
GR551x DFU Application Note

Version: 1.9

Release Date: 2022-02-20

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces principles and applications for Device Firmware Update (DFU) of GR551x System-on-
Chips (SoCs), to help you quickly get familiar with GR551x firmware update modes, and get started with secondary
development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Technical writer

Release Notes

This document is the seventh release of GR551x DFU Application Note, corresponding to GR551x SoC series.

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16 Updated the release time in the footers.

1.5 2020-05-30
Updated the structure figure of Boot_Info sector in flash in “DFU Storage”; optimized the

descriptions of “DFU Mode”.

1.6 2020-06-30 Updated the data contents sent from the Host in “Configure External Flash Command”.

1.7 2020-12-25

• Updated the contents in “Steps” and “Why Does DFU for Application Firmware on a Bare
Device Fail?”.

• Added “Why Do Exceptions Occur in OTA DFU for Application Firmware on a Device with an
Operating System?”.

1.8 2021-08-09 Changed the section “Supported Development Platform” into “Preparation”.

1.9 2022-02-20
Modified the file name of the example firmware based on Software Development Kit (SDK)

changes.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 GR551x DFU.. 2

2.1 DFU Mode... 2
2.2 DFU Device Role.. 3
2.3 DFU File Format...4

2.3.1 DFU Storage.. 5
2.4 DFU Communications Protocol... 5

2.4.1 Basic Frame...5
2.4.2 Frame Structure.. 6
2.4.3 Byte Order...6

2.5 DFU Command Set.. 6
2.5.1 Program Start Command.. 6

2.5.1.1 Data Sent from the Host..7
2.5.1.2 Response Data from the Device.. 7

2.5.2 Program Flash Command..8
2.5.2.1 Data Sent from the Host..8
2.5.2.2 Response Data from the Device.. 9

2.5.3 Program End Command..9
2.5.3.1 Data Sent from the Host..9
2.5.3.2 Response Data from the Device.. 10

2.5.4 Read/Update Data in System Configuration Area Command...10
2.5.4.1 Data Sent from the Host..10
2.5.4.2 Response Data from the Device.. 11

2.5.5 Configure External Flash Command... 12
2.5.5.1 Data Sent from the Host..12
2.5.5.2 Response Data from the Device.. 13

2.5.6 Get Flash Information Command... 13
2.5.6.1 Data Sent from the Host..13
2.5.6.2 Response Data from the Device.. 13

3 Enablement of DFU... 15

3.1 Add DFU to Application Firmware.. 15
3.1.1 ble_dfu_boot Project.. 15
3.1.2 Steps..15

3.2 Jump to Boot Firmware for Firmware Update..18

4 GR551x OTA DFU...19

4.1 Bluetooth LE OTA Profile... 19

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.2 Bluetooth LE OTA Service..19
4.2.1 OTA Service and OTA Characteristics..19

4.3 OTA DFU Test...20

5 DFU Test Through UART.. 21

5.1 Preparation.. 21
5.2 Test and Verification..21

5.2.1 Test with GProgrammer..21
5.2.2 Test with DFU Master and DFU Boot... 21

6 FAQ... 23

6.1 Why Does DFU for Application Firmware on a Bare Device Fail?...23
6.2 Why Do Exceptions Occur in OTA DFU for Application Firmware on a Device with an Operating System?..... 23

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
Device Firmware Update (DFU) is a boot loading mechanism to update firmware for target devices, allowing
developers to quickly fix defects and provide more functions for their products.

This document introduces the methods and principles of DFU for GR551x System-on-Chips (SoCs), and how to enable
and test DFU functionalities.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

Name Description

GR551x Developer Guide
Introduces GR551x Software Development Kit (SDK) and how to develop and debug applications based

on the SDK.

Bluetooth Core Spec Offers official Bluetooth standards and core specification from Bluetooth SIG.

J-Link/J-Trace User Guide
Provides J-Link operational instructions. Available at www.segger.com/downloads/jlink/

UM08001_JLink.pdf.

Keil User Guide Offers detailed Keil operational instructions. Available at www.keil.com/support/man/docs/uv4/ .

GR551x OTA Example

Application
Introduces how to implement Over The Air (OTA) for GR551x firmware on GRToolbox (Android).

GR551x Bluetooth Low Energy

Stack User Guide
Introduces the BLE Protocol Stack supported by GR551x SoCs.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 1

https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.keil.com/support/man/docs/uv4/

GR551x DFU

2 GR551x DFU
This chapter introduces fundamental concepts about GR551x DFU such as mode, device role, and file format.

2.1 DFU Mode

GR551x SoCs support two DFU approaches (update through Bluetooth LE connection):

• Approach 1: Perform update in application firmware. Run the application firmware to download the target
firmware. After download, the system jumps to the target firmware for running. During update, users can update
firmware directly without disabling Bluetooth connection on a mobile phone. This approach provides smooth
user experience.

Applicaon firmware

Target firmware

Start

Update completes.

Jump to target
firmware for

running.

Download completes?

Yes

Run applicaon
firmware.

Download target
firmware.

No

Figure 2-1 Update procedures (application firmware)

• Approach 2: Jump to Boot firmware for firmware update. During firmware update, the system jumps from
applications to the Boot firmware, and the Boot firmware enables download of the target firmware. After
download, the system jumps to the target firmware for running. During update, it is required to first disable
Bluetooth connection on the mobile phone and then scan and reconnect to the Boot firmware via Bluetooth.
Compared with the first approach, this approach makes the best use of flash.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 2

GR551x DFU

Boot firmware

Target firmware

Start

Update completes.

Jump to target
firmware for

running.

Download completes?

Yes

Jump to Boot
firmware.

Download target
firmware.

No

Figure 2-2 Update procedures (Boot firmware)

 Note:

• To choose the Approach 1, you need to pre-define the load addresses of the current application firmware and
the target firmware, and set different code load addresses for the current application firmware and the target
firmware.

• The Approach 1 supports “Copy Mode”. That is, before DFU, first update the target firmware to another unused
flash address; then copy it to the required run address. For details, see “Connect to SK Board and Update
Firmware” in GR551x OTA Example Application.

2.2 DFU Device Role

Two DFU device roles are defined:

• Control device (the host): a device, such as a mobile phone, that sends update data to the target device

• Target device (the device): a device, such as a wristband, that receives update data from the control device

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 3

GR551x DFU

Control device Target device

Host (mobile phone) Device (wristband)

Figure 2-3 DFU device role

2.3 DFU File Format

Firmware files transferred in DFU mode are in BIN format, including encrypted and non-encrypted BIN files.

Code data Info data

Code data Info data Encryption information

Unencrypted
firmware (BIN)

Encrypted
firmware (BIN)

N byte(s) 48 bytes

N byte(s) 48 bytes 856 bytes

Figure 2-4 Data format of BIN files

Each field of the data format is detailed as below:

• Code data: firmware data that shall be 16-byte aligned. N indicates a variable length.

• Info data: firmware descriptions

• Encryption information: information used in encrypting non-encrypted firmware

The info data format (little-endian mode) is shown in the table below:

Table 2-1 Info data format

Byte Field Description

0–1 pattern Data identifier for SoCs, value: 0x4744

2–3 version Version information

4–7 bin_size Code data length (byte)

8–11 check_sum CRC checksum of code data bit

12–15 load_addr Start address of code data storage area

16–19 run_addr Run address of code data

20–23 xqspi_xip_cmd SPI access mode

24–27 boot config Bit field [0:3]: clock speed

Boot info (24 bytes)

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 4

GR551x DFU

Byte Field Description

[4]: code copy mode

[5:7]: system clock

[8]: check image

[9]: boot delay time

[10:31]: reserved

28–39 comments Firmware descriptions

40–47 reserved Used for 16-byte alignment; value: 0x00

2.3.1 DFU Storage

The firmware information is stored in the Img_Info area in GR551x flash. This area (start address: 0x01000040; length:
400 bytes) can store up to 10 firmware packages.

0x0100_0000

0x0100_1000

0x0100_2000

Boot_Info sector

3556B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info

Reserved

Img_Info_1

DFU Config Info

Reserved

Enc:Hmac(32B)

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info

400B

ADV Name Info(22B)

DFU Disable Cmd Info(4B)

NVDS Init Info(8B)

UART Info(12B)

Img_Info_10

(0x1000)

Backup
(0x1000)

UnEnc:Free

(44B)

(40B)

(40B)

(32B)

(32B)

Boot_Info

.

.

.

0x0100_0040

Figure 2-5 Structure of Boot_Info sector in flash

2.4 DFU Communications Protocol

The firmware update between the host and the device is based on DFU communications protocols.

2.4.1 Basic Frame

The basic frame defines the lowest-level data packet structure in communications. The application data packet
protocol is based on the basic frame, in the “Data” field of the basic frame. If the basic frame length exceeds the

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 5

GR551x DFU

maximum payload of link communications, the host needs to segment the frame for transmission. After receiving the
correct frame header and data length, the device starts processing data.

2.4.2 Frame Structure

Frame header Frame type Data length Data Parity bit

2 2 2 0–2048 2 bytes

Figure 2-6 Frame structure

• Frame header: the start of a frame, represented by 0x47 and 0x44 which are the ASCII code values of characters
‘G’ and ‘D’

• Frame type: used to distinguish data types in the “Data” field

• Data length: length of data in the “Data” field

• Data: data with configurable length; maximum length: 2048 bytes

• Parity bit: 16-bit checksum for frame type, response, data length, and data

2.4.3 Byte Order

The little-endian mode is adopted for the “Data” field of the basic frame. The low byte data shall be stored at low
addresses in flash, and the high byte data at high addresses.

2.5 DFU Command Set

DFU commands are delivered by the host and received by the device.

Table 2-2 DFU command description

Command Command Code Description

Program Start 0x0023 The host sends Image Info when programs are downloaded to the device.

Program Flash 0x0024

Write up to 1024 bytes of data for one time to a specified address of flash. This

command can specify the way to write data to flash (erasable write/non-erasable

write).

Program End 0x0025

The host sends this command to notify the device that the programming data has

been sent. The first byte of the data field is Reset Flag, which indicates the device to

reset and run the current application or not after the programming data is sent.

Configure External Flash 0x002A Configure external flash.

Get Flash Information 0x002B Get flash information.

2.5.1 Program Start Command

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 6

GR551x DFU

The host sends this command to send the Image Info (data excluding the “reserved” field; 40 bytes) to the device.

After the device receives the Image Info:

• For internal flash programming, check whether the Code Load Address of the programming data is the internal
flash address.

• For external flash programming, specify the programming address and the data length.

2.5.1.1 Data Sent from the Host

Table 2-3 Format of data sent through the Program Start command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x0023 Program Start command

4–5 Data length 0x0029/0x0009

• If the Program Start command targets firmware, the “Data” field
has 41 bytes, including 1 byte for flash type and 40 bytes for
Image Info.

• If the Program Start command targets data, the “Data” field has
9 bytes, including 1 byte for flash type, 4 bytes for start address,
and 4 bytes for data content.

6 Flash type 0x00/0x01
• 0x00: internal flash

• 0x01: external flash

7–14 or

7–46

Data Data to be

written to

flash

Value range for each

byte: 0x00–0xFF
Data content

15–16 or

47–48
Checksum 0x0000–0xFFFF 16-bit checksum for frame type, data length, and data field

2.5.1.2 Response Data from the Device

Table 2-4 Format of data replied through the Program Start command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x0023 Program Start command

4–5 Data length 0x0001 Length of data in the “Data” field

6 Response 0x01/0x02
• 0x01: Data send succeeds.

• 0x02: Data send fails.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 7

GR551x DFU

Byte No. Description Valid Value Remarks

7–8 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

response field

2.5.2 Program Flash Command

The host sends this command to write data to a valid (internal or external) flash address of the device. After receiving
the command, the device parses the start address, length, and content of the data. If the start address is valid, the
device starts writing data from this address (see Table 2-5 for data format), and returns ACK. Otherwise, the device
returns NACK.

2.5.2.1 Data Sent from the Host

Table 2-5 Format of data sent through the Program Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x0024 Program Flash command

4–5 Data length 0x0007–0x0800 Length of data in the “Data” field

6 Program type
0x00/0x01/0x02/

0x10/0x11/0x12

• 0x00: Store data after erasing the internal flash page at a specified
address.

• 0x01: Store data in internal flash according to Image Info sent by
the Program Start command.

• 0x02: Call a flash write API to write data to internal flash.

• 0x10: Store data after erasing the external flash page at a
specified address.

• 0x11: Store data in external flash according to Image Info sent by
the Program Start command.

• 0x12: Call a flash write API to write data to external flash.

7–10 Start address
Value range for each

byte: 0x00–0xFF
Valid flash address of the device

11–12

Length of data

to be written

to flash

0x0000–0x00FF Maximum length of data to be written to flash: 1024 bytes

13–N

Data

Data to be

written to

flash

Value range for each

byte: 0x00–0xFF
Data to be written to flash

N+1 to N+2 Checksum 0x0000–0xFFFF 16-bit checksum for frame type, data length, and data field

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 8

GR551x DFU

 Note:

N in Table 2-5 indicates variable length for the “Data” field, ranging from 14 to 1036.

2.5.2.2 Response Data from the Device

Table 2-6 Format of data replied through the Program Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x0024 Program Flash command

4–5 Data length 0x0001 1 byte (for response)

6 Response 0x01/0x02
• 0x01: Data write succeeds.

• 0x02: Data write fails.

7–8 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

response field

2.5.3 Program End Command

The host sends this command to notify the device that the programming data has been sent. The data field contains
the start address after the next reset and the Reset Flag. The Reset Flag decides whether the device runs the
downloaded application or not immediately after receiving the Program End command.

2.5.3.1 Data Sent from the Host

Table 2-7 Format of data sent through the Program End command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x0025 Program End command

4–5 Data length 0x0005 Length of data in the “Data” field

6 Data Reset Flag 0x00/0x01/0x02/0x12

• 0x00: Store the firmware information in the img_info area in
flash.

• 0x01: Store the firmware information in the img_info and
boot_info areas in flash, and run the programming firmware after
reset.

• 0x02: Download data to internal flash without operations to the
img_info and boot_info areas.

• 0x12: Download data to external flash.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 9

GR551x DFU

Byte No. Description Valid Value Remarks

7–10

Checksum of

programming

file

Value range for each

byte: 0x00–0xFF
Checksum of BIN file

11–12 Checksum 0x0000–0xFFFF 16-bit checksum for frame type, data length, and data field

2.5.3.2 Response Data from the Device

Table 2-8 Format of data replied through the Program End command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x0025 Program End command

4–5 Data length 0x0001 1 byte (for response)

6 Response 0x01/0x02
• 0x01: Notification succeeds.

• 0x02: Notification fails.

7–8 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

response field

2.5.4 Read/Update Data in System Configuration Area Command

The host sends this command to handle data in the System Configuration Area of the device, including reading and
updating the data. For addresses of System Configuration Area, see “Section 2.3.1 DFU Storage”.

2.5.4.1 Data Sent from the Host

Table 2-9 Format of data sent through the Read/Update Data in System Configuration Area command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values

of characters ‘G’ and ‘D’

2–3 Frame type 0x0027 Read/Update Data in System Configuration Area command

4–5 Data length 0x0007–0x0407 Length of data in the “Data” field

6
Operating

command
0x00/0x01

• 0x00: Read the data in the System Configuration Area.

• 0x01: Update the data in the System Configuration Area.

7–10 Start address 0x01000000 - 0x01002000 A valid address in the System Configuration Area

11–12 Data length 0x0000–0x0400 Length of data to be read or updated

13–N

Data

Update data
Value range for each byte:

0x00–0xFF
N/A for data read command

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 10

GR551x DFU

Byte No. Description Valid Value Remarks

N+1 to N+2 Checksum 0x0000–0xFFFF 16-bit checksum for frame type, data length, and data field

 Note:

N in Table 2-9 indicates variable length for the “Data” field:

• For a data update command, N ranges from 14 to 1036.

• For a data read command, the “Data” field has a fixed length of 7 bytes.

2.5.4.2 Response Data from the Device

Table 2-10 Format of data replied through the Read/Update Data in System Configuration Area command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744

Represented by 0x47 and 0x44 which

are the ASCII code values of characters

‘G’ and ‘D’

2–3 Frame type 0x0027
Read/Update Data in System

Configuration Area command

4–5 Data length 0x0002–0x0402 Length of data in the “Data” field

6 Response 0x01/0x02
• 0x01: Data handling succeeds.

• 0x02: Data handling fails.

7 Operating command
0x00/0x10

0x01/0x11

• 0x00: Read the data in the System
Configuration Area (non-encrypted
SoCs).

• 0x10: Read the data in the System
Configuration Area (encrypted SoCs).

• 0x01: Update the data in the System
Configuration Area (non-encrypted
SoCs).

• 0x11: Update the data in the System
Configuration Area (encrypted SoCs).

8–11
Start address of the System

Configuration Area
0x01000000–0x01002000

12–13
Length of data in the System

Configuration Area
0x0000–0x0400

14–N

Data

Content of data in the System

Configuration Area

Value range for each byte: 0x00–

0xFF

N/A for data update command

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 11

GR551x DFU

Byte No. Description Valid Value Remarks

N+1 to N+2 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data

length, and data field

2.5.5 Configure External Flash Command

The host sends this command to configure the external flash SPI of the device.

2.5.5.1 Data Sent from the Host

Table 2-11 Format of data sent through the Configure External Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x002A Configure External Flash command

4–5 Data length 0x0014 Length of data in the “Data” field

6 External flash type 0x01/0x02
• 0x01: SPI flash

• 0x02: QSPI flash

CS IO TYPE 00–03 GPIO type selection

CS PIN 00–31 GPIO pin selection7–9

CS IO MUX 00–09 Pin Mux selection

CLK IO TYPE 00–03 GPIO type selection

CLK PIN 00–31 GPIO pin selection10–12

CLK IO MUX 00–09 Pin Mux selection

MOSI(IO0) IO TYPE 00–03 GPIO type selection

MOSI(IO0) PIN 00–31 GPIO pin selection13–15

MOSI(IO0) IO MUX 00–09 Pin Mux selection

MOSI(IO1) IO TYPE 00–03 GPIO type selection

MOSI(IO1) PIN 00–31 GPIO pin selection16–18

MOSI(IO1) IO MUX 00–09 Pin Mux selection

IO2 IO TYPE 00–03 GPIO type selection, valid for QSPI only

IO2 PIN 00–31 GPIO pin selection, valid for QSPI only19–21

IO2 IO MUX 00–09 Pin Mux selection, valid for QSPI only

IO3 IO TYPE 00–03 GPIO type selection, valid for QSPI only

IO3 PIN 00–31 GPIO pin selection, valid for QSPI only22–24

IO3 IO MUX 00–09 Pin Mux selection, valid for QSPI only

25

Data

QSPI ID 00–02 QSPI Module ID, valid for QSPI only

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 12

GR551x DFU

Byte No. Description Valid Value Remarks

26–27 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

data field

2.5.5.2 Response Data from the Device

Table 2-12 Format of data replied through the Configure External Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x002A Initialize external flash commands.

4–5 Data length 0x0001 1 byte (for response)

6 Response 0x01/0x02
• 0x01: Configuration succeeds.

• 0x02: Configuration fails.

7–8 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

response field

2.5.6 Get Flash Information Command

The host sends this command to get internal/external flash information from the device, including flash ID and flash
size. External flash size is available through the Serial Flash Discoverable Parameters (SFDP) protocol. For all flash chips
supporting the SFDP protocol, the host can get the flash size by sending this command.

2.5.6.1 Data Sent from the Host

Table 2-13 Format of data sent through the Get Flash Information command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the

ASCII code values of characters ‘G’ and ‘D’

2–3 Frame type 0x002B Get flash ID.

4–5 Data length 0x0001 1 byte

6 Flash type 0x00/0x01
• 0x00: internal flash

• 0x01: external flash

7–8 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data length, and

data field

2.5.6.2 Response Data from the Device

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 13

GR551x DFU

Table 2-14 Format of data replied through the Get Flash Information command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744

Represented by 0x47 and 0x44 which

are the ASCII code values of characters

‘G’ and ‘D’

2–3 Frame type 0x002B Get flash ID.

4–5 Data length 0x0009 9 bytes (for response)

6 Response 0x01/0x02
• 0x01: Data get succeeds.

• 0x02: Data get fails.

Flash ID Value range for each byte: 0x00–0xFF Flash ID (4 bytes)
7–14

Data
Flash

information Flash size Value range for each byte: 0x00–0xFF Flash size (4 bytes)

15–16 Checksum 0x0000–0xFFFF
16-bit checksum for frame type, data

length, and data field

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 14

Enablement of DFU

3 Enablement of DFU
This chapter introduces how to enable DFU for GR551x SoCs.

3.1 Add DFU to Application Firmware

The DFU functionality is encapsulated in the SDK_Folder\components\libraries\dfu_port module. To
add DFU to applications, you only need to call related APIs. Details are provided below by taking ble_dfu_boot as an
example.

 Note:

SDK_Folder is the root directory of GR551x SDK.

3.1.1 ble_dfu_boot Project

The source code and project file of the example ble_dfu_boot are in

SDK_Folder\projects\ble\dfu\ble_dfu_boot, and project file is in the Keil_5 folder.

Double-click the project file, ble_dfu_boot.uvprojx, to view the project directory structure of ble_dfu_boot in Keil. For
related files, see Table 3-1.

Table 3-1 File description of ble_dfu_boot

Group File Description

ble_prf_utils.c This file contains profile-related operational tools.
gr_profiles

ota.s This file implements OTA Service.

user_gap_callback.c
This file implements GAP callback, such as connection,

disconnection, and GAP parameter update.
user_callback

user_gatt_common_callback.c
This file implements GATT common callback, such as MTU

exchange.

user_platform user_periph_setup.c
This file configures the serial port parameters, device address,

power management mode, and DFU.

main.c This file contains the main() function.
user_app

user_app.c This file implements OTA profile registration and logical processing.

3.1.2 Steps

1. Configure the interfaces for DFU. Two approaches are available: Update through Bluetooth LE connection and
update through UART. Users can choose as needed.

• Update through Bluetooth LE connection.

Path: user\user_app.c under the project directory

Name: services_init();

Call dfu_service_init() in this function to initialize the Bluetooth LE services for update.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 15

Enablement of DFU

static void services_init(void)
{
 dfu_service_init(NULL);
}

Path: user_callback\user_gatt_common_callback.c under the project directory

Name: app_gatt_mtu_exchange_cb();

Call dfu_ble_set_mtu_size() in this function to configure the MTU value for update through Bluetooth LE
connection.

static void app_gatt_mtu_exchange_cb(uint8_t conn_idx, uint8_t status, uint16_t mtu)
{
 if(BLE_SUCCESS == status)
 {
 dfu_ble_set_mtu_size(mtu);
 }
}

Path: platform\user_periph_setup.c under the project directory

Name: app_periph_init();

Call dfu_port_init() in this function to initialize the DFU module.

void app_periph_init(void)
{
SYS_SET_BD_ADDR(s_bd_addr);
bsp_uart_init();
app_log_assert_init();
pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
dfu_port_init(NULL,NULL);
}

• Update through UART.

Path: platform\user_periph_setup.c under the project directory

Name: app_uart_evt_handler();

Call app_uart_receive_async() and dfu_uart_receive_data_process() in the APP_UART_EVT_RX_DATA event
to update through UART.

void app_uart_evt_handler(app_uart_evt_t * p_evt)
{
 switch(p_evt->type)
 {
 case APP_UART_EVT_TX_CPLT:
 break;
 case APP_UART_EVT_RX_DATA:
 app_uart_receive_async(APP_UART_ID_0, uart_rx_data, UART_RX_SIZE);
 dfu_uart_receive_data_process(uart_rx_data, p_evt->data.size);
 break;
 case APP_UART_EVT_ERROR:
 break;
 default:break;

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 16

Enablement of DFU

 }

Path:platform\user_periph_setup.c under the project directory

Name: app_periph_init();

Initialize UART and the DFU module in this function (it is required to mount uart_send_data in the DFU
module), and call the UART asynchronous receiving API.

void app_periph_init(void)
{
 SET_BD_ADDR(BD_ADDR_NVDS_TAG, BD_ADDR_LENGTH, s_bd_addr);
 bsp_uart_init();
 app_uart_receive_async(APP_UART_ID_0, uart_rx_data, UART_RX_SIZE);
 dfu_port_init(uart_send_data, &dfu_pro_call);
 pwr_mgmt_mode_set(PMR_MGMT_ACTIVE_MODE);
}

Table 3-2 Input parameter description for dfu_port_init()

Parameter Description Value

uart_send_data Enable/Disable DFU through UART

Yes: The UART send function which is implemented

by users is assigned to this parameter.

No: NULL is assigned to this parameter.

dfu_pro_call
Enable/Disable monitoring on update

status at the application layer

Yes: The DFU status handling callback function is

assigned to this parameter.

No: NULL is assigned to this parameter.

2. Call dfu_schedule() in the while(1) { } loop of the main() function.

Path: user\main.c under the project directory

Name: main();

Call dfu_schedule() in this function to schedule tasks.

int main (void)
{
 // Initialize user peripherals.
 app_periph_init();

 // Initialize BLE Stack.
 ble_stack_init(&s_app_ble_callback, &heaps_table);

 // loop
 while (1)
 {
 dfu_schedule();
 #if SK_GUI_ENABLE
 gui_refresh_schedule();
 #endif
 pwr_mgmt_schedule();
 }
}

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 17

Enablement of DFU

 Note:

To implement DFU on an OS device, it is recommended to create a task for DFU to implement dfu_schedule, and the
task stack assigned shall be no less than 6 KB, otherwise task stack overflow may occur.

3.2 Jump to Boot Firmware for Firmware Update

To jump to Boot firmware for firmware update, you need to download the DFU Boot firmware (such as ble_dfu_boot)
to be updated to a GR551x SoC. Update applications then jump to DFU Boot for firmware update. Details are provided
below by taking ble_app_template_dfu as an example.

The source code and project file of the project ble_app_template_dfu are in SDK_Folder\projects\ble\ble_
peripheral\ble_app_template_dfu, and project file is in the Keil_5 folder.

Double-click the project file, ble_app_template_dfu.uvprojx in Keil for compilation.

Path: user\user_app.c under the project directory

Name: dfu_enter();

When receiving an update command, applications call dfu_start_address() in this function to load boot information of
the DFU Boot firmware.

static void dfu_enter(void)
{
 //use flash dfu boot
 boot_info_t boot_info =
 {
 .bin_size = 0x26cf0,
 .check_sum = 0xf04eff,
 .load_addr = 0x1002000,
 .run_addr = 0x1002000,
 .xqspi_xip_cmd = 0xeb,
 .xqspi_speed = 0x0,
 .code_copy_mode = 0x0,
 .system_clk = 0x0,
 .check_image = 0x0,
 .boot_delay = 0x1,
 .is_dap_boot = 0x1,
 };
 dfu_start_address(&boot_info);
}

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 18

GR551x OTA DFU

4 GR551x OTA DFU
GR551x can transmit DFU commands and data for firmware update through multiple ways, and the most commonly
used one is OTA through Bluetooth LE connection. To update through Bluetooth LE connection, set the OTA Profile and
the OTA Service.

4.1 Bluetooth LE OTA Profile

The Goodix-customized OTA Profile defines two device roles:

• Host: the Central that sends user application and fixed user data, including font library/image data and external
application data. The Central can be a PC, a mobile phone, or other devices.

• Device: the Peripheral that receives user application and fixed user data. The Peripheral can be a wristband, a
heart rate meter, or other devices.

Host

Central
(OTA Controller)

Device

Peripheral
(OTA Target)

OTA Service
OTA RX

Characterisc

OTA TX
Characterisc

OTA Control
Characterisc

Figure 4-1 OTA Profile device roles

4.2 Bluetooth LE OTA Service

The Goodix-customized OTA Service provides necessary information for DFU. The OTA Service is independent and
supports the following GATT operations:

• Write Characteristic Value

• Notifications

• Read Characteristic Descriptors

• Write Characteristic Descriptors

4.2.1 OTA Service and OTA Characteristics

The UUID of OTA Service is a6ed0401-d344-460a-8075-b9e8ec90d71b. OTA characteristics are divided into 3 types, as
listed in Table 4-1.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 19

GR551x OTA DFU

Table 4-1 OTA characteristics

Description UUID Property

OTA RX Characteristic a6ed0402-d344-460a-8075-b9e8ec90d71b Write without Response

OTA TX Characteristic a6ed0403-d344-460a-8075-b9e8ec90d71b Notify, Indicate

OTA Control Characteristic a6ed0404-d344-460a-8075-b9e8ec90d71b Write without Response, Indicate

The role of each characteristic:

• OTA RX Characteristic: Receive data from the host with a property of Write without Response to speed up data
transmission.

• OTA TX Characteristic: Send data to the host with a property of Notify. Data is reported by the device to the host
in this way.

• OTA Control Characteristic: Receive control commands from the host, such as a command to start DFU process
for a device.

4.3 OTA DFU Test

To perform an OTA DFU test, see GR551x OTA Example Application for details.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 20

DFU Test Through UART

5 DFU Test Through UART
This chapter introduces how to perform DFU tests through UART by using a SK Board.

5.1 Preparation

Perform the following tasks before the test.

• Hardware preparation

Table 5-1 Hardware preparation

Name Description

Development board GR5515 Starter Kit Board (SK Board); two boards are required.

Connection cable Micro USB 2.0 cable

• Software preparation

Table 5-2 Software preparation

Name Description

Windows Windows 7/Windows 10

J-Link driver A J-Link driver. Available at www.segger.com/downloads/jlink/.

Keil MDK5
An integrated development environment (IDE). MDK-ARM Version 5.20 or later is required. Available

at www.keil.com/download/product/.

GProgrammer (Windows) A programming tool. Available in SDK_Folder\tools\GProgrammer.

5.2 Test and Verification

The DFU tests through UART include:

• DFU test by using GProgrammer

• DFU test by using DFU Master and DFU Boot firmware in a GR551x SDK

5.2.1 Test with GProgrammer

Download the firmware ble_dfu_boot.bin to the SK Board serving as the device (DFU Boot) through GProgrammer via
UART and run the firmware. For details, see GProgrammer User Manual.

 Note:

The ble_dfu_boot.bin is in SDK_Folder\projects\ble\dfu\ble_dfu_boot\build\.

5.2.2 Test with DFU Master and DFU Boot

For this test, SK Board A serves as the host (DFU Master), and SK Board B as the device (DFU Boot).

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 21

https://www.segger.com/downloads/jlink/
https://www.keil.com/download/product/

DFU Test Through UART

 Note:

The source code and project file of DFU Master are in SDK_Folder\projects\ble\dfu\dfu_master, and
project file dfu_master.uvprojx is in the Keil_5 folder.

For the project directory of the DFU Boot firmware ble_dfu_boot.bin, see “Section 5.2.1 Test with GProgrammer”.

Steps for tests by using DFU Master and DFU Boot firmware in a GR551x SDK:

1. Remove jumper caps of Pins 5–6 and Pins 7–8 at J5 pin header on the SK Board A and B.

2. Connect Pin 5 at J5 on the SK Board A to Pin 7 at J5 on the SK Board B and Pin 7 at J5 on the SK Board A to Pin 5
at J5 on the SK Board B with DuPont wires, to establish connection between serial ports on the two boards.

3. Download dfu_master.bin to the SK Board A and ble_dfu_boot.bin to the SK Board B with GProgrammer.

4. Download the BIN file to be updated to the SK Board A with GProgrammer.

5. Press appropriate keys on SK Board A to update firmware through UART according to tips on the display of SK
Board A.

 Tip:

• The load address and run address of ble_dfu_boot.bin (DFU Boot) are 0x01002000.

• To prevent the downloaded DFU Boot firmware being overwritten, you need to set different load addresses for
the firmware to be updated and the DFU Boot firmware. For details, see “Create Target Firmware for Update” in
GR551x OTA Example Application.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 22

FAQ

6 FAQ
This chapter lists possible problems with corresponding solutions in DFU process for GR551x SoCs.

6.1 Why Does DFU for Application Firmware on a Bare Device Fail?

• Description

DFU through Bluetooth LE connection fails.

• Analysis

There may be multiple reasons: For update through Bluetooth LE connection at 2.4 GHz with severe interference,
the Bluetooth connection may be broken; improper configurations may also lead to update failure.

• Solution

1. To update through Bluetooth LE connection, check the Bluetooth connection state of the device.

2. To update through UART, check whether the baud rates of the host and of the device are consistent.

3. Check whether the address of the firmware to be updated conflicts with the run address.

6.2 Why Do Exceptions Occur in OTA DFU for Application Firmware on a Device
with an Operating System?

• Description

DFU fails when a device uses FreeRTOS, leading to exceptions in other tasks or exceptions such as HardFault.

• Analysis

The reason may be those described in “Section 6.1 Why Does DFU for Application Firmware on a Bare Device
Fail?”; it may also be because that a task stack with insufficient space has been assigned, leading to overflow of
the task stack. The OTA task stack assigned shall be no less than 6 KB.

• Solution

Assign a task stack no less than 6 KB to the OTA task.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 23

	Preface
	Contents
	1 Introduction
	2 GR551x DFU
	2.1 DFU Mode
	2.2 DFU Device Role
	2.3 DFU File Format
	2.3.1 DFU Storage

	2.4 DFU Communications Protocol
	2.4.1 Basic Frame
	2.4.2 Frame Structure
	2.4.3 Byte Order

	2.5 DFU Command Set
	2.5.1 Program Start Command
	2.5.1.1 Data Sent from the Host
	2.5.1.2 Response Data from the Device

	2.5.2 Program Flash Command
	2.5.2.1 Data Sent from the Host
	2.5.2.2 Response Data from the Device

	2.5.3 Program End Command
	2.5.3.1 Data Sent from the Host
	2.5.3.2 Response Data from the Device

	2.5.4 Read/Update Data in System Configuration Area Command
	2.5.4.1 Data Sent from the Host
	2.5.4.2 Response Data from the Device

	2.5.5 Configure External Flash Command
	2.5.5.1 Data Sent from the Host
	2.5.5.2 Response Data from the Device

	2.5.6 Get Flash Information Command
	2.5.6.1 Data Sent from the Host
	2.5.6.2 Response Data from the Device

	3 Enablement of DFU
	3.1 Add DFU to Application Firmware
	3.1.1 ble_dfu_boot Project
	3.1.2 Steps

	3.2 Jump to Boot Firmware for Firmware Update

	4 GR551x OTA DFU
	4.1 Bluetooth LE OTA Profile
	4.2 Bluetooth LE OTA Service
	4.2.1 OTA Service and OTA Characteristics

	4.3 OTA DFU Test

	5 DFU Test Through UART
	5.1 Preparation
	5.2 Test and Verification
	5.2.1 Test with GProgrammer
	5.2.2 Test with DFU Master and DFU Boot

	6 FAQ
	6.1 Why Does DFU for Application Firmware on a Bare Device Fail?
	6.2 Why Do Exceptions Occur in OTA DFU for Application Firmware on a Device with an Operating System?

