
GR551x Developer Guide

Version: 2.8

Release Date: 2025-02-17

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 26F, Goodix Headquarters, No.1 Meikang Road, Futian District, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces the Software Development Kit (SDK) of the Goodix GR551x Bluetooth Low Energy
(Bluetooth LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started
with secondary development of Bluetooth LE applications.

Audience

This document is intended for:

• Device user

• Developer

• Test engineer

• Technical writer

Release Notes

This document is the sixteenth release of GR551x Developer Guide, corresponding to GR551x SoC series.

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16 Updated the descriptions in “RAM Power Management” and “Output Debug Logs”.

1.5 2020-05-30

Updated the models of GR551x SoCs in “Introduction” and the descriptions in “Memory

Mapping”, “GR551x SDK Directory Structure”, and “Development and Debugging with GR551x

SDK”.

1.6 2020-06-30
Optimized the SCA layout in “SCA”, and updated “RAM Power Management” and “Output Debug

Logs”.

1.7 2020-08-30 Introduced GR5515I0ND in the GR551x series in “Introduction”.

1.8 2020-09-25

• Updated the RAM layout in mirror mode and added descriptions about how to determine the
start address of the RAM segment “App Code Execution Region” in “RAM Layout in Mirror
Mode”;

• Updated the path of GR551x_8MB_Flash.FLM in GR551x SDK in “Download .hex Files to Flash”
and added a note for the “No Cortex-M SW Device Found” error occurring during .hex file
download.

1.9 2020-11-25

• Optimized descriptions about NVDS in “NVDS” and updated the value range of idx to 0x0000–
0x3FFF.

• Added configuration parameters in “Configure custom_config.h”, including
CHIP_TYPE, CFG_MAX_LEG_EXT_ADVS, CFG_MAX_PER_ADVS, CFG_MAX_SCAN, and
CFG_MAX_PER_ADV_SYNC.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. I

Preface

Version Date Description

2.0 2021-01-05
Subdivided “Output Debug Logs” into “Parameter Configuration”, “Module Initialization”, and

“Application”.

2.1 2021-01-27 Optimized descriptions in “Output Debug Logs” and “Configure custom_config.h”.

2.2 2021-04-15 Updated the firmware name in “Generate Firmware”.

2.3 2021-06-22 Updated the parameters of custom_config.h in “Configure custom_config.h”.

2.4 2021-08-20
• Added GR5515IENDU and GR5515I0NDA SoCs in “Introduction”.

• Updated parameters in custom_config.h in “Configure custom_config.h”.

2.5 2022-02-20

• Added GR5513BENDU to the “Introduction” chapter.

• Modified relevant parameters in the "Configuring custom_config.h" section.

• Modified the steps to configure After Build in the "Configuring After Build" section.

• Modified the firmware files in the "Generating Firmware" section.

• Modified the steps to download .hex files to SoC Flash in the "Downloading .hex Files to Flash"
section.

• Modified relevant descriptions in the "Debugging" section according to SDK changes.

• Added two chapters: "Development and Debugging with GR551x SDK in GCC" and
"Development and Debugging with GR551x SDK in IAR".

2.6 2023-01-19
• Deleted the GR5515I0ND SoC.

• Updated the GR5515RGBD status from "NRND" to "Active".

2.7 2023-04-20

Updated the following sections: "Memory Mapping", "SCA", "GR551x SDK Directory Structure",

"Preparing ble_app_example", "Configuring custom_config.h", "Configuring Memory Layout",

"Configuring After Build", "Modifying the main() Function", "Implementing Bluetooth LE Business

Logics", "Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications", "Downloading .hex Files to

Flash", "Configuring the Debugger", and "Module Initialization".

2.8 2025-02-17 Updated the sections "GR551x SDK Directory Structure" and "Debugging with GRToolbox".

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. II

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 GR551x SDK... 1
1.2 Bluetooth LE Stack...1

2 GR551x Bluetooth LE Software Platform...4

2.1 Hardware Architecture.. 4
2.2 Software Architecture..5
2.3 Memory Mapping..6
2.4 Flash Memory Mapping.. 7

2.4.1 SCA.. 8
2.4.2 NVDS... 10

2.5 RAM Mapping..12
2.5.1 RAM Layout in XIP Mode... 13
2.5.2 RAM Layout in Mirror Mode.. 14
2.5.3 RAM Power Management.. 15

2.6 GR551x SDK Directory Structure... 16

3 Bootloader.. 19

4 Development and Debugging with GR551x SDK in Keil... 21

4.1 Installing Keil MDK...21
4.2 Installing GR551x SDK..22
4.3 Building a Bluetooth LE Application..22

4.3.1 Preparing ble_app_example... 22
4.3.2 Configuring a Project.. 26

4.3.2.1 Configuring custom_config.h..26
4.3.2.2 Configuring Memory Layout.. 31
4.3.2.3 Configuring After Build...32

4.3.3 Adding User Code... 33
4.3.3.1 Modifying the main() Function.. 33
4.3.3.2 Implementing Bluetooth LE Business Logics..34
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.. 37

4.4 Generating Firmware...38
4.5 Downloading .hex Files to Flash..39
4.6 Debugging..42

4.6.1 Configuring the Debugger.. 42
4.6.2 Starting Debugging... 44
4.6.3 Debugging in Mirror Mode...45
4.6.4 Outputting Debug Logs...46

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. III

Contents

4.6.4.1 Module Initialization.. 46
4.6.4.2 Application..47

4.6.5 Debugging with GRToolbox...49

5 Development and Debugging with GR551x SDK in GCC...50

6 Development and Debugging with GR551x SDK in IAR..51

7 Glossary.. 52

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. IV

Introduction

1 Introduction
The Goodix GR551x System-on-Chip (SoC) is a single-mode low-power SoC that supports Bluetooth 5.1. It can be
configured as a Broadcaster, an Observer, a Central, or a Peripheral, and supports the combination of all the above
roles, making it an ideal choice for Internet of Things (IoT) and smart wearable devices.

Based on ARM® Cortex®-M4F CPU core, the GR551x SoC integrates the Bluetooth 5.1 Protocol Stack, a 2.4 GHz RF
transceiver, on-chip programmable Flash memory, RAM, and multiple peripherals.

GR551x SoCs are available in multiple packages (see Table 1-1) that meet your diverse project demands.

Table 1-1 GR551x series

Part Number GR5515IGND GR5515IENDU GR5515I0NDA GR5515RGBD GR5515GGBD GR5513BENDU

CPU Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F

RAM 256 KB 256 KB 256 KB 256 KB 256 KB 128 KB

SiP Flash 1 MB 512 KB N/A 1 MB 1 MB 512 KB

I/O Number 39 39 39 39 29 22

Package (mm) QFN56

(7 x 7 x 0.75)

QFN56

(7 x 7 x 0.75)

QFN56

(7 x 7 x 0.75)

BGA68

(5.3 x 5.3 x 0.88)

BGA55

(3.5 x 3.5 x 0.60)

QFN40 (5 x 5 x

0.75)

 Note:

GR5515IENDU and GR5513BENDU are embedded with wide-voltage Flash, with Flash power supply from 1.65 V to 3.6
V.

1.1 GR551x SDK

GR551x SDK provides comprehensive software development support for GR551x SoCs. GR551x SDK contains
Bluetooth Low Energy Protocol Stack (Bluetooth LE Stack) APIs, System APIs, peripheral drivers, a tool for generating
and downloading .hex files, project example code, and related user documents.

The GR551x SDK version mentioned in this document is applicable to all GR551x SoCs.

1.2 Bluetooth LE Stack

The architecture of Bluetooth LE Stack is shown in Figure 1-1.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1

Introduction

Bluetooth LE Protocol Stack

Host

Controller

Host-Controller Interface (HCI)

Physical Layer (PHY)

Link Layer (LL)

Logical Link Control and Adaptaon Protocol
(L2CAP)

Aribute Protocol (ATT)

Generic Aribute Profile (GATT) Generic Access Profile (GAP)

Security Manager (SM)

Figure 1-1 Bluetooth LE Stack architecture

The Bluetooth LE Stack consists of the Controller, the Host-Controller Interface (HCI), and the Host.

Controller

• Physical Layer (PHY) supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

• Link Layer (LL) controls the RF state of devices. Devices are in one of the following five modes, and can switch
between the modes on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

• HCI enables communications between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

• Logical Link Control and Adaptation Protocol (L2CAP) provides channel multiplexing and data segmentation and
reassembly services for upper layers. It also supports logic end-to-end data communications.

• Security Manager (SM) defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functions.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 2

Introduction

• Generic Access Profile (GAP) provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, which fulfills functions such as advertising, scanning, connection initiation, service
discovery, connection parameter update, secure process initiation, and response.

• Attribute Protocol (ATT) defines service data interaction protocols between a server and a client.

• Generic Attribute Profile (GATT) is based on the top of ATT. It defines a series of communications procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website:
www.bluetooth.com.

Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and code
which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 3

https://www.bluetooth.com/

GR551x Bluetooth LE Software Platform

2 GR551x Bluetooth LE Software Platform
The GR551x Software Development Kit (SDK) is designed for GR551x SoCs, to help users develop Bluetooth LE
applications. It integrates Bluetooth 5.1 APIs, System APIs, and peripheral driver APIs, with various example projects
and instruction documents for Bluetooth and peripheral applications. Application developers are able to quickly
develop and iterate products based on example projects in GR551x SDK.

2.1 Hardware Architecture

The GR551x hardware architecture is shown as follows. This section introduces the modules in a GR551x SoC. For
more information, see GR551x Datasheet.

PMU Subsystem

Bluetooth Subsystem

RF Transceiver Communicaon Core

HFXO_32M

SX PLL

Mixer

CLK
Gen.

Digital Front End Bluetooth LE
Modem

Bluetooth LE
MAC Packet Buffer

DC/DC

LP LDO

LFXO_32K

LFRC_32K

MCU Subsystem

Flash

Cache Ctrl

ROM

Flash & XIP Ctrl

eFuse

Cache

SRAM

ARM®Cortex®-M4F

BB ADC

PA

Voltage
sensor

SPI Master

ISO7816MSIO

I2CUART

AON I/O

I2S

GPIO

QSPI

SPI Slave

LNA

DIGCORE LDO

CPLL_192M

PWMTimerComparator
Temperature

sensor

Crypto

DMA

Sense
ADC

BOD

POR

IO LDO

HFXO_32M

RNG_OSC

Power
Sequencer

Always-on
Domain

Memory/State Retenon

Wake up

LP Comp. AON RTCAON SLP
Timer

AON
WDT

Dual
Timer

Figure 2-1 GR551x hardware architecture

• ARM® Cortex®-M4F: GR551x CPU. Bluetooth LE Stack and application code run on the CPU.

• RAM: random access memory that provides memory space for program execution

• ROM: read-only memory, containing the software code (cannot be modified after being programmed) for
Bootloader and Bluetooth LE Stack

• Security Cores: the secure computing engine unit, mainly including TRNG, AES, SHA, and PKC modules,
which allows checking encrypted user application firmware. The encrypted firmware is checked through the
secure boot process in ROM (In Bluetooth Core Spec, the secure computing unit is an independent module in
Communication Core, and is irrelevant to Security Cores).

• Peripherals: GPIO, DMA, I2C, SPI, UART, PWM, Timer, and other hardware

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 4

GR551x Bluetooth LE Software Platform

• RF Transceiver: 2.4 GHz RF signal transceiver

• Communication Core: PHY of Bluetooth 5.1 Protocol Stack Controller, enabling communication between the
software protocol stack and 2.4 GHz RF hardware

• Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC/DC, IO-LDO, Dig-LDO, and RF Subsystem, based on configuration parameters and the
current operating state.

• Flash: Flash memory unit packaged on the SoC. It stores user code and data, and supports the Execute in Place
(XIP) mode for user code.

2.2 Software Architecture

The software architecture of GR551x SDK is shown in Figure 2-2.

Software

Bluetooth LE
Stack

Hardware

Applicaon

SDK

Bluetooth 5.1 Core ARM® Cortex®-
M4F Peripheral

GATT Services/
Service Clients

Bootloader

Driver

Bluetooth LE API System API

Figure 2-2 GR551x software architecture

• Bootloader

It is a boot program used for GR551x software and hardware environment initialization, and to check and start
applications.

• Bluetooth LE Stack

It is the core to implement Bluetooth LE protocol stacks. It consists of Controller, HCI, and Host protocols
(including ATT, L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 5

GR551x Bluetooth LE Software Platform

• Bluetooth LE SDK

It refers to software development kit that provides easy-to-use SDK Bluetooth LE APIs and SDK System APIs.

◦ SDK Bluetooth LE APIs: Include L2CAP, GAP, SM, and GATT APIs.

◦ SDK System APIs: Provide API definitions for Non-volatile Data Storage (NVDS), Device Firmware Update
(DFU), system power management, and generic system-level access interfaces.

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; users can download these files to GR551x SoCs for operation and test. GRToolbox (Android) in the SDK also
provides corresponding functions as most Bluetooth applications do, to help users with tests.

• Drivers

API definitions and descriptions on peripheral drivers

2.3 Memory Mapping

The memory mapping of a GR551x SoC is shown in Figure 2-3.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 6

GR551x Bluetooth LE Software Platform

BLE_APB

BLE_AHB

Present

TRNG

KRAM

EFUSE

HMAC

AES

PKC

0xB001_FFFF

0xB001_0000
0xB000_FFFF

0xB000_0000

0xA001_8FFF

0xA001_8000
0xA001_7FFF

0xA001_7800
0xA001_77FF

0xA001_7000
0xA001_6FFF

0xA001_6000
0xA001_5FFF

0xA001_5800
0xA001_57FF

0xA001_5000
0xA001_4FFF

0xA001_4000
RAM

Flash2

Flash

RAM1

ROM

0x3003_FFFF

0x3000_0000

0x037F_FFFF

0x0300_0000

0x017F_FFFF

0x0083_FFFF

0x0080_0000

0x0007_FFFF

0x0000_0000

DMA

GPIO 2

GPIO 1

GPIO 0

APB

0xA001_3FFF

0xA001_3000
0xA001_2FFF

0xA001_2000
0xA001_1FFF

0xA001_1000
0xA001_0FFF

0xA001_0000
0xA000_FFFF

0xA000_0000

1.RAM(0x0083_FFFF) is aliasing
memory of RAM(0x3003_FFFF).

2.Flash(0x037F_FFFF) is aliasing
memory of Flash(0x017F_FFFF).

Devices

SRAM

Code

Devices

Memory Map

0x0100_0000

Figure 2-3 GR551x memory mapping

 Note:

• GR5515 SoCs:

RAM: 0x3000_0000 to 0x3003_FFFF or 0x0080_0000 to 0x0083_FFFF, 256 KB in total

Flash: 0x0100_0000 to 0x010F_FFFF or 0x0300_0000 to 0x030F_FFFF, 1 MB in total (exception: 512 KB for
GR5515IENDU SoC)

• GR5513 SoCs:

RAM: 0x3000_0000 to 0x3001_FFFF or 0x0080_0000 to 0x0081_FFFF, 128 KB in total

Flash: 0x0100_0000 to 0x0107_FFFF or 0x0300_0000 to 0x0307_FFFF, 512 KB in total

2.4 Flash Memory Mapping

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 7

GR551x Bluetooth LE Software Platform

GR551x packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout of a typical GR5515 application scenario is shown in Figure 2-4.

End of Flash

NVDS_START_ADDR

0x0100_2000

0x0100_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store system boot parameter configurations

• User App: storage area for application firmware

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

• NVDS: Non-volatile Data Storage area

 Note:

By default, NVDS occupies the last sector of Flash memory. You can reasonably configure the start address of NVDS
and the number of occupied sectors according to Flash memory layout of products. For more information about the
configuration, see “Section 4.3.2.1 Configuring custom_config.h”.

Important: The start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0100_0000 to 0x0100_2000) of Flash memory. It stores flags and other
system configuration parameters used during system boot. The download algorithm and GProgrammer generate SCA
data based on the user configuration file custom_config.h (path: Project_Folder\Src\config), and update
the data in SCA during firmware programming. Figure 2-5 shows the SCA layout.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 8

GR551x Bluetooth LE Software Platform

 Note:

Project_Folder is the root directory of the project.

0x0100_0000

0x0100_1000

0x0100_2000

Boot_Info sector

3556B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

DFU Config Info
(44B)

Reserved

Enc:Hmac(32B)
UnEnc:Free

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

ADV Name Info(22B)

DFU Disable Cmd Info(4B)

NVDS Init Info(8B)

UART Info(12B)

Img_Info_10
(40B)

Figure 2-5 SCA layout

• The Boot_Info and the Boot_Info Backup store the same information, and the latter is the backup of the
Boot_Info.

◦ In non-security mode, the Bootloader obtains boot information from Boot_Info by default.

◦ In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info
Backup and obtains boot information from it.

• The firmware boot information is stored in the Boot_Info (32 B) area. The Bootloader checks and jumps to the
entry address of the firmware based on the boot information.

◦ The Boot Config area stores the system boot configuration information.

◦ The SPI access mode area stores the SPI access mode configuration which is the fixed configuration of the
system and cannot be modified.

◦ The Run Addr area stores the firmware run address, corresponding to APP_CODE_RUN_ADDR in
custom_config.h.

◦ The Load Addr area stores the firmware storage address, corresponding to APP_CODE_LOAD_ADDR in
custom_config.h.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 9

GR551x Bluetooth LE Software Platform

◦ The CheckSum area stores the firmware checksum which is computed automatically based on the
download algorithm or by GProgrammer.

◦ The APP Size area stores the firmware size which is computed automatically based on the download
algorithm or by GProgrammer.

• Up to 10 pieces of firmware information (image info) can be stored in Img_Info areas. Firmware information is
stored in Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

◦ The Comments area stores the descriptive information about firmware and supports up to 12 characters,
corresponding to APP_INFO_COMMENTS in custom_config.h.

◦ The Boot_Info (24 B) area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ The Version area stores the firmware version.

◦ The Pattern area stores a fixed value: 0x4744.

• The DFU Config Info area stores configurations of DFU module in ROM. You can call corresponding APIs to change
the data stored in this area to configure DFU module.

◦ The UART Info area stores UART configurations of DFU module, including status bit, baud rate, and GPIO
configurations.

◦ The ADV Name Info area stores advertising configurations of DFU module, including status bit, advertising
name, and advertising length.

◦ The NVDS Init Info area stores initialization configurations of NVDS system in DFU module, including status
bit, NVDS area size, and start address.

◦ The DFU Disable Cmd Info area stores DFU disable command configurations of DFU module, including
status bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a
DFU command.

• The HMAC check value is stored in the HMAC area. This area is valid only in security mode. For more information
about the security mode, see GR5xx Firmware Encryption Application Note.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash Hardware Abstract Layer (Flash HAL). NVDS is located
in the Flash memory and data in it will not get lost in power-off status. By default, NVDS occupies the last sector of the
Flash memory for storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data,
states, and user information. Bluetooth LE Stack will also store parameters (such as device binding information) in
NVDS.

NVDS has the following characteristics:

• Each storage item (TAG) has a unique TAG ID for identification. User applications can read and change data
according to TAG IDs, regardless of physical storage addresses.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 10

GR551x Bluetooth LE Software Platform

• It is optimized based on medium characteristics of Flash memory and supports data check, word alignment,
defragmentation, and erase/write balance.

• The size and the start address of NVDS are configurable. The Flash memory is divided into sectors (4 KB/sector).
NVDS can be configured as several sectors, and the configured start address shall be 4 KB-aligned.

NVDS provides the following five simple APIs to manipulate non-volatile data in Flash.

Table 2-1 NVDS APIs

Function Prototype Description

uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the Flash sectors used by NVDS.

uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

uint8_t nvds_put(NvdsTag_t tag, uint16_t len, const uint8_t *p_buf)
Write data to NVDS and mark the data with TAG IDs. If no

TAG exists, create one.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.

uint16_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG.

For more information about NVDS APIs, see GR551x API Reference or the NVDS header file (available in SDK_Folder
\components\sdk\gr55xx_nvds.h).

Figure 2-6 shows the format of the data stored in NVDS:

Data Header Data

8 bytes Max length: 1024 bytes

Figure 2-6 NVDS data format

Table 2-2 shows the data header format:

Table 2-2 Data header format

Byte Name Description

0–1 tag Data tag

2–3 len Data length

4–4 checksum Checksum of data header

5–5 value_cs Data checksum

6–7 reserved Reserved field

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 11

GR551x Bluetooth LE Software Platform

 Note:

Bluetooth LE Stack also stores some parameters in NVDS. Therefore, it is required to allocate a Flash storage
area to NVDS. By default, GR551x SDK uses the last sector of Flash memory for NVDS. You can modify macros
NVDS_START_ADDR and NVDS_NUM_SECTOR in custom_config.h to configure the start address and the size of NVDS.
Bluetooth LE Stack and applications share the same NVDS storage area. However, TAG ID namespace is divided into
different categories. You can only use the TAG ID name category assigned to applications.

• Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as an
NVDS API parameter.

• Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x0000 to 0x3FFF.

Before running an application for the first time, you can use GProgrammer to write the initial TAG value used by
Bluetooth LE Stack and the application to NVDS. If you specify an NVDS area start address, instead of using the default
NVDS area in GR551x SDK, make sure the start address configured in GProgrammer is the same as that defined in
custom_config.h. For more information about configuration of the NVDS area start address in custom_config.h, see
“Section 4.3.2.1 Configuring custom_config.h”.

2.5 RAM Mapping

The RAM of a GR5515 SoC is 256 KB in size with the start address of 0x3000_0000. It consists of 11 RAM Blocks. For
the first 4 RAM Blocks, each is 8 KB; for the others, each is 32 KB. Each RAM Block can be powered on/off by software
independently.

 Note:

The GR5515 SoC provides an aliasing memory with the start address of 0x0080_0000 for RAM with the start address
of 0x3000_0000, as shown in Figure 2-3. If the run address of code is within the range of the aliasing memory address,
code can run faster in RAM. By default, the aliasing memory is enabled in GR551x SDK.

The 256 KB RAM layout is shown in Figure 2-7:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 12

GR551x Bluetooth LE Software Platform

0x3003_FFFF

RAM_8K_0

RAM_8K_1

RAM_8K_2

RAM_8K_3

RAM_32K_0

……

RAM_32K_6

0x3001_8000

0x3001_0000

0x3000_8000

0x3000_6000

0x3000_4000

0x3000_2000

0x3000_0000

Figure 2-7 256 KB RAM layout

Running modes for applications include XIP and mirror modes. For more information about configurations, see
APP_CODE_RUN_ADDR in “Section 4.3.2.1 Configuring custom_config.h”. RAM layouts of the two modes are
different.

Table 2-3 Running modes for applications

Running Mode Description

XIP mode

It refers to Execute in Place mode. User applications are stored in on-chip Flash, and applications use

the same space for running and loading. When the system is powered on, it fetches and executes

commands from Flash directly through the Cache Controller.

Mirror mode

In mirror mode, user applications are stored in on-chip Flash, and the running space of applications is

defined in RAM. During application boot, applications are loaded into RAM from external Flash after

check is completed, and the system jumps to RAM for operation.

 Note:

Continuous access to Flash is required in XIP mode. Therefore, power consumption in this mode is a little higher than
that in mirror mode.

2.5.1 RAM Layout in XIP Mode

The typical RAM layout in XIP mode is shown in Figure 2-8. You are able to modify the layout based on product needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 13

GR551x Bluetooth LE Software Platform

ROM Reserved RAM
Including .bss and .data

(Retenon)

App reserved RAM
Including .bss and .data

RAM_CODE

Unused RAM Space

Call Stack
End of RAM

Size=CSTACK_HEAP_SIZE

Size=APP_RAM_SIZE

0x3000_4000

Size=16KB

0x3000_0000

Figure 2-8 RAM layout in XIP mode

The layout in XIP mode allows application code to be run directly in the code loading area, so that more RAM space
is available for applications. It is required to turn off the XIP mode during Flash data update. As a result, the CPU is
unable to fetch commands from Flash. Therefore, the run address of Flash driver code shall be directed to RAM during
compiling and linking. The scatter file used by GR551x SDK example projects defines a RAM_CODE area to run code
whose run address is in RAM. In sleep mode, the RAM Block occupied by the RAM_CODE area shall be in RETENTION
mode.

 Note:

You cannot remove the RAM_CODE segment from the scatter file. For more information about the scatter file, see
“Section 4.3.2.2 Configuring Memory Layout”.

2.5.2 RAM Layout in Mirror Mode

The typical RAM layout in mirror mode is shown in Figure 2-9. You are able to modify the layout based on product
needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 14

GR551x Bluetooth LE Software Platform

ROM Reserved RAM
Including .bss and .data

(Retenon)

App reserved RAM
Including .bss and .data

App Code Execuon Region

Unused RAM Space

Call Stack
End of RAM

Size=CSTACK_HEAP_SIZE

0x3000_4000

Size=16KB

0x3000_0000

APP_CODE_RUN_ADDR

Figure 2-9 RAM layout in mirror mode

The layout in mirror mode allows application code to be run in RAM. When the SoC is powered on, it goes into the
cold boot process. The Bootloader copies application code from Flash to the RAM segment App Code Execution
Region. When the SoC is awoken from sleep mode, it goes into the warm boot process. To shorten the warm boot
time, the Bootloader does not copy the application code again to the RAM segment App Code Execution Region.

The start address of the RAM segment App Code Execution Region is determined by the macro
APP_CODE_RUN_ADDR in custom_config.h. Developers shall determine the value of APP_CODE_RUN_ADDR based on
the use of .data and .bss segments in the application, to prevent address overlapping with the .bss segment at a low
address or the call stack segment at a high address. The distribution of RAM segments can be obtained from the .map
file.

It is recommended that developers use RAM Aliasing Memory address (0x0080_0000–0x0083_FFFF) to set
APP_CODE_RUN_ADDR. In the case of RAM segment overlapping, an error will occur and the overlapping position will
be prompted during project building, to help developers check and quickly locate the RAM segment overlapping.

2.5.3 RAM Power Management

Each RAM Block has three power modes: POWER OFF, RETENTION, and FULL.

• The FULL mode corresponds to the active mode of the system; MCU is permitted to read from and write to RAM
Blocks.

• RETENTION mode is mainly used in sleep mode of the system. Data in RAM Blocks in this power mode does not
get lost and is ready for use by the system when it switches from sleep mode to active mode.

• RAM Blocks in POWER OFF mode are powered off, and data stored in these blocks gets lost. Users shall save the
data before the system is powered off.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 15

GR551x Bluetooth LE Software Platform

By default, the PMU in the GR551x enables all RAM power sources when the system starts. The GR551x SDK also
provides a complete set of RAM power management APIs. You can configure the power of RAM Blocks based on
application needs.

By default, the automatic RAM power management mode will be enabled when the system starts. The system will
control the power of RAM Blocks automatically according to RAM usage by applications. The configuration rules are
provided as follows:

• When the system is in active mode, unused RAM Blocks are set to POWER OFF mode, and RAM Blocks to be used
are set to FULL mode.

• When the system enters sleep mode, unused RAM Blocks remain in POWER OFF mode, and RAM Blocks to be
used are set to RETENTION mode.

Configurations in practice are described below:

• In Bluetooth LE applications, two RAM Blocks, RAM_8K_0 and RAM_8K_1, are reserved for Bootloader and
Bluetooth LE Stack only, not available for applications. When the system is in active mode, these two RAM Blocks
shall be in FULL mode; when the system is in sleep mode, they shall be in RETENTION mode. Non-Bluetooth LE
applications can use these two RAM Blocks.

• Purposes of RAM_8K_2 and subsequent RAM Blocks are defined by applications. Generally, user data and the
code segments to be executed in RAM are defined in continuous segments starting from RAM_8K_2; top of
function call stacks are defined in upper address part of RAM. The power mode of these RAM Blocks can be
enabled, or controlled by applications.

 Note:

1. An MCU is permitted only when a RAM Block is in FULL mode.

2. To manage the RAM power sources and use a RAM Block which is not included in the memory layout information
of applications, you need to call the mem_pwr_mgmt_mode_set_from(uint32_t start_addr, uint32_t size)
function during application initialization, to power the RAM Block on.

3. Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

SDK_Folder is the root directory of GR551x SDK.

2.6 GR551x SDK Directory Structure

The folder directory structure of GR551x SDK is shown in Figure 2-10.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 16

GR551x Bluetooth LE Software Platform

GR551x SDK

build
config
gcc
iar
keil

components

drivers_ext
libraries
profiles
sdk

documentaon

drivers

src

external

projects

freertos
mbedtls

ble
peripheral

nanopb
segger_r

arch
boards

plaorm

include
soc

common
linker
include
src

inc

Figure 2-10 GR551x SDK directory structure

Detailed descriptions of folders in GR551x SDK are shown in Table 2-4.

Table 2-4 GR551x SDK folders

Folder Description

build\config
Project configuration directory that stores the custom_config.h template file. Contents in

this file are used to configure project parameters.

build\gcc GCC tools

build\iar IAR tools

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 17

GR551x Bluetooth LE Software Platform

Folder Description

build\keil Keil MDK tools

components\drivers_ext Drivers of third-party components on the development board

components\libraries Libraries provided in GR551x SDK

components\profiles
Source files of GATT Services/Service Clients implementation examples provided in GR551x

SDK

components\sdk API header files provided in GR551x SDK

documentation GR551x API references

drivers\inc Header files used by the GR551x peripheral drivers

drivers\src Source code used by the GR551x peripheral drivers

external\freertos Source code of FreeRTOS (a third-party program)

external\mbedtls Source code of Mbed (a third-party program)

external\nanopb Source code of Nanopb (a third-party program)

external\segger_rtt Source code of SEGGER RTT (a third-party program)

platform\arch Toolchain files of CMSIS

platform\boards
Source files for initializing GR5515 Starter Kit Board (GR5515 SK Board). The files are used

for initializing basic peripherals at board level.

platform\include Common header files related to platform

platform\soc\common
Public source files compatible to GR551x SoCs. The files include gr_interrupt.c,

gr_platform.c, and gr_system.c.

platform\soc\linker Symbol table files and library files provided in the GR551x SDK for the linker

platform\soc\include
Common header files closely related to driver underlying configurations such as registers

and clock configurations

platform\soc\src
gr_soc.c, which is about initialization processes closely related to SoCs. The processes

include initializing Flash and NVDS, configuring crystal, and calibrating PMU.

projects\ble
Bluetooth LE application project examples, such as Heart Rate Sensor and Proximity

Reporter

projects\peripheral Peripheral project examples of a GR551x SoC

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 18

Bootloader

3 Bootloader
The GR551x supports two code running modes: XIP and mirror. When the system is powered on, the Bootloader first
reads the system boot configuration information from SCA, then performs application firmware integrity check and
system initialization configuration accordingly, and finally jumps to the code running space to run code. The boot
procedures may vary in different running modes.

• In XIP mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check,
and then jumps to the code run address in Flash to run code.

• In mirror mode, after finishing application firmware check, the Bootloader loads the code in Flash to
corresponding RAM running space based on system configurations, resets Flash interfaces, and jumps to RAM to
run code.

The application boot procedures of GR551x SDK are shown in Figure 3-1.

Inialize Flash.

In Mirror Mode?

Reset_Handler

Read boot informaon
and check the integrity of

Applicaon Image.

Is Applicaon
 Image integral?

Copy Applicaon Image to
RAM from Flash.

Inialize instrucon cache.

Boot Start

Start DFU service.

Yes Yes

No No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of GR551x SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 and executes the reset_handler in ROM to enter the
Bootloader.

2. Bootloader initializes Flash.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 19

Bootloader

3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

 Note:

The GR551x enhances security by encrypting and signing application firmware.

• Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
HMAC check; after successful checking, the Bootloader decrypts SCA boot information and then implements
the verification signature process in the security boot process, to guarantee firmware integrity and prevent
tampering or disguise; if the signature verification is successful, the automatic decryption function is enabled. For
more information, see GR5xx Firmware Encryption Application Note.

• Non-security mode: If the security mode is not enabled, the Bootloader uses SCA boot information to check CRC
integrity check for application firmware.

4. If the integrity check fails, the Bootloader starts the Bluetooth LE DFU Service. You can update application
firmware in Flash through this service and the App on the mobile phone.

5. If the integrity check passes, the Bootloader determines a running mode.

• In XIP mode, the Bootloader jumps to the application firmware in Flash to start implementation after XIP
configuration is completed.

• In mirror mode, the Bootloader copies the application firmware in Flash to a specified segment in RAM, and
then runs the application firmware in RAM.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 20

Development and Debugging with GR551x SDK in Keil

4 Development and Debugging with GR551x SDK in Keil
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with GR551x SDK in
Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM® for Cortex® and ARM
devices. You can download and install the Keil installation package from the Keil official website https://www.keil.com/
demo/eval/arm.htm. For the GR551x SDK, Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, see online manuals provided by ARM: https://
www.keil.com/support/man_arm.htm.

The main interface of Keil is shown in Figure 4-1.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are shown in Table 4-1.

Table 4-1 Frequently used function buttons of Keil

Keil Icon Description

Options for Target

Start/Stop Debug Session

Download

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 21

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm
https://www.keil.com/support/man_arm.htm

Development and Debugging with GR551x SDK in Keil

Keil Icon Description

Build

4.2 Installing GR551x SDK

GR551x SDK is ready for use after the GR551x SDK software package is extracted. No manual installation is required.

 Note:

• SDK_Folder is the root directory of GR551x SDK.

• Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to build a Bluetooth LE application.

4.3.1 Preparing ble_app_example

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and
rename it as ble_app_example. Rename the base name of .uvoptx and .uvprojx files in ble_app_example\Keil_
5 as ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and select Output in Options for
Target ‘GRxx_Soc’; enter ble_app_example in Name of Executable.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 22

Development and Debugging with GR551x SDK in Keil

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project Window of Keil.

Figure 4-4 Project ble_app_example

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries,
gr_profiles, and external.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 23

Development and Debugging with GR551x SDK in Keil

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 24

Development and Debugging with GR551x SDK in Keil

Table 4-2 SDK groups

SDK Group Name Description

gr_startup System boot file

gr_arch Initialization configuration files and system interrupt implementation files for System Core and PMU

gr_soc gr_soc.c

gr_board Board-level description file

gr_stack_lib GR551x SDK .lib file

gr_app_drivers
Driver API source files, which are easy to use for application developers. You can add related application drivers

on demand.

gr_libraries Open source files of common assistant software modules and peripheral drivers provided in the SDK

gr_profiles Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects.

external
Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party programs on

demand.

• User groups

User groups include user_platform and user_app.

Figure 4-6 User groups

Functions for source files in User groups need to be implemented by developers. Group descriptions are
provided below:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 25

Development and Debugging with GR551x SDK in Keil

Table 4-3 User groups

User Group Name Description

user_platform
Software and hardware resource setting and application initialization; you need to execute

corresponding APIs on demand.

user_app

main() function entries and other source files created by developers, which are used to configure

runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, After Build and other configuration items.

4.3.2.1 Configuring custom_config.h

The custom_config.h file is used to configure parameters of application projects. A custom_config.h template is
provided in SDK_Folder\build\config\. custom_config.h of each application example project is in Src\conf
ig under project directory.

Table 4-4 Parameters in custom_config.h

Macro Description

SOC_GR5515 Define the SoC version number.

CHIP_TYPE

Select the chip type.

• 0: GR5515IGND

• 1: GR5515IENDU

• 2: GR5515I0ND

• 3: GR5515I0NDA

• 4: GR5515RGBD

• 5: GR5515GGBD

• 7: GR5513BENDU

ENCRYPT_ENABLE

Enable/Disable firmware encryption. Default: 0

• 0: Disable; support removing related encryption code to save RAM space.

• 1: Enable

EXT_EXFLASH_ENABLE

Use external Flash or not.

• 0: No

• 1: Yes

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 26

Development and Debugging with GR551x SDK in Keil

Macro Description

PLATFORM_INIT_ENABLE

Enable/Disable platform initialization. If this macro is disabled, the SoC Bluetooth LE and sleep

functions are disabled. Default value for the macro: 1

• 0: Disable

• 1: Enable

SYS_FAULT_TRACE_ENABLE

Enable/Disable Callstack Trace Info printing. If printing is enabled, the Callstack Trace Info is

printed through serial ports when a HardFault occurs.

• 0: Disable

• 1: Enable

APP_DRIVER_USE_ENABLE

Enable/Disable the App Drivers module.

• 0: Disable

• 1: Enable

APP_LOG_ENABLE

Enable/Disable the APP LOG module.

• 0: Disable

• 1: Enable

APP_LOG_STORE_ENABLE

Enable/Disable the APP LOG STORE module.

• 0: Disable

• 1: Enable

APP_LOG_PORT

Set the output port of the APP LOG module.

• 0: UART

• 1: J-Link RTT

• 2: ARM ITM

SK_GUI_ENABLE

Enable/Disable the GUI module on GR5515 SK Board.

• 0: Disable

• 1: Enable

DEBUG_MONITOR

Enable/Disable the Debug Monitor module.

• 0: Disable

• 1: Enable

DTM_TEST_ENABLE

Enable/Disable DTM Test.

• 0: Disable

• 1: Enable

DFU_ENABLE

Enable/Disable DFU.

• 0: Disable

• 1: Enable

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 27

Development and Debugging with GR551x SDK in Keil

Macro Description

FLASH_PROTECT_PRIORITY

During Flash write or erase, applications can block the interrupts with priority level lower than

or equal to a set value.

When FLASH_PROTECT_PRIORITY is set to N, interrupt requests with a priority level not higher

than N are suspended. After erase is completed, Flash responds to the suspended interrupt

requests. By default, Flash does not respond to any interrupt request during erase. Developers

can set a value on demand.

NVDS_START_ADDR

Start address of NVDS. By default, this macro is defined in cutom_config.h. However, the

defined initial value only applies to the scenario where the applied NVDS contains only one

sector. If more than one sector is needed, users shall calculate the start address (4 KB-aligned

required) according to the applied sector number, and the start address shall not be located in a

memory area in use (such as SCA or User App).

NVDS_NUM_SECTOR Number of Flash sectors for NVDS; range: 1–16

SYSTEM_STACK_SIZE

Size of Call Stack required by applications. You can set the value as needed. Please note that

the value shall not be less than 6 KB. The default value is 16 KB.

After compilation of ble_app_example, Maximum Stack Usage is provided in Keil_5\Objec

ts\ble_app_example.htm for reference.

SYSTEM_HEAP_SIZE
You can adjust the sizes of Heap for applications according to practical use of applications. The

default is 4 KB.

ENABLE_BACKTRACE_FEA

Enable/Disable stack backtrace functionality.

• 0: Disable

• 1: Enable

CHIP_VER* SoC version number

APP_CODE_LOAD_ADDR*
Start address of the application storage area. This address shall be within the Flash address

range.

APP_CODE_RUN_ADDR*

Start address of the application running space

• If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP mode.

• If the value is within the RAM address range, applications run in mirror mode.

SYSTEM_CLOCK

System clock frequency. Optional values are provided as follows:

• 0: 64 MHz

• 1: 48 MHz

• 2: 16 MHz (XO)

• 3: 24 MHz

• 4: 16 MHz

• 5: 32 MHz (PLL)

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 28

Development and Debugging with GR551x SDK in Keil

Macro Description

CFG_LF_ACCURACY_PPM
Bluetooth LE low frequency sleep clock accuracy. The value shall range from 1 to 500 (unit:

ppm).

CFG_LPCLK_INTERNAL_EN

Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep clock. If the OSC

clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 automatically.

• 0: Disable

• 1: Enable

CFG_CRYSTAL_DELAY

Set the delay time of chips after RTC is enabled in PMU or parameters like RTC GM are

modified. It shall be configured based on the stabilization time after starting oscillating

obtained in practical crystal oscillator tests. Value range: 100–500 (unit: ms); default: 100 ms.

BOOT_LONG_TIME*

Set necessary 1-second delay (during SoC boot before implementing the second half

Bootloader).

• 0: No delay

• 1: Delay for 1 second.

BOOT_CHECK_IMAGE*

Determine whether to check the image during cold boot in XIP mode.

• 0: Do not check.

• 1: Check.

EXFLASH_WAKEUP_DELAY

During warm boot, set the delay time for waking up Flash and reading the chip ID. Value range:

0–10; unit: 5 μs. Setting the value to 0 indicates no delay. Each time the value increases by 1,

the delay time increases by 5 μs.

CFG_MAX_BOND_DEVS
Maximum number of bonded devices supported by applications. You should set the value on

demand. A larger value means more RAM space to be occupied.

CFG_MAX_PRFS
Maximum number of GATT Profiles/Services included in applications. Set the value on demand.

A larger value means to occupy more RAM space.

CFG_SCAN_DUP_FILT_LIST_NUM
Number of devices that can be filtered during scanning; max.: 50. You can set the value based

on needs.

CFG_MAX_CONNECTIONS

Maximum number of connected devices supported by applications, and the number shall not

be greater than 10. You can set the value based on needs.

A larger value means more RAM space to be occupied by Bluetooth LE Stack Heaps. The size

of Bluetooth LE Stack Heaps is defined by the following four macros in flash_scatter_config.h,

which cannot be changed by developers:

• ENV_HEAP_SIZE

• ATT_DB_HEAP_SIZE

• KE_MSG_HEAP_SIZE

• NON_RET_HEAP_SIZE

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 29

Development and Debugging with GR551x SDK in Keil

Macro Description

CFG_MAX_ADVS
Maximum number of Bluetooth LE legacy advertising and extended advertising supported by

applications

CFG_MAX_ADV_DATA_LEN_SUPPORT

Support legacy advertising with data length at 31 bytes or not.

• 0: No

• 1: Yes

CFG_MAX_PER_ADVS

Maximum number of Bluetooth LE periodic advertising supported by applications

Note:

The sum of configured legacy/extended advertising value (CFG_MAX_LEG_EXT_ADVS) and the

configured periodic advertising value (CFG_MAX_PER_ADVS) shall not exceed 5.

CFG_MAX_SCAN Maximum Bluetooth LE scanning number supported by applications; max: 1

CFG_BT_BREDR

Support generating Bluetooth Classic link keys through the LE link or not.

• 0: No

• 1: Yes

CFG_MUL_LINK_WITH_SAME_DEV

Support multi-link functionality for a single device or not, typically used for Find My

applications.

• 0: No

• 1: Yes

CFG_CAR_KEY_SUPPORT

Support digital car key applications or not.

• 0: No

• 1: Yes

CFG_MAX_SYNCS

Number of synchronized periodic advertising; used for reserving RAM for Bluetooth LE

Protocol Stack. Developers can set the value according to the number of synchronized periodic

advertising in use. Max: 5

CFG_MESH_SUPPORT

Support Mesh or not.

• 0: No

• 1: Yes

CFG_LCP_SUPPORT

Support the LCP module or not.

• 0: No

• 1: Yes

SECURITY_CFG_VAL

Configure the algorithm security level.

• 0: Level 1

• 1: Level 2

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure which
is defined at an offset of 0x200 from the firmware address (APP_CODE_LOAD_ADDR). During firmware download, the

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 30

Development and Debugging with GR551x SDK in Keil

structure information is stored in SCA. During system boot, the Bootloader reads the configuration information of the
firmware from SCA as boot parameters.

Notes in custom_config.h comply with Configuration Wizard Annotations of Keil. Therefore, you can use the graphic
Keil Configuration Wizard to configure project parameters of applications. It is highly recommended to use the Wizard
to prevent inputting invalid parameter values.

Figure 4-7 Configuration Wizard for custom_config.h

4.3.2.2 Configuring Memory Layout

Keil defines memory segments for the linker in .sct files. GR551x SDK provides an example flash_scatter_common.sct
for application developers. The macros used by this .sct file are defined in the flash_scatter_config.h.

 Note:

In Keil, __attribute__((section("name"))) can be used to place a function or a variable at a separate memory segment,
and the “name” depends on your choice. A scatter (.sct) file specifies the location for a named segment. For example,
place Zero-Initialized (ZI) data of applications at the segment named as “__attribute__((section(".bss.app")))”.

You can follow the steps below to configure the memory layout:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 31

Development and Debugging with GR551x SDK in Keil

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar, click ... to browse and select the flash_scatter_common.sct file in SDK_Folder\platf
orm\soc\linker\keil; or copy the scatter (.sct) file and its .h file to the ble_app_example project directory
and then select the scatter file.

 Note:

“#! armcc -E -I .\..\Src\user\ -I .\..\Src\config\ --cpu Cortex-M4” in the flash_scatter_common.sct specifies an Include
path, which is the path of custom_config.h of an application project. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on product memory layout.

Figure 4-8 Configuration of scatter file

4. Click OK to save the settings.

4.3.2.3 Configuring After Build

After Build in Keil can specify a command line to run after a project is built. By default, the ble_app_template
project is equipped with After Build command. You do not need to configure After Build manually for the
ble_app_example project that is based on ble_app_template.

If you build a project, follow the steps below to configure After Build:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
User tab.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 32

Development and Debugging with GR551x SDK in Keil

2. From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output
Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf
to generate a compiling file based on the selected .axf file.

3. From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
\@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to
generate a .bin file based on the selected .axf file.

4. Click OK to save the settings.

Figure 4-9 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in the ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK_HEAP_INIT(heaps_table);

int main (void)
{
 // Initialize user peripherals.
 app_periph_init();

 // Initialize ble stack.
 ble_stack_init(ble_evt_handler, &heaps_table);

 // loop
 while (1)

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 33

Development and Debugging with GR551x SDK in Keil

{
 /*
 * Add Application code here, e.g. GUI Update.
 */
 app_log_flush();
 pwr_mgmt_schedule();
 }
}

• STACK_HEAP_INIT(heaps_table) defines four global arrays as Heaps for Bluetooth LE Stack. Do not modify
the definition; otherwise, Bluetooth LE Stack cannot work. For more information about Heap size, see
CFG_MAX_CONNECTIONS in “Section 4.3.2.1 Configuring custom_config.h”.

• You can initialize peripherals in app_periph_init(). In development and debugging phases, the SYS_SET_BD_ADDR
in this function can be used to set a temporary Public Address. The user_periph_setup.c in which this function is
contained includes the following main code:

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
 SYS_SET_BD_ADDR(s_bd_addr);
 board_init();
 pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}

• You should add main loop code of applications to “while(1) { }”, for example, code to handle external input and
update GUI.

• When using the APP LOG module, call the app_log_flush() in the main loop. This is to ensure logs are output
completely before the SoC enters sleep mode. For more information about the APP LOG module, see “Section
4.6.4 Outputting Debug Logs”.

• Call the pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Business Logics

Related Bluetooth LE business logics of applications are driven by a number of Bluetooth LE events which are defined
in GR551x SDK. Applications need to implement corresponding Bluetooth LE event handlers to obtain operation
results or state change notifications of Bluetooth LE Stack. Bluetooth LE event handlers are called in the interrupt
context of Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking
function call and infinite loop; otherwise, the system is blocked, causing Bluetooth LE Stack and the SDK Bluetooth LE
module unable to run in a normal timing.

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client. All Bluetooth LE events supported by GR551x SDK are
listed below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 34

Development and Debugging with GR551x SDK in Keil

Table 4-5 Bluetooth LE events

Event Type Event Description

Common BLE_COMMON_EVT_STACK_INIT Bluetooth LE Stack init complete event

BLE_GAPM_EVT_CH_MAP_SET Channel Map Set complete event

BLE_GAPM_EVT_WHITELIST_SET Whitelist Set complete event

BLE_GAPM_EVT_PER_ADV_LIST_SET Periodic Advertising List Set complete event

BLE_GAPM_EVT_PRIVACY_MODE_SET Privacy Mode for Peer Device Set complete event

BLE_GAPM_EVT_LEPSM_REGISTER LEPSM Register complete event

BLE_GAPM_EVT_LEPSM_UNREGISTER LEPSM Unregister complete event

BLE_GAPM_EVT_DEV_INFO_GOT Device Info Get event

BLE_GAPM_EVT_ADV_START Advertising Start complete event

BLE_GAPM_EVT_ADV_STOP Advertising Stop complete event

BLE_GAPM_EVT_SCAN_REQUEST Scan Request event

BLE_GAPM_EVT_ADV_DATA_UPDATE Advertising Data update event

BLE_GAPM_EVT_SCAN_START Scan Start complete event

BLE_GAPM_EVT_SCAN_STOP Scan Stop complete event

BLE_GAPM_EVT_ADV_REPORT Advertising Report event

BLE_GAPM_EVT_SYNC_ESTABLISH
Periodic Advertising Synchronization Establish

event

BLE_GAPM_EVT_SYNC_STOP Periodic Advertising Synchronization Stop event

BLE_GAPM_EVT_SYNC_LOST Periodic Advertising Synchronization Lost event

GAP Management

BLE_GAPM_EVT_READ_RSLV_ADDR Read Resolvable Address event

BLE_GAPC_EVT_PHY_UPDATED PHY Update event

BLE_GAPC_EVT_CONNECTED Connected event

BLE_GAPC_EVT_DISCONNECTED Disconnected event

BLE_GAPC_EVT_CONNECT_CANCEL Connect Cancel event

BLE_GAPC_EVT_AUTO_CONN_TIMEOUT Auto Connect Timeout event

BLE_GAPC_EVT_CONN_PARAM_UPDATED Connect Parameter Updated event

BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ Connect Parameter Request event

BLE_GAPC_EVT_PEER_NAME_GOT Peer Name Get event

BLE_GAPC_EVT_CONN_INFO_GOT Connect Info Get event

BLE_GAPC_EVT_PEER_INFO_GOT Peer Info Get event

BLE_GAPC_EVT_DATA_LENGTH_UPDATED Data Length Updated event

BLE_GAPC_EVT_DEV_INFO_SET Device Info Set event

GAP Connection Control

BLE_GAPC_EVT_CONNECT_IQ_REPORT Connection IQ Report info event

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 35

Development and Debugging with GR551x SDK in Keil

Event Type Event Description

BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT Connectionless IQ Report info event

BLE_GAPC_EVT_LOCAL_TX_POWER_READ Local transmit power read indication info event

BLE_GAPC_EVT_REMOTE_TX_POWER_READ Remote transmit power read indication info event

BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT Transmit power change reporting info event

BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT Path loss threshold reporting info event

BLE_GAPC_EVT_RANGING_IND Ranging indication event

BLE_GAPC_EVT_RANGING_SAMPLE_REPORT Ranging sample report event

BLE_GAPC_EVT_RANGING_CMP_IND Ranging complete indication event

BLE_GAPC_EVT_DFT_SUBRATE_SET Default subrate param set complete event

BLE_GAPC_EVT_SUBRATE_CHANGE_IND Subrate change indication event

BLE_GATT_COMMON_EVT_MTU_EXCHANGE MTU Exchange event
GATT Common

BLE_GATT_COMMON_EVT_PRF_REGISTER Service Register event

BLE_GATTS_EVT_READ_REQUEST GATTS Read Request event

BLE_GATTS_EVT_WRITE_REQUEST GATTS Write Request event

BLE_GATTS_EVT_PREP_WRITE_REQUEST GATTS Prepare Write Request event

BLE_GATTS_EVT_NTF_IND GATTS Notify or Indicate Complete event

BLE_GATTS_EVT_CCCD_RECOVERY GATTS CCCD Recovery event

BLE_GATTS_EVT_MULT_NTF GATTS Multiple Notifications event

BLE_GATTS_EVT_ENH_READ_REQUEST GATTS Enhanced Read Request event

BLE_GATTS_EVT_ENH_WRITE_REQUEST GATTS Enhanced Write Request event

BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST GATTS Enhanced Prepare Write Request event

BLE_GATTS_EVT_ENH_NTF_IND
GATTS Enhanced Notify or Indicate Complete

event

BLE_GATTS_EVT_ENH_CCCD_RECOVERY GATTS Enhanced CCCD Recovery event

GATT Server

BLE_GATTS_EVT_ENH_MULT_NTF GATTS Enhanced Multiple Notifications event

BLE_GATTC_EVT_SRVC_BROWSE GATTC Service Browse event

BLE_GATTC_EVT_PRIMARY_SRVC_DISC GATTC Primary Service Discovery event

BLE_GATTC_EVT_INCLUDE_SRVC_DISC GATTC Include Service Discovery event

BLE_GATTC_EVT_CHAR_DISC GATTC Characteristic Discovery event

BLE_GATTC_EVT_CHAR_DESC_DISC GATTC Characteristic Descriptor Discovery event

BLE_GATTC_EVT_READ_RSP GATTC Read Response event

BLE_GATTC_EVT_WRITE_RSP GATTC Write Response event

BLE_GATTC_EVT_NTF_IND GATTC Notify or Indicate Receive event

GATT Client

BLE_GATTC_EVT_CACHE_UPDATE GATTC Cache Update event

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 36

Development and Debugging with GR551x SDK in Keil

Event Type Event Description

BLE_GATTC_EVT_ENH_SRVC_BROWSE GATTC Enhanced Service Browse event

BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC GATTC Enhanced Primary Service Discovery event

BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC GATTC Enhanced Include Service Discovery event

BLE_GATTC_EVT_ENH_CHAR_DISC GATTC Enhanced Characteristic Discovery event

BLE_GATTC_EVT_ENH_CHAR_DESC_DISC
GATTC Enhanced Characteristic Descriptor

Discovery event

BLE_GATTC_EVT_ENH_READ_RSP GATTC Enhanced Read Response event

BLE_GATTC_EVT_ENH_WRITE_RSP GATTC Enhanced Write Response event

BLE_GATTC_EVT_ENH_NTF_IND GATTC Enhanced Notify or Indicate Receive event

BLE_SEC_EVT_LINK_ENC_REQUEST Link Encrypted Request event

BLE_SEC_EVT_LINK_ENCRYPTED Link Encrypted event

BLE_SEC_EVT_KEY_PRESS_NTF Key Press event
Security Manager

BLE_SEC_EVT_KEY_MISSING Key Missing event

BLE_L2CAP_EVT_CONN_REQ L2CAP Connect Request event

BLE_L2CAP_EVT_CONN_IND L2CAP Connected Indicate event

BLE_L2CAP_EVT_ADD_CREDITS_IND L2CAP Credits Add Indicate event

BLE_L2CAP_EVT_DISCONNECTED L2CAP Disconnected event

BLE_L2CAP_EVT_SDU_RECV L2CAP SDU Receive event

BLE_L2CAP_EVT_SDU_SEND L2CAP SDU Send event

BLE_L2CAP_EVT_ADD_CREDITS_CPLT L2CAP Credits Add Completed event

BLE_L2CAP_EVT_ENH_CONN_REQ L2CAP Enhanced Connect Request event

BLE_L2CAP_EVT_ENH_CONN_IND L2CAP Enhanced Connected Indicate event

BLE_L2CAP_EVT_ENH_RECONFIG_CPLT L2CAP Enhanced Reconfig Completed event

L2CAP

BLE_L2CAP_EVT_ENH_RECONFIG_IND L2CAP Enhanced Reconfig Indicate event

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only
those event handlers required for products are to be implemented.

For details about the usage of Bluetooth LE APIs and event APIs, refer to the source code of Bluetooth LE examples in
SDK_Folder\documentation\GR551x_API_Reference and SDK_Folder\projects\ble.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Bluetooth LE Stack is the core to implement Bluetooth LE protocol stacks. It can directly operate the Bluetooth 5.1
Core (see “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall
IRQ, which ensures that Bluetooth LE Stack runs strictly in a time sequence specified in Bluetooth Core Spec.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 37

Development and Debugging with GR551x SDK in Keil

A state change of Bluetooth LE Stack triggers BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler,
the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of
Bluetooth LE Stack and related business data to applications. You should avoid performing long-running operations
in these event handlers, and shall move such operations to the main loop or user thread for processing. You can use
the module in SDK_Folder\components\libraries\app_queue, or your own application framework, to
transfer events from Bluetooth LE event handlers to the main loop. For more information about processing in the user
thread, see GR5xx FreeRTOS Example Application.

Bluetooth LE
Stack

BLE_Stack_IRQ

SDK
Bluetooth LE

BLE_SDK_IRQ

Applicaon
Callback

Applicaon
Queue

Applicaon
Main Loop

Bluetooth LE Event
Handler

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-10 Non-OS system schedule

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click Build on the Keil toolbar to build a project. After
the project is built, the following firmware files are generated in Keil_5\Listings and Keil_5\Objects
respectively in the project directory. Both of the firmware files can be downloaded to a GR551x SoC via GProgrammer.
For details, see GProgrammer User Manual. The ble_app_example.hex file can be downloaded to a GR551x SoC via
Keil MDK.

Table 4-6 Generated firmware

Name Description

ble_app_example.bin Binary application firmware; can be downloaded to an SoC through GProgrammer

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 38

Development and Debugging with GR551x SDK in Keil

Name Description

ble_app_example.hex Hexadecimal application firmware; can be downloaded to an SoC through GProgrammer or Keil MDK

4.5 Downloading .hex Files to Flash

After .hex files are generated, you need to download these files to Flash. Specific steps are provided below:

1. Configure Keil Flash programming algorithm.

(1) Copy the GR5xxx_16MB_Flash.FLM in SDK_Folder\build\keil to Keil_Folder\ARM\Flash.

(2) Click (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-11 Debug tab

(3) In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 39

Development and Debugging with GR551x SDK in Keil

Figure 4-12 Choosing Download Function

 Note:

If the Bootloader is in mirror mode, you should change the erase type to Erase Full Chip.

(4) Click Add to add the GR5xxx_16MB_Flash.FLM to the Programming Algorithm.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 40

Development and Debugging with GR551x SDK in Keil

Figure 4-13 Adding GR5xxx_16MB_Flash to Programming Algorithm

(5) Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR551x in the Start input field: 0x30000000. Enter 0xF000 in
the Size input field.

Figure 4-14 Settings of RAM for Algorithm

(6) Click OK to save the settings.

2. Download the .hex file.

After completing configuration, click (Download) on the Keil toolbar to download the .hex file to Flash. After
download is completed, the following results are displayed in the Build Output window of Keil.

 Note:

During file download, if “No Cortex-M SW Device Found” pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this

case, developers need to press RESET on the GR5515 SK Board and wait for about 1 second; then click (Download)
to re-download the file.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 41

Development and Debugging with GR551x SDK in Keil

Figure 4-15 Download results

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar to open the Options for
Target ‘GRxx_Soc’ dialog box, and then select Debug tab. In the window, software simulation debugging displays
on the left, and online hardware debugging displays on the right. Bluetooth LE example projects adopt the online
hardware debugging. Related default configurations of the debugger are shown as follows:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 42

Development and Debugging with GR551x SDK in Keil

Figure 4-16 Debugger configuration

The default initialization file sram.ini is in SDK_Folder\build\keil. You can use this file directly, or copy it to the
project directory.

 Note:

SDK_Folder is the root directory of GR551x SDK.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the
Initialization File bar, click Edit... on the right side, to open the sram.ini file. Example code of sram.ini is provided as
follows:

/**

* GR55xx object loading script through debugger interface
* (e.g.Jlink# *etc).
* The goal of this script is to load the Keils's object file to the
* GR55xx RAM
* assuring that the GR55xx has been previously cleaned up.

*/
// Debugger reset(check Keil debugger settings)
// Preselected reset type(found in Options->Debug->Settings)is
// Normal(0);
// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
RESET

// Load object file
LOAD %L

// Load stack pointer
SP = _RDWORD(0x00000000)
// Load program counter

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 43

Development and Debugging with GR551x SDK in Keil

$ = _RDWORD(0x00000004)
// Write 0 to vector table register# remap vector
_WDWORD(0xE000ED08, 0x00000000)

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Load Application at Startup (Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup) is
enabled, the debugger first loads the file under Name of Executable (Options for Target ‘GRxx_Soc’ > Output >
Name of Executable).

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g,main is
discovered in the Initialization File, the debugger automatically starts executing CPU commands, until running to
the main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-17. This is to
ensure when you click Reset on the Keil toolbar after enabling Start Debug Session, the program can run normally.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 44

Development and Debugging with GR551x SDK in Keil

Figure 4-17 Setting Connect & Reset Options to Normal

For debugging in XIP mode, no other matters need attention. However, there are some additional notes for debugging
in mirror mode. See “Section 4.6.3 Debugging in Mirror Mode”.

4.6.3 Debugging in Mirror Mode

In mirror mode, you shall set breakpoints after the application firmware is copied to RAM.

 Note:

If breakpoints are set within the RAM address range, Keil uses software breakpoints to save hardware resources
(replace the original commands with BKPT instructions). After you set breakpoints, the Bootloader copies the
application firmware to an address where breakpoints are set. The BKPT instructions of the address then are
overwritten by the application firmware, and applications cannot stop when running to the address. For more
information, see the ARM Keil official document Breakpoints are not hit when debugging in RAM.

You should set breakpoints before executing the main() function of applications. Follow the steps below to set
breakpoints:

1. Add __BKPT(X) to the first line of the main() function. Example code is provided below:

int main(void)
{
 __BKPT(0);
 app_periph_init(); /*<init user periph .*/
…

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 45

https://www.keil.com/support/docs/3678.htm

Development and Debugging with GR551x SDK in Keil

2. Click Build on the Keil toolbar to compile and link code.

3. Click (Start/Stop Debug Session) on the Keil toolbar to start debugging. The application stops at __BKPT(0)
when it starts debugging.

4. Set new breakpoints in the application.

5. Press F10 (not F5) to step over the next code line, so that you can continue debugging code in a normal way.

 Note:

Pressing F10 allows executing the next code line only; press F5 allows executing all the rest code lines. Keil only
responds to F10 when it hits __BKPT.

4.6.4 Outputting Debug Logs

GR551x SDK supports outputting debug logs of applications from hardware ports in a customized output mode.
Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM ITM). GR551x SDK provides
an APP LOG module to facilitate log output. To use the APP LOG module, users need to enable APP_LOG_ENABLE in
custom_config.h, and configure APP_LOG_PORT based on the needed output port.

4.6.4.1 Module Initialization

After configuration, you need to set log parameter by calling app_log_init() during peripheral initialization and
to initialize the APP LOG module by registering log output APIs and Flush APIs. The APP LOG module supports using
the printf() (a C standard library function) and APP LOG APIs to output debug logs. If you use APP LOG APIs, you
can optimize logs by setting log level, log format, filter type, or other parameters; if you use printf(), the LOG
parameter can be set to NULL.

Call the initialization function (see SDK_Folder\platform\boards\board_SK.h for details) of the
corresponding module according to the output port configured, and register corresponding Send and Flush APIs. See
bsp_log_init() for details. The APIs are provided as follows when UART is configured as the output port.

void bsp_log_init(void)
{
#if (APP_LOG_ENABLE == 1)

#if (APP_LOG_PORT == 0)
 bsp_uart_init();
#elif (APP_LOG_PORT == 1)
 SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0, SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL);
#endif

#if (APP_LOG_PORT <= 2)
 app_log_init_t log_init;

 log_init.filter.level = APP_LOG_LVL_DEBUG;
 log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
 log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_LVL;

#if (APP_LOG_PORT == 0)
 app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 46

Development and Debugging with GR551x SDK in Keil

#elif (APP_LOG_PORT == 1)
 app_log_init(&log_init, bsp_segger_rtt_send, NULL);
#elif (APP_LOG_PORT == 2)
 app_log_init(&log_init, bsp_itm_send, NULL);
#endif

 app_assert_init();

#endif

#endif
}

 Note:

• The input parameters of app_log_init() include the log initialization parameter, log output API, and Flush API
(registration not required).

• GR551x SDK provides an APP LOG STORE module, which supports storing the debugging logs in
Flash and outputting the logs from Flash. To use the APP LOG STORE module, users need to enable
APP_LOG_STORE_ENABLE in custom_config.h. This module is configured in the ble_app_rscs project (in SDK_F
older\projects\ble\ble_peripheral\ble_app_rscs), which can be used as a reference for users
to use the APP LOG STORE module.

• Application logs output by using printf() cannot be stored by the APP LOG STORE module.

When the debugging logs are output through UART, the implemented log output API and Flush API are
bsp_uart_send and bsp_uart_flush, respectively. bsp_uart_send implements app_uart asynchronous output API
(app_uart_transmit_async). As a uart_flush API, bsp_uart_flush is used to output the to-be-sent data cached in the
memory in interrupt mode. Contents in both bsp_uart_send and bsp_uart_flush can be overwritten by users.

When the debugging logs are output through J-Link RTT or ARM ITM, the implemented log output APIs are
bsp_segger_rtt_send() and bsp_itm_send(). No Flush API is implemented when either J-Link RTT or ARM ITM is
configured as the output port.

4.6.4.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARNING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() function to output all the debug logs cached, to ensure that all
debug logs are output before the SoC is reset or the system enters the sleep mode.

To output logs through J-Link RTT, it is recommended to modify SEGGER_RTT.c as follows.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 47

Development and Debugging with GR551x SDK in Keil

Figure 4-18 To create an RTT Control Block and place it at 0x00805000

You also need to configure in J-Link RTT Viewer, as shown in Figure 4-19.

Figure 4-19 To configure J-Link RTT Viewer

The address of RTT Control Block is specified in Address, the value of which can be obtained by inquiring the address
of the _SEGGER_RTT structure in the .map file (generated during project compilation). If an RTT Control Block has
been created as recommended in Figure 4-18 and is placed at 0x00805000, then 0x00805000 can be entered in the
Address field.

Figure 4-20 To obtain the RTT Control Block address

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 48

Development and Debugging with GR551x SDK in Keil

 Note:

If you choose GCC for compilation, modifications shown in Figure 4-18 are not required. The address to be entered
for RTT Control Block in J-Link RTT Viewer should be the address of _SEGGER_RTT in the .map file generated by the
compilation project.

4.6.5 Debugging with GRToolbox

GR551x SDK provides an Android App, GRToolbox, to debug GR551x Bluetooth LE applications. GRToolbox integrates
the following functions:

• General Bluetooth LE scanning and connecting; characteristics read/write

• Demos for standard profiles, including Heart Rate and Blood Pressure

• Goodix-customized applications

 Tip:

You can obtain the GRToolbox installation file from Goodix official website or download it from the application store.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 49

https://www.goodix.com/en/software_tool/grtoolbox

Development and Debugging with GR551x SDK in GCC

5 Development and Debugging with GR551x SDK in GCC
GNU Compiler Collection (GCC) is an open-source, cross-platform compiler system developed by the GNU Project
running on both Linux and Windows operating systems.

 Note:

For Linux operating systems, Ubuntu 16.04 LTS or later LTS versions are recommended.

For details on how to install and use GCC in applications development and debugging, see GR5xx GCC User Manual.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 50

Development and Debugging with GR551x SDK in IAR

6 Development and Debugging with GR551x SDK in IAR
IAR Embedded Workbench IDE for Arm (IAR EWARM, mentioned as IAR below) is an IDE built by IAR Systems,
supporting Windows operating system. You can download the IAR installation file on IAR Systems official website.
Currently, IAR for ARM 8.2.22 and later versions are supported on the SDK.

For details on how to install and use IAR in applications development and debugging, see GR5xx IAR User Manual.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 51

https://www.iar.com/iar-embedded-workbench/?architecture=8051

Glossary

7 Glossary
Table 7-1 Glossary

Acronym Description

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DAP Debug Access Port

DFU Device Firmware Update

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host-Controller Interface

IoT Internet of Things

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

XIP Execute in Place

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 52

	Preface
	Contents
	1 Introduction
	1.1 GR551x SDK
	1.2 Bluetooth LE Stack

	2 GR551x Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 RAM Layout in XIP Mode
	2.5.2 RAM Layout in Mirror Mode
	2.5.3 RAM Power Management

	2.6 GR551x SDK Directory Structure

	3 Bootloader
	4 Development and Debugging with GR551x SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing GR551x SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout
	4.3.2.3 Configuring After Build

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Business Logics
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Debugging in Mirror Mode
	4.6.4 Outputting Debug Logs
	4.6.4.1 Module Initialization
	4.6.4.2 Application

	4.6.5 Debugging with GRToolbox

	5 Development and Debugging with GR551x SDK in GCC
	6 Development and Debugging with GR551x SDK in IAR
	7 Glossary

