multi

Format: @ ASCIT O Hex

Format @® ascIT O Hex Show Time [] Font Size
Backeround: ® White O Black [seman
APP_I: Local Board EA:CB:3E:45:23: 0L
APP_T: Goodix UART(AT) exanple start.
CB: 3E: 45:23:01
PERIPHERAL
Save | Pause | Clear

Loop [Period0 3ns [Wewline

\T"GAP_ROLE?

file path

Browse Pause | Clear

Figure 3-9 Getting role information of SK Board B

. SK Board B (Server) sends Goodix_BLE to SK Board A (Client).

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

GA@DIiX

Initial Operation

GRUart

Serial Port Setting

FPortlame [copen Tlank cDC
BaudRate || jcoon
DataBits |8

Parity Hone

StopBits

Flow Control

@ |cClose Port

TxRx Data Size

Tx Count 36 Bytes

Rx Comt 267 Bytes

Clear

Port Opened CTS=1 DSR:

- o x
Receive Data

Format @ AscTT O Hex Show Time [] Font Size |10

Background: ® Vhite O Black [| sean
\APP_I: Local Board EaA:CB:3E:45:23:01.
PP_T: Goodin UART(AT) sxample start.
0-EA:CB: 3E: 45 23:01
[PERIFHERAL

Save | Pause || Clear
Send data

Single Jalti

Fornat: @ ASCIT O Hex Loop [Period® [3/ns [Newline
oodix_BLE
file path Browse Pause Clear

DCD=0

Figure 3-10 Server sends data to Client

. SK Board A (Client) sends Hello Word! to SK Board B

GRUart

Serial Port Setting
Portlame [eoiis TLink CDC
BaudRate 115200
DatsBits |8

Parity Hone

StopBits

Flow Control

@ Close Port

TzRz Data Size
Tx Count 76 Bytes

Fx Cownt 484 Eytes

Clear

Receive Data

Format @ 43CIT O Hex
® White (O Black

4PP_I. Local Board EA:CB:3E:22:11:00
WPP_I: Goodix UART(AT) exanple start.

oK

Target Device Found

CONNECTED

4PP_I: Goodix Uart Service discovery completely.
4PP_I: Enabled T Notification.

4PP_I: Enabled Flow Control Netification.
0-Ef: CB: 3E: 22: 11: 00

CENTRAL

Goodix_BLE

Show Time [] Font Size

Background:

Save | Pause | Clear
Send data
Single Multi

Format: @® ASCIT () Hex

Hello Word!

Loop [] Peried0 Zlns M Hewline

file path Browse

Pause | Clear

Port Opened _CTS=1 DSR=1 DCD=0

Figure 3-12 Client sends data to Server

GRUart - u] X
Receive Data

Serial Port Setting Fomat @® ascIT O Hex Show Time [] Fomt Size |10

e —

Partllane |Comis 714 Coc Backeround: @ Vhite O Black Search
[4PP_I: Local Board EA:CB:3E:22: 11:00.

BaudRate [1igang APP_I: Goodix UART(AT) example start.
oK
Target Device Found

DataBits (CONNECTED

APP_I: Goodix Uart Service discovery completely.
APP_I: Enabled TX Notification.

APP_I: Enabled Flow Comtrol Netification.
0-EA:CB: 3E: 22: 11: 00

(CENTRAL

‘oodix_BLE

Parity None

StopBits

Flow Comtrol

@ Close Port

Save | Pause | Clear
TzRz Data Size Send data
Single Multi
Format: ® ASCII O Hex

Tx Count 63 Eytes Loep [Period 0 Tins

Newline

Rx Cownt 484 Bytes

Clear

file path Browse | Send | Pause | Clear

Port Opened CTS=1 DSR=1 DCD=0

Figure 3-11 Client receives data from Server

(Server).

GRUart — m] X
Receive Data

Serial Port Setting Fornat: @ 4scII O Hex Show Time [] Font Size |10

@® Vhite O Black

Background

Fortlane copan 1ii0k coc

WAPP_I: Local Board EA:CB:3E: 45:23:01.
BaudRate

115200 \APP_I: Goodix UART(AT) example start.
0-EA:CB: 3E: 46:23: 01
PERTPHERAL
DataBits &

Hello Word!

Parity HNone

StopBits |
Flow Control

@ Close Fort

Save | Pause | Clear

TzRx Data Size Send data

Single Multi

Tx Count 36 Bytes Format: @ ACII O Hex

Loop [Period 30 Tims [Newline

Rx Count 230 Bytes

Clear

file path Erowse

Pauze | Clear

Port Opened CTS=1 DSR=1DCD=0

Figure 3-13 Server receives data from Client

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

G@Dix Application Details

4 Application Details

This chapter introduces the running procedures and major code of the ble_app_uart_at example.

4.1 Running Procedures

This section elaborates on the running procedures of the ble_app_uart_at example, aiming to help users deeply

understand the operational mechanism of the example.

The following figure displays the running procedures of the ble_app_uart_at example:

Start

ki

Receive data.

i
N
AT command or not? LU

Yes

Check and update
environment variables of the
AT command.

A to-be-executed AT command
is involved.

l

Execute the Bluetooth LE
operation corresponding to the
AT command.

i

Write to-be-transmitted data

to ring buffers.
No
Read the ring buffers to
L—— check whether there is data
to be transmitted.
i Yes
Transmit data.

Figure 4-1 ble_app_uart_at running procedures

1. Judge whether the received data is an AT command. If yes, check and update the environment variables of the AT

command. If no, perform Step 4.

2. Read the environment variables of the AT command. When there is an AT command to be executed and its

command handler is not null, perform Step 3.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 8

G@Dix Application Details

3. Perform Bluetooth LE operations corresponding to the AT command.

4. Write to-be-transmitted data to ring buffers. The ring buffers comprise two types: ble to uart buffer (for storing

received data) and uart to ble buffer (for storing to-be-transmitted data).
. When AT commands are sent via GRUart, the command execution result is cached to the ble to uart buffer.

. When non-AT commands are sent via GRUart, the data transmission mechanism is explained by taking
two SK Boards running ble_app_uart_at firmware as an example. Connect the two SK Boards to a PC and
enable Bluetooth on the boards. SK Board A (Client) sends non-AT commands to the SK Board B (Server) via
GRUart. The to-be-transmitted data will be cached into the uart to ble buffer before transmission by the

Client, and the Server caches the received data to the ble to uart buffer.

5. Read the ring buffers to check whether there is data to be transmitted. If yes, transmit the data. Otherwise,

return to Step 1.

The following figure displays how to execute an AT command.

Initialize AT command.

y

Receive and check an AT
command.

'

AT command to be parsed or
not?

Yes l

Update the AT command
status.

'

Is the input AT command
complete?

Yes ¢

Get parameters and ID of
the AT command.

'

Is the AT command ID valid? —

Yes i

Change the environment
variable state to Pending
Execution.

No

Execute the corresponding
Bluetooth LE operation.

i.—

Call command complete cb
to write data to ble to uart
buffer.

Figure 4-2 AT command execution procedures

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 9

G(DDiX Application Details

1. Initialize AT command. Complete registration of the AT command attribute table, command complete cb, and
app timer.

" Note:

o AT command attribute table records AT command information such as AT Command ID, AT Command Tag, AT
Command Tag Length, and AT Command Handler.

. command complete cb writes the command execution result to the ble to uart buffer. If an error exists in the
command response, the error code is regarded as to-be-transmitted data. If there is no error, the command
response data is regarded as to-be-transmitted data.

. app timer manages timeouts.

2. Check the received AT command. If the command is to be parsed, change the status of the command from
Pending Parsing to In Parsing and perform Step 3. Otherwise, update the error code and perform Step 7.

3. Check whether the input AT command is complete. A complete AT command starts with AT: and ends with \ r\
n. If the command is complete, perform Step 4. Otherwise, update the error code, and perform Step 7.

4. Get parameters and ID of the AT command.

5. Check whether the AT command ID is valid. If the command ID is valid, change the status of the command to
Pending Execution. Otherwise, update the error code, and perform Step 7.

6. Execute the AT command. If the AT Command Handler is not null, call the handler to perform related Bluetooth
LE operation. Otherwise, update the error code, and perform Step 7.

7. Call command complete cb to write the command execution result to the ble to uart buffer.

4.2 Major Code

This section introduces the major code of the ble_app_uart_at example.

4.2.1 Event Handler Function

Path: user _app\ user_app.c
Name: gus_service_process_event();

When a data receiving event occurs, the event handler function checks whether the received data is an AT command.
If yes, call at_cmd_parse. If no, write the data to ble to uart buffer.

void at cmd schedule (void)

{
uint8 t ble rx data[AT CMD BUFFER SIZE MAX];
switch (p _evt->evt type)
{

case GUS_EVT RX DATA RECEIVED:
if (0 == memcmp (p evt->p data, "AT:" , 3))
{
memcpy (ble rx data, p evt->p data, p evt->length);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 10

G(DDiX Application Details

if ((0x0d ! = p evt->p datalp evt->length - 2]) ||\
(0x0a ! = p evt->p data[p evt->length - 1]))

{
ble rx data[p evt->length] = 0x0d;
ble rx data[p evt->length + 1] = 0x0a;

at cmd parse (AT CMD SRC BLE, ble rx data, p evt->length + 2);
}

else

{
ble to uart buff data push(p evt->p data, p evt->length);

break;

4.2.2 Checking and Updating Environment Variables of AT Command

Path: gr _|i braries\at_cnd. c under the project directory
Name: at_cmd_parse();

If the received data is an AT command, check and update the environment variables of the command. If
the command passes all checks, set the environment variable state of the command to Pending Execution
(AT_CMD_IN_WAITE_EXECUTE). The code snippet is as follows:

void at cmd parse(at cmd src t cmd src, const uint8 t *p data, uintlé_t length)

{
AT CMD RSP DEF (cmd rsp) ;

s _at cmd env.cmd src = cmd _src;

// Check parse cmd is allowed or not
if (AT CMD IN READY PARSE ! = s at cmd env.cmd state)
{
cmd rsp.error code = AT CMD ERR PARSE NOT ALLOWED;
at cmd execute cplt(&cmd rsp) ;
return;
}
elsge

{
s _at cmd env.cmd state = AT CMD IN PARSING;

// Check cmd input is integrity or not
if (!at _cmd integrity check(p data, length, &s parse rlt))
{

cmd rsp.error code = AT CMD ERR INVALID INPUT;

at cmd execute cplt(&cmd rsp) ;

return;

// Get cmd parameters
at cmd args get (&s_parse rlt);

// Get cmd Id
at cmd id get (&s parse rlt);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 11

G(DDiX Application Details

// Check cmd id is valid or not

if (AT CMD INVALID == s parse rlt.cmd id)

{
cmd rsp.error code = AT CMD ERR UNSUPPORTED CMD;
at cmd execute cplt (&cmd rsp) ;
return;

s at cmd env.cmd state = AT CMD IN WAITE EXECUTE;

4.2.3 Performing Bluetooth LE Operations Specific to AT Command

Path: gr _|i braries\at_cnd. c under the project directory
Name: at_cmd_schedule();

Read the environment variables of the AT command. If the command is in Pending Execution state with the Command
Handler being not null, perform Bluetooth LE operations such as advertising, scanning, and connection based on the
attribute table of the AT command. If the AT command is used to modify device name, call the command handler

function, uart_at_gap_name_set, to modify the device name.

void at cmd schedule (void)
{
if (AT _CMD IN WAITE EXECUTE == s at cmd env.cmd state)
{
s at cmd env.cmd state = AT CMD IN EXECUTING;

if (s_at cmd env.p cmd attr[s parse rlt.cmd idx].cmd handler)
{

if (s_at cmd env.cmd time cb)

{

s at cmd env.cmd time cb();

s at cmd env.p cmd attr[s parse rlt.cmd idx].cmd handler (&s parse rlt);
}

else

{
AT CMD RSP DEF (cmd rsp);
cmd_rsp.error_code = AT_CMD_ERR_NO_CMD_HANDLER;
at cmd execute cplt(&cmd rsp);

Path: user _app\ at _cnd_handl er. c under the project directory
Name: uart_at_gap_name_set();

The code snippet is as follows:

void uart at gap name set(at cmd parse t *p cmd param)
{

AT CMD RSP DEF (cmd rsp);

sdk err t error_ code;

uint32 t index;

if (2 ! = p_cmd param->arg_count)

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 12

G(DDiX Application Details

cmd rsp.error code = AT CMD ERR INVALID PARAM;
}
else
{
if (at _cmd decimal num check (&p cmd param->p buff[p cmd param->arg idx[0]],
p_cmd param->arg length[0], &index))

error code = ble gap device name set ((gap dev name write perm t)index,
&p_cmd param->p buff[p cmd param->arg idx[1]],p cmd param-

>arg length[1]);

cmd rsp.error code = at cmd ble err convert (error code);

}

else

{
cmd_rsp.error code = AT CMD ERR INVALID PARAM;

if (AT CMD ERR NO ERROR == cmd rsp.error code)

{
cmd rsp.length = at cmd printf bush(cmd rsp.data, "OK");

at cmd execute cplt (&cmd rsp) ;

4.2.4 Writing AT Command Execution Result to ble to uart Buffer

Path: gr _|i braries\at_cnd. c under the project directory

Name: at_cmd_execute_cplt();

After the AT Command Handler is executed successfully, update the to-be-transmitted data based on the return value

of the AT command. Call cmd_cplt_cb to write the execution result of the command to the ble to uart buffer. The code

snippet is as follows:

void at cmd execute cplt(at cmd rsp t *p cmd rsp)

{

uint8 t length = 0;

if (AT _CMD ERR NO ERROR != p cmd rsp->error code)
{
switch(p cmd rsp->error code)

{

case AT _CMD ERR UNSUPPORTED CMD:
length = at cmd printf bush(at cmd rsp buff, "ERR: Unsupported AT CMD.");
break;

}

else

{
memcpy (at_cmd rsp buff, p cmd rsp->data, p cmd rsp->length);
length = p cmd rsp->length;

at cmd rsp buff[length] = 0x0d;

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 13

G(DDiX Application Details

at cmd rsp buff[length + 1] = 0x0a;

if (s _at cmd env.cmd cplt cb)

{ if (AT CMD SRC UART == s at cmd env.cmd src)
{ s _at cmd env.cmd cplt cb (AT CMD RSP DEST UART, at cmd rsp buff, length + 2);
;lse if (AT CMD SRC BLE == s at cmd env.cmd src)
{ s _at cmd env.cmd cplt cb (AT CMD RSP DEST BLE, at cmd rsp buff, length + 2);

s at cmd env.cmd state = AT CMD IN READY PARSE;

Path: user _app\ at_cnd_handl er. c under the project directory

Name: user_at_cmd_callback();

static void user at cmd callback(at cmd rsp dest t rsp dest, const uint8 t *p data,
uint8 t length)
{

s _curr rsp dest = rsp dest;

if (AT CMD RSP DEST UART == s curr rsp dest)

{ ble to uart buff data push(p data, length);
;lse if (AT CMD RSP DEST BLE == s curr rsp dest)
{ uart to ble buff data push(p data, length);

app timer delete(&s at cmd timing id);

4.2.5 Reading Ring Buffers and Transmitting Data

Path: user _app\transport_schedul er. c under the project directory

Name: transport_schedule();

When Notify and Flow Control characteristics on the device are enabled, if data exists in the ring buffers, read the
data; then transmit the read data.

void transport schedule (void)

{
uintl6 t items avail = 0¢
uintl6 t read len = 0¢

// read data from s uart to ble buffer, then notify or write to peer.
if (transport flag cfm(GUS TX NTF ENABLE) && transport flag cfm(BLE TX CPLT) &&
transport flag cfm(BLE TX FLOW ON))

items avail = ring buffer items count get(&s uart to ble buffer);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 14

G@Dix Application Details

if (items _avail > 0)
{
read len = ring buffer read(&s uart to ble buffer, s ble tx data,
s mtu size - 3);

transport flag set (BLE TX CPLT, false);

if (BLE_GAP ROLE PERIPHERAL == uart at curr gap role get())
{
gus_tx data send(0, s ble tx data, read len);
1
else if (BLE GAP ROLE CENTRAL == uart at curr gap role get())
{

gus_c tx data send(0, s ble tx data, read len);

// read data from s _ble to uart buffer, then send to uart.
items avail = ring buffer items count get (&s ble to uart buffer);

if (items _avail > 0)
{
read len = ring buffer read(&s ble to uart buffer, s uart tx data,
ONCE_SEND DATA SIZE) ;
uart tx data send(s _uart tx data, read len);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 15

GA@DIiX

Custom Commands

5 Custom Commands

This chapter depicts how to customize AT commands when using and verifying the ble_app_uart_at example.

Add necessary elements of custom commands into the AT command attribute table. The elements include AT

Command ID, AT Command, AT Command Length, and AT Command Handler. After that, implement the Command

Handler(s).

" Note:

You can find the AT command attribute table in user _app\ at _cnd_handl| er. ¢ under the project directory.

Take the custom AT command for MTU exchange as an example. Follow the steps below to add the command to the

attribute table.

1. Add the required AT Command ID to the at_cmd_id_t structure in the at_cmd.h file (available in SDK_Fol der\
conmponents\|ibraries\at_ cnd).

2. Update the AT command attribute table in code, and add necessary command elements to s_at_cmd_attr_table.

The updated AT command attribute table is displayed below:

static at cmd attr t s at cmd attr table[]

{
{AT_CMD INVALID,
{AT_CMD_ TEST,
{AT_CMD VERSION GET,
{AT_CMD RESET,
{AT_CMD BAUD SET,
{AT_CMD ADDR GET,
{AT_CMD GAP ROLE_GET,
{AT_CMD GAP ROLE_SET,
{AT_CMD GAP NAME GET,
{AT_CMD GAP NAME SET,
{AT_CMD ADV_PARAM SET,
{AT_CMD ADV_START,
{AT_CMD ADV_STOP,
{AT_CMD SCAN PARAM SET,
{AT_CMD SCAN START,
{AT_CMD_SCAN_STOP,
{AT_CMD CONN_PARAM SET,
{AT_CMD CONN_INIT,
{AT_CMD CONN_CANCEL,
{AT_CMD DISCONN,

nwu
r

"TEST",
"VERSION?"
"RESET",
"BAUD=",
"ADDR?" ,

"GAP ROLE?"
"GAP_ROLE=",
"GAP NAME?"
"GAP NAME=",
"ADV_PARAM=",
"ADV_START",
"ADV_STOP",
"SCAN PARAM=",
"SCAN START",
"SCAN STOP",
"CONN_ PARAM=",
"CONN_ INIT=",
"CONN_CANCEL",
"DISCONN",

11,
10,
9/

11,
10,
11,
7,

NULL},
uart at test},
uart at version get},
uart at app reset},
uart at baud set},
uart at bd addr get},
uart at gap role get},
uart at gap role set},
uart at gap name get},
uart at gap name set},
uart at adv param set},
uart at adv_start},
uart at adv_stop},
uart at scan param set},
uart at scan start},
uart at scan stop},
uart at conn param set},
uart at conn init},
uart at conn cancle},
uart at disconnect},

{AT_CMD_MTU_EXCHANGE, "MTU_EXC", 7, uart_at mtu_exchange},

I 7

" Note:
Added code is in bold.

3. Implement AT Command Handler.

void uart at mtu exchange(at cmd parse t *p cmd param)

{
AT CMD RSP DEF (cmd rsp) ;
sdk _err t error code;

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

16

GA@DIiX

Custom Commands

error code = ble gattc mtu exchange (0);
cmd rsp.error code = at cmd ble err convert (error code);

if (AT CMD ERR NO ERROR ! = cmd rsp.error code)
{

at cmd execute cplt(&cmd rsp);

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 17

GA@DIiX aa

6 FAQ

6.1 Why Do | Fail to Set GAP Roles Through AT Commands?

Description
Users cannot set GAP roles by using AT commands.

Analysis

The device is not in standby state, resulting in failure to set GAP roles through AT commands.

Solution

Ensure the device is in standby state when using AT commands to set GAP roles.

6.2 Why Do | Fail to Set Device Information?

Description

Users cannot set device information by using AT commands.

Analysis

When setting device information such as modifying GAP roles and names, a space exists after "="in an AT

command.

Solution

Make sure there is no space after "=" in an AT command.

6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command
into GRUart?

Description

GRUart prompts that the input AT command is invalid.

Analysis

An AT command shall end with \ r\ n. When users type an AT command on GRUart, NewLine in the Single tab
under Send data is unchecked.

Solution

Remember to check NewLine in the Single tab under Send data on GRUart.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 18

GA@DIiX

Appendix
7 Appendix
7.1 AT Command Table
The table below shows the AT commands involved in the ble_app_uart_at example.
Table 7-1 Supported AT commands for ble_app_uart_at
Command Type | AT Command Description Return Value Example
Tests whether AT command operates
Test AT:TEST OK AT:TEST
properly.
Version AT:VERSION? Gets the device version number. Version number AT:VERSION?
System reset AT:RESET Resets system. - AT:RESET
Configures baud rate. Successful: OK
AT:BAUD=

Baud rate

Device address

GAP role

GAP name

<NEW_VALUE>

AT:ADDR?

AT:GAP_ROLE?

AT:GAP_ROLE=

<NEW_ROLE>

AT:GAP_NAME?

AT:GAP_NAME=<INDEX,

NEW_NAME>

NEW_VALUE: baud rate; range: [0,

2000000]

Gets device address.

Gets role information of the device.

Sets device role.
NEW_ROLE: device role. Options
includeN, n, 0,0,B,b,C,c, P, p,A,

and a.

Gets device name.

Sets the device name.
INDEX: Write permission of the
device name; options: 0, 1, 2, 3, and

4

e 0: Write not allowed

e 1:Link neither encrypted nor
authenticated

Failed: ERR: Invalid
parameters.

Successful: Device address
Failed: No device
information is returned.
Device roles including
NONE, OBSERVER,
BROADCASTER,

CENTRAL,

PERIPHERAL,

ALL

Successful: OK
Failed: ERR: Command

request is not allowed.

Successful: Device name

Failed: Specific error code

Successful: OK

Failed: Specific error code

AT:BAUD=4900

AT:ADDR?

AT:GAP_ROLE?

AT:GAP_ROLE=0

AT:GAP_NAME?

AT:GAP_NAME=1,Goodix

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

19

GA@DIiX

Appendix

Command Type | AT Command

Description

Return Value

2: Link encrypted but not
authenticated

3: Link encrypted and
authenticated (MITM)

4: Link encrypted and
authenticated (secure
connections)

NEW_NAME: Custom advertising

name

Sets advertising parameters.

AT:ADV_PARAM=

When ADV_DURATION =0, the

<ADV_INTERVAL,

device will continue advertising

ADV_DURATION>

ADV_INTERVAL: Advertising
interval; unit: 0.625 ms; range: >
32.

ADV_DURATION: Advertising
duration; unit: 10 ms;

Successful: OK

until the host disables it. For Limited

Discoverable Mode, the parameter

value ranges from 1 to 18000; for

directed advertising with high duty

cycle, the parameter value ranges

from 1 to 128.

Successful: OK

Starts advertising.
Failed: Specific error code

Successful: OK

Stops advertising.
Failed: Specific error code

Sets scanning parameters.

Advertise
AT:ADV_START
AT:ADV_STOP
L]
AT:SCAN_PARAM=
<SCAN_INTERVAL,
SCAN_DURATION> o
Scan

AT:SCAN_START

AT:SCAN_STOP

Stops scanning.

SCAN_INTERVAL: Scanning
interval; unit: 0.625 ms; range: 4 | syccessful: OK
to 16384

Failed: Specific error code

SCAN_DURATION: Scanning
duration; unit: 0.625 ms; range: 1
to 65535

Successful: OK

Starts scanning.
Failed: Specific error code

Successful: OK

Failed: Specific error code

Example

AT:ADV_PARAM=80,0

AT:ADV_START

AT:ADV_STOP

AT:SCAN_PARAM=

176,1000

AT:SCAN_START

AT:SCAN_STOP

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd.

20

GA@DIiX

Appendix

Command Type | AT Command

AT:CONN_PARAM=
<CONN_INTERVAL,
CONN_LATENCY,

CONN_SUP_TIMEOUT>

Connect
AT:CONN_INIT=
AT:CONN_CANCEL
Disconnect AT:DISCONN

MTU exchange AT:MTU_EXC

7.2 Error Code

Description Return Value Example
Failed: Specific error code

Sets connection parameters.

e CONN_INTERVAL: Connection
interval; range: 6 to 3200

e CONN_LATENCY: Number
of connection events that Successful: OK AT:CONN_PARAM=
can be ignored; range: <
(CONN_SUP_TIMEOUT/
CONN_INTERVAL) - 1

Failed: Specific error code | 12,5,3200

e CONN_SUP_TIMEOUT:
Supervision timeout; range: 10 to
3200

Successful: CONNECTED
Initiates a connection. AT:CONN_INIT=
Failed: Specific error code

Successful: OK
Terminates a connection. AT:CONN_CANCEL
Failed: Specific error code

Successful: DISCONNECTED
Disconnects a connection. AT:DISCONN
Failed: Specific error code

Successful: MTU
Exchanges an MTU. AT:MTU_EXC
Failed: Specific error code

When a failure occurs during executing AT commands, error code will be returned. The table below lists error code

involved when using and verifying the ble_app_uart_at example.

Name
AT_CMD_ERR_INVALID_INPUT
AT_CMD_ERR_UNSUPPORTED_CMD

AT_CMD_ERR_PARSE_NOT_ALLOWED

AT_CMD_ERR_CMD_REQ_ALLOWED

AT_CMD_ERR_NO_CMD_HANDLER
AT_CMD_ERR_INVALID_PARAM
AT_CMD_ERR_HAL_ERROR

AT_CMD_ERR_TIMEOUT

Table 7-2 Error code definitions

Description

The input information is invalid.

The input AT command is not supported.

The AT command cannot be parsed.

The command request is not allowed; for instance, if the device is not in standby state
when users set GAP roles through AT commands, AT_CMD_ERR_CMD_REQ_ALLOWED

is returned.

The AT Command Handler is null.

The input AT command parameter is invalid.
A timeout occurs for HAL operations.

A timeout occurs when the AT command is executed.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 21

G@Dix Appendix

Name Description

AT_CMD_ERR_OTHER_ERROR Other errors

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 22

	Preface
	Contents
	1 Introduction
	2 Profile Overview
	3 Initial Operation
	3.1 Preparation
	3.2 Firmware Programming
	3.3 Test and Verification

	4 Application Details
	4.1 Running Procedures
	4.2 Major Code
	4.2.1 Event Handler Function
	4.2.2 Checking and Updating Environment Variables of AT Command
	4.2.3 Performing Bluetooth LE Operations Specific to AT Command
	4.2.4 Writing AT Command Execution Result to ble to uart Buffer
	4.2.5 Reading Ring Buffers and Transmitting Data

	5 Custom Commands
	6 FAQ
	6.1 Why Do I Fail to Set GAP Roles Through AT Commands?
	6.2 Why Do I Fail to Set Device Information?
	6.3 Why Does “Invalid Input” Prompt Occur When Users Type an AT Command into GRUart?

	7 Appendix
	7.1 AT Command Table
	7.2 Error Code

