
GR551x FreeRTOS Example Application

Version: 2.0

Release Date: 2022-02-20

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces how to use and modify a FreeRTOS example in the GR551x Software Development Kit (SDK),
to help users quickly get started with secondary development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Hobbyist developer

• Technical writer

Release Notes

This document is the eighth release of GR551x FreeRTOS Example Application, corresponding to GR551x System-on-
Chip (SoC) series.

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16 Updated the release time in the footers.

1.5 2020-05-30 Updated the project directory figure in “Project Directory”.

1.6 2020-06-30 Updated the document version based on SDK changes.

1.7 2020-12-15 Updated GRToolbox UI figure based on software update.

1.8 2021-04-20 Optimized descriptions in “Initial Operation” and “Application Details”.

1.9 2021-08-09 Changed the section “Supported Development Platform” into “Preparation”.

2.0 2022-02-20 Modified the file name of the example firmware based on SDK changes.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Introduction to FreeRTOS Source Directory...2

3 Initial Operation..3

3.1 Preparation.. 3
3.2 Firmware Programming... 3
3.3 Test and Verification..4

4 Application Details.. 6

4.1 Configuration... 6
4.1.1 Memory Management Policy Configuration...6
4.1.2 Kernel Configuration... 7

4.2 Major Code..8
4.2.1 Task Creation...8
4.2.2 Bluetooth LE Scheduling... 9

5 FAQ... 12

5.1 Why Is There No Output Information from GRUart?..12
5.2 Why Does the Mobile Phone Discover No Bluetooth Advertising?.. 12

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. II

Introduction

1 Introduction
FreeRTOS is an excellent embedded real-time operating system for microcontrollers. Being light-weighted, distributed
freely under MIT open-source License, and built with an emphasis on portability, tailorability, and flexible scheduling
policy, it requires low RAM/ROM consumption and supports management of task, time, semaphore, message queue,
and memory.

This document introduces the FreeRTOS porting example in the GR551x Software Development Kit (SDK), including
usage of the example and descriptions of major source code.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

Name Description

GR551x Developer Guide
Introduces GR551x SDK and how to develop and debug applications based on the

SDK.

Keil User Guide
Offers detailed Keil operational instructions. Available at https://www.keil.com/

support/man/docs/uv4/.

FreeRTOS Documentation
Provides guidance on using FreeRTOS. Available at https://www.freertos.org/

Documentation/RTOS_book.html.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 1

https://www.keil.com/support/man/docs/uv4/
https://www.keil.com/support/man/docs/uv4/
https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org/Documentation/RTOS_book.html

Introduction to FreeRTOS Source Directory

2 Introduction to FreeRTOS Source Directory
FreeRTOS source code is in SDK_Folder\external\freertos, which contains the include folder, the portable
folder, and the .c source files.

 Note:

SDK_Folder is the root directory of GR551x SDK.

Figure 2-1 The freertos folder in GR551x SDK

• The include folder: It contains all FreeRTOS APIs, related structures, and macro definitions.

• The portable folder: It contains FreeRTOS code to be ported to GR551x System-on-Chips (SoCs) with
modifications.

• The .c source files: Implement core service code of FreeRTOS.

For more information about FreeRTOS, visit the FreeRTOS official website: https://www.freertos.org/.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 2

https://www.freertos.org/

Initial Operation

3 Initial Operation
This chapter introduces how to rapidly verify the FreeRTOS example in the GR551x SDK.

 Note:

SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Perform the following tasks before verifying a FreeRTOS example.

• Hardware preparation

Table 3-1 Hardware preparation

Name Description

Development board GR5515 Starter Kit Board (SK Board)

Connection cable Micro USB 2.0 cable

Android phone A mobile phone running on Android 5.0 (KitKat) or later

iOS device Any iOS device supporting Bluetooth LE 4.0 and later, such as iPhone 4S and iPad 3

• Software preparation

Table 3-2 Software preparation

Name Description

Windows Windows 7/Windows 10

Keil MDK5
An integrated development environment (IDE). MDK-ARM Version 5.20 or later is

required. Available at www.keil.com/download/product/.

LightBlue (iOS) A Bluetooth Low Energy (Bluetooth LE) debugging tool. Available at App Store.

GRToolbox (Android)
A Bluetooth LE debugging tool. Available in

SDK_Folder\tools\GRToolbox.

GRUart (Windows) A serial port debugging tool. Available in SDK_Folder\tools\GRUart.

GProgrammer (Windows) A programming tool. Available in SDK_Folder\tools\GProgrammer.

3.2 Firmware Programming

You can download ble_app_template_freertos.bin to the SK Board through GProgrammer. For details, see
GProgrammer User Manual.

 Note:

• The ble_app_template_freertos.bin is in SDK_Folder\projects\ble\ble_peripheral\ble_app_te
mplate_freertos\build\.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 3

www.keil.com/download/product/

Initial Operation

3.3 Test and Verification

After the SK Board and the required software get ready, start the test and verification of the FreeRTOS example. The
test includes the following two aspects:

• FreeRTOS features

• Bluetooth function

1. Verify FreeRTOS features.

Start GRUart; open the configured serial port, and check the trace results. If GRUart prints log information
like goodix print test task = ${N} every other second in the Receive Data pane, the FreeRTOS system runs
successfully.

Figure 3-1 Operating results

2. Verify the Bluetooth function.

Run GRToolbox and scan Bluetooth devices nearby. If Goodix_Tem_OS is in the device list, the FreeRTOS
application runs normally.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 4

Initial Operation

Figure 3-2 Discovering Goodix_Tem_OS

 Note:

Screenshots of GRToolbox in this document are for reference only, to help users better understand the software
operation. In the case of interface differences due to version changes, the interface of GRToolbox in practice shall
prevail.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 5

Application Details

4 Application Details
Users can customize the FreeRTOS application by modifying configurations of the ble_app_template_freertos
example. For example:

• Modify the FreeRTOS configurations.

• Modify the example program configurations.

This chapter introduces configurations and major code of the ble_app_template_freertos example.

4.1 Configuration

Users can customize the FreeRTOS memory management policy and the FreeRTOS kernel based on product
requirements.

4.1.1 Memory Management Policy Configuration

The project adopts heap_4.c as the memory management policy. Users can replace the heap_4.c with other ones on
demand.

FreeRTOS supports five memory management policies, which are implemented through heap_1.c, heap_2.c, heap_3.c,
heap_4.c, and heap_5.c respectively. Information about each file is provided as follows:

Table 4-1 FreeRTOS memory management policy

Source File Characteristics

heap_1.c

• It is easy to be implemented with less code.

• It supports memory application only, and does not permit memory to be released
once the memory has been allocated.

heap_2.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Do not merge adjacent free blocks, which may cause memory fragmentation.

• Repeated applications and releases of memory cause memory fragmentation.

heap_3.c

• Wrap malloc() and free() functions for thread safety.

• Need to configure the heap size in the startup assembling file startup_gr55xx.s.

• It requires selecting the Use MicroLIB in the Options for Target pane of Keil;
otherwise, this policy cannot work.

heap_4.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Merge adjacent free memory blocks.

• Repeated applications and releases of memory cause memory fragmentation.

heap_5.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Merge adjacent free memory blocks.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 6

Application Details

Source File Characteristics

• Allow spanning memory heaps across multiple non-adjacent memory blocks.

• Need to initialize memory heaps successively.

 Note:

The source files are in SDK_Folder\external\freertos\portable\MemMang.

4.1.2 Kernel Configuration

FreeRTOS kernel is configured by the macro definitions in the FreeRTOSConfig.h, including configuration of the main
clock frequency and the highest priority level of a task. Users can modify these macro definitions to customize a new
kernel. Common macro definitions of FreeRTOS are shown in the table below:

Table 4-2 FreeRTOS common macro definitions

Macro Definition Configuration

configUSE_IDLE_HOOK
1: Enable the HOOK function of idle tasks.

0: Disable the HOOK function of idle tasks.

configUSE_TICK_HOOK
1: Enable the Hook function of the TICK interrupt.

0: Disable the Hook function of the TICK interrupt.

configCPU_CLOCK_HZ
Define the main frequency of CPU (unit: Hz); the default value of the current

platform is 64000000.

configTICK_RATE_HZ
Define the clock tick count of the system (unit: Hz); the default value of the

current platform is 1000.

configMAX_PRIORITIES

Define the maximum priorities for users.

If the maximum number is defined to 5, the priority levels available for users are

0, 1, 2, 3 and 4, excluding 5.

configMINIMAL_STACK_SIZE
Define the default minimum stack size for system tasks (unit: word); the default

value of the current platform is 512 words (2,048 bytes in total).

configTOTAL_HEAP_SIZE

Refer to the memory pool capacity for memory management (unit: KB); the

default value of the current platform is 32 KB.

If dynamic APIs are used, the FreeRTOS kernel requests memory from the

memory pool. The total memory shall be allocated on demand to avoid abnormal

system operation.

configPRIO_BITS
Refer to bits occupied by the priority level set for the current platform (default

value: 4).

configLIBRARY_LOWEST_INTERRUPT_PRIORITY
Refer to the lowest priority level supported by the current platform (default

value: 15).

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 7

Application Details

Macro Definition Configuration

configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY

Define the highest priority level of interrupts under the FreeRTOS management.

A smaller number indicates a higher priority level.

If the number is set to 5, tasks at a priority level below 5 are beyond the control

of FreeRTOS. In interrupt masking, interrupts at priority levels below 5 are not

masked.

 Note:

• FreeRTOSConfig.h is in SDK_Folder\app\projects\ble\ble_peripheral\ble_app_template_
freertos\Src\user.

• For more information about macro configurations, visit https://www.freertos.org/a00110.html.

4.2 Major Code

This section describes how to use code to create tasks and to implement Bluetooth LE scheduling.

4.2.1 Task Creation

• Create a task.

In this example project, print_test_task is created. This task is responsible for printing information.

Path: ble_app_template_freertos\Src\user\main.c

Function: vStartTasks();

static void vStartTasks(void *arg)
{
 xTaskCreate(print_test_task, "print_task", APP_TASK_STACK_SIZE,
 NULL, configMAX_PRIORITIES - 1, NULL);
 xTaskCreate(dfu_schedule_task, "dfu_schedule_task", DFU_TASK_STACK_SIZE,
 NULL, configMAX_PRIORITIES - 2, NULL);
 vTaskDelete(NULL);
}

Path: ble_app_template_freertos\Src\user\main.c

Function: print_test_task();

This function implements cyclic printing at a 1-second latency. The vTaskDelay function is in units of millisecond.

static void print_test_task(void *arg)
{
 uint8_t index = 0;
 while (1)
 {
 APP_LOG_INFO("goodix print test task=%d\r\n", index++);
 app_log_flush();
 vTaskDelay(1000);
 }
}

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 8

https://www.freertos.org/a00110.html

Application Details

4.2.2 Bluetooth LE Scheduling

This section introduces how BLE Protocol Stack and Bluetooth LE applications schedule tasks in FreeRTOS.

After entering the main() function, complete the following steps before performing FreeRTOS task scheduling:

1. Initialize hardware peripherals.

2. Implement required BLE_SDK_Callback interfaces for Bluetooth LE applications, and use these interfaces to
initialize corresponding member variables in app_callback_t.

3. Apply for the memory block (heaps_table) required to run the BLE Protocol Stack.

4. Initialize BLE Protocol Stack.

After initialization, BLE Protocol Stack enables two interrupts: BLE_IRQ and BLE_SDK_IRQ.

• Notify the Bluetooth LE Event of BLE Protocol Stack to Bluetooth LE applications.

BLE_SDK_CALLBACKBLE_SDK_IRQ USER_PROC

Do Event Process

CallBack

BLE_IRQ

Semaphore
Post

Semaphore Pend

Set event &
Pend SDK IRQ

Do User Process

Figure 4-1 BLE Protocol Stack notifying Bluetooth LE applications of a Bluetooth LE Event

As shown in the figure above, when Bluetooth LE Baseband receives a data package, it triggers BLE_IRQ interrupt.
BLE_IRQ_Handler generates a Bluetooth LE Event and sets the BLE_SDK_IRQ interrupt to Pending state. During
BLE_SDK_IRQ_Handler execution, the Bluetooth LE Event is processed and Bluetooth LE applications are notified of
part of the Bluetooth LE Event through the BLE_SDK_Callback function.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 9

Application Details

Recommendations for implementing BLE_SDK_Callback function:

1. The BLE_SDK_Callback function is called in the interrupt handling function (BLE_SDK_IRQ_Handler). Thus it is
recommended not to perform long-running operation in the callback function; otherwise, implementation of
user tasks may be delayed.

2. If any data or state information in the callback function requires timely processing by Bluetooth LE applications,
it is recommended to use the semaphore mechanism to complete service logic processing in user tasks. This
means you should wait for the semaphore (Pend) in user tasks, and release the semaphore (Post) in the callback
function.

3. If the callback function contains a large amount of data, and requires long-time processing or ordered processing,
developers are recommended to use the message queue to cache data and then transfer the data to other tasks
for processing.

4. In the BLE_SDK_Callback function, call FreeRTOS APIs that end in “FromISR” if required, and forbid waiting for
semaphore in the BLE_SDK_Callback function.

• Send requests from Bluetooth LE application layer to BLE Protocol Stack.

BLE_SDK_CALLBACK

GATT Write

BLE_SDK_IRQ BLE_SDK BLE_IRQ BASEBAND

Send Data

ACK from The Peer

USER_PROC

Set Event
&

Pend BLE_SDK_IRQ

Semaphore
Pend

Semaphore Post

GATT Callback

BLE_IRQ_Handler

BLE_SDK_IRQ_Handler

USER_PROC is
suspended

USER_PROC is
resumed for

Write Done

Figure 4-2 Processing of requests from Bluetooth LE applications to BLE Protocol Stack

As shown in the figure above, Bluetooth LE applications uses GATT APIs to write data to the peer device. This action
requires interactions with the peer device, and the operating results cannot be obtained immediately. Bluetooth LE
applications need to wait for the processing results from BLE Protocol Stack. Developers can use semaphore to convert

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 10

Application Details

an asynchronous function call to a synchronous function call according to service logic demands from Bluetooth LE
applications:

1. Suspend the task by using the semaphore (Pend) interface after GATT APIs are called by user tasks.

2. BLE Protocol Stack waits for ACK from the peer device after sending the data from Bluetooth LE applications.

3. Bluetooth LE Baseband triggers the BLE_IRQ interrupt after receiving ACK from the peer device.

4. BLE_IRQ_Handler generates a Bluetooth LE Event and sets the BLE_SDK_IRQ interrupt to Pending state.

5. The Bluetooth LE Event is processed, and the BLE_SDK_Callback function is called during BLE_SDK_IRQ_Handler
execution.

6. Implement the semaphore (Post) interface in the BLE_SDK_Callback function to release the blocked semaphore.

By then, implementation of user tasks resumes and data writes are done.

Generally, developers only need to focus on functions at the application layer, and how to implement callback
functions to enable interaction with users. BLE Protocol Stack is transparent to developers. For GR551x SDK
programming model, refer to GR551x Developer Guide.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 11

FAQ

5 FAQ
This chapter describes possible problems, reasons, and solutions during verification and application of the FreeRTOS
example.

5.1 Why Is There No Output Information from GRUart?

• Description

There is no output information from GRUart when the on-board program is running.

• Analysis

Serial ports are set incorrectly. For example, if the baud rate is wrong, the serial port tool cannot correctly display
the data received.

• Solution

Check whether the serial cable is connected correctly, whether the COM port number is correct, and whether
the baud rate is set correctly. It is recommended to first use the SDK default firmware to detect the development
environment.

5.2 Why Does the Mobile Phone Discover No Bluetooth Advertising?

• Description

A mobile phone cannot discover advertising when the on-board program is running.

• Analysis

The firmware cannot run normally, resulting in no Bluetooth advertising.

• Solution

Try to reset or re-download the default firmware, and check the antennas.

Copyright © 2022 Shenzhen Goodix Technology Co., Ltd. 12

	Preface
	Contents
	1 Introduction
	2 Introduction to FreeRTOS Source Directory
	3 Initial Operation
	3.1 Preparation
	3.2 Firmware Programming
	3.3 Test and Verification

	4 Application Details
	4.1 Configuration
	4.1.1 Memory Management Policy Configuration
	4.1.2 Kernel Configuration

	4.2 Major Code
	4.2.1 Task Creation
	4.2.2 Bluetooth LE Scheduling

	5 FAQ
	5.1 Why Is There No Output Information from GRUart?
	5.2 Why Does the Mobile Phone Discover No Bluetooth Advertising?

