
GR551x Second Boot Example Application

Version: 1.8

Release Date: 2021-04-19

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces how to use and verify the Second Boot example in the GR551x SDK, to help users quickly
get started with secondary development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Hobbyist developer

Release Notes

This document is the fourth release of GR551x Second Boot Example Application, corresponding to GR551x SoC series.

Revision History

Version Date Description

1.5 2020-08-30 Initial release

1.6 2020-11-25

• Added operations required before downloading ble_tem_dfu_fw.bin in “Firmware
Download”.

• Added operations required before and after OTA DFU by using the Second Boot
example, and described the subsequent influences in “Second Boot OTA”.

• Described the operations to recompile firmware by enabling the Second Boot mode in
Keil in “Validity Check, Redirection, and Operation of Application Firmware”.

1.7 2020-12-25

• Added description on operations before downloading second_boot_fw.bin in “Firmware
Download”.

• Added description in “ Checking Validity, Jumping to, and Running Application
Firmware”.

• Added an FAQ about wake-up and warm boot failure of the application firmware.

1.8 2021-04-19
• Updated parameters in user_config.h in “ Firmware Download”.

• Added “Custom Strategies for Firmware Update, Verification, and Jumping”.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Flash Layout.. 2

3 Initial Operation..3

3.1 Preparation.. 3
3.2 Hardware Connection..3
3.3 Firmware Download.. 4
3.4 Serial Port Settings.. 5
3.5 Test and Verification..6

3.5.1 Second Boot OTA.. 6
3.5.2 Validity Check, Redirection, and Operation of Application Firmware.. 8
3.5.3 Secure Signature Verification..10

4 Application Details.. 13

4.1 Project Directory..13
4.2 Interaction Process and Main Code.. 13

4.2.1 Copying Firmware for DFU... 14
4.2.2 Checking Validity, Jumping to, and Running Application Firmware..16
4.2.3 Custom Strategies for Firmware Update, Verification, and Jumping..18

5 FAQ... 19

5.1 Why does OTA DFU by Using the Second Boot Example Fail?..19
5.2 Why do I Fail to Wake up the Application Firmware from Sleep Mode?..19

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. II

Introduction

1 Introduction
The Second Boot example performs the functions of device firmware update (DFU), checking validity, jumping to,
and running application firmware, as well as secure signature verification over Bluetooth Low Energy (Bluetooth
LE) transmission and second boot of firmware, providing users with flexible, reliable, and secure Over-the-Air (OTA)
functions.

• Background dual-bank DFU by copying the firmware: Update the firmware by copying the firmware from one
bank to another through OTA over Bluetooth LE transmission.

• Checking validity, jumping to, and running application firmware: Compare the application firmware information
with the information in APP Image Info. Jump to and run the application firmware (ble_tem_dfu_fw.bin is used as
an example in this document) if the information from the two sources matches.

• Secure verification: Sign the firmware to protect it against tampering and achieve non-repudiation. The Second
Boot example verifies the signature before update.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

Name Description

GR551x Developer Guide Introduces the software/hardware and quick start guide of GR551x SoCs.

GR551x DFU Application Note Introduces the principles and methods of Device Firmware Update for GR551x SoCs.

GR551x OTA Example Application Introduces how to implement Over The Air for GR551x firmware on GRToolbox.

GProgrammer User Manual
Lists GProgrammer operational instructions, including downloading firmware to and

encrypting firmware on GR551x SoCs.

GR55xx Firmware Encryption Application

Note
Introduces how to encrypt data and firmware of GR55xx SoCs.

J-Link/J-Trace User Guide
Provides J-Link operational instructions. Available at http://www.segger.com/downloads/

jlink/UM08001_JLink.pdf.

Keil User Guide
Offers detailed Keil operational instructions. Available at

https://www.keil.com/support/man/docs/uv4/.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 1

http://www.segger.com/downloads/jlink/UM08001_JLink.pdf
http://www.segger.com/downloads/jlink/UM08001_JLink.pdf
http://www.keil.com/support/man/docs/uv4/

Flash Layout

2 Flash Layout
The Flash layout of the GR551x Second Boot example is shown in Figure 2-1.

End Address of Flash

NVDS Start Address

0x0100_0000

Bank1

Bank0

Second Boot

DFU Image Info

APP Image Info

SCA Info

NVDS

Bank1 Start Address

0x0100_2000

0x0100_3000

0x0100_4000

Bank0 Start Address

Figure 2-1 Flash layout of Second Boot example

• SCA Info: an area to store system information and the boot information of the Second Boot example

• APP Image Info: an area to store the operation settings for application firmware

• DFU Image Info: an area to store information about the firmware for DFU, which is used to check the validity of
the firmware to be copied

• Second Boot: an area that stores the Second Boot example and in which the example is implemented

• Bank0: an area that stores the application firmware and in which the example is implemented

• Bank1: an area that buffers the firmware for DFU; the firmware that passes the validity check will be copied to
Bank0.

• NVDS: Non-volatile Data Storage area

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 2

Initial Operation

3 Initial Operation
This chapter introduces how to run and verify the GR551x Second Boot example in GR551x SDK.

3.1 Preparation

Perform the following tasks before running the Second Boot example.

• Hardware preparation

Table 3-1 Hardware preparation

Name Description

J-Link debug probe
JTAG emulator launched by SEGGER. For more information, visit http://www.segger.com/products/

debug-probes/j-link/.

Development board GR5515 Starter Kit Board (GR5515 SK Board)

Connection cable A micro USB 2.0 serial cable

Android phone A phone running on Android 4.4 (KitKat) or later versions

• Software preparation

Table 3-2 Software preparation

Name Description

Windows Windows 7/Windows 10

J-Link driver A J-Link driver. Available at www.segger.com/downloads/jlink/.

Keil MDK5 An integrated development environment (IDE). Available at www.keil.com/download/product/.

GProgrammer (Windows) A GR551x programming tool. Available in SDK_Folder\tools\GProgrammer.

GRUart (Windows) A GR551x serial port debugging tool. Available in SDK_Folder\tools\GRUart.

GRToolbox (Android) A Bluetooth LE debugging tool for GR551x. Available in SDK_Folder\tools\GRToolbox.

 Note:

SDK_Folder is the root directory of GR551x SDK.

3.2 Hardware Connection

Connect a GR5515 SK Board to a PC with a Micro USB 2.0 cable.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 3

http://www.segger.com/products/debug-probes/j-link/
http://www.segger.com/products/debug-probes/j-link/
http://www.segger.com/downloads/jlink/
http://www.keil.com/download/product/

Initial Operation

Micro USB Cable

Figure 3-1 Hardware connection

3.3 Firmware Download

To get started, users shall first erase the Flash memory in the GR551x SoC with GProgrammer, and then download
second_boot_fw.bin and ble_tem_dfu_fw.bin to the GR551x SK Board.

Before downloading the firmware, it is required to:

• For ble_tem_dfu_fw.bin: Enable USE_SECOND_BOOT_MODE in Keil (for details, see “Validity Check, Redirection,
and Operation of Application Firmware”). Then, recompile the firmware file before downloading it to the GR551x
SK Board.

• For second_boot_fw.bin: Configure user_config.h (available in SDK_Folder\projects\ble\dfu\sec
ond_boot\Src\config), to set the parameters and hash values of the public key. After the configuration
completes, recompile the firmware file before downloading it to the GR551x SK Board.

Table 3-3 Parameters in user_config.h

Macro Description

BOOTLOADER_DEFAULT_STRATEGY_ENABLE

Use the default firmware for update, verification, and jumping strategies or not.

• 0: Use the custom firmware.

• 1: Use the default firmware.

BOOTLOADER_WDT_ENABLE

Enable the WDT of the Second Boot example or not.

• 0: Disable

• 1: Enable

BOOTLOADER_OTA_ENABLE

Enable Second Boot OTA or not.

• 0: Disable

• 1: Enable

BOOTLOADER_SIGN_ENABLE

Enable the signing and verification solution for the Second Boot example or not, valid

when BOOTLOADER_DEFAULT_STRATEGY_ENABLE is set to 1.

• 0: Disable

• 1: Enable

Note:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 4

Initial Operation

Macro Description

Refer to “Secure Signature Verification” for details about enabling the secure verification

function.

USER_FW_COMMENTS

Define the application firmware comments, valid when

BOOTLOADER_DEFAULT_STRATEGY_ENABLE is set to 1. Compare the information in the

application firmware comments to search for the Image Info of the firmware. The macro is

up to 12 bytes. The current default value is “ble_tem_dfu_”.

APP_FW_RUN_ADDRESS

The run address of application firmware, valid when

BOOTLOADER_DEFAULT_STRATEGY_ENABLE is set to 0.

Note:

See “Section 4.2.3 Custom Strategies for Firmware Update, Verification, and Jumping” for

details

For details about using GProgrammer, see GProgrammer User Manual.

 Note:

1. second_boot_fw.bin is in SDK_Folder\projects\ble\dfu\second_boot\build\. The default run
address is 0x01004000.

2. ble_tem_dfu_fw.bin is in SDK_Folder\projects\ble\ble_peripheral\ble_app_template_dfu
\build. The default run address is 0x01040000.

3. If the run addresses of second_boot_fw.bin and ble_tem_dfu_fw.bin need to be modified, make sure no conflict
exists in the memory addresses of the two pieces of firmware.

4. If users prefer custom strategies for firmware update (by copying the firmware), verification, and jumping,
set BOOTLOADER_DEFAULT_STRATEGY_ENABLE to 0, and implement vendor_fw_copy_update() and
vendor_fw_verify() based on customization.

3.4 Serial Port Settings

Start GRUart, and configure the serial ports according to the parameters in the table below.

Table 3-4 Configuring serial port parameters on GRUart

PortName BaudRate DataBits Parity StopBits Flow Control

Select on demand 115200 8 None 1 Uncheck

After configuration is completed, click Open Port, as shown in the figure below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 5

Initial Operation

Figure 3-2 Serial port settings on GRUart

3.5 Test and Verification

This section explains how to quickly verify the Second Boot example by introducing Second Boot OTA, checking
validity, jumping to, and running application firmware, as well as secure signature verification.

3.5.1 Second Boot OTA

1. Before downloading second_boot_fw.bin to the GR5515 SK Board with GProgrammer, erase the Flash memory
of the GR551x SoC with GProgrammer, to make sure no OTA copying task or application firmware is in the Flash
memory.

2. Download second_boot_fw.bin to the GR5515 SK Board, and enter the OTA process for Second Boot to wait for
firmware update (see Step 3 in “Interaction Process and Main Code” for the mechanism). The interface of GRUart
is shown as below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 6

Initial Operation

Figure 3-3 Entering OTA process after Flash erase

3. Turn on Bluetooth on the Android phone and open GRToolbox. Scan for devices, and if “Goodix_Boot” is
discovered, it means the Second Boot firmware runs normally.

4. Bluetooth LE OTA function is integrated in the Second Boot firmware. For details about OTA, see “Update
Firmware in ble_app_template_dfu” in GR551x OTA Example Application. After firmware update completes, the
system automatically jumps to and runs the newly updated firmware. The interface of GRUart is shown as below.

Figure 3-4 Firmware running after successful update

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 7

Initial Operation

 Note:

• During OTA DFU in Second Boot mode, check Copy Mode on the DFU page in GRToolbox. Then, contents in the
area specified by Copy Address will be overwritten. Therefore, improper configuration will lead to loss of the
original information in this area.

• After OTA DFU in Second Boot mode, the updated firmware information will not be displayed in GProgrammer.

3.5.2 Validity Check, Redirection, and Operation of Application Firmware

1. Erase the Flash memory of the GR551x SoC with GProgrammer, to make sure no OTA copying task or application
firmware is in the Flash memory.

2. Modify the example project ble_app_template_dfu in Keil, and then recompile the firmware:

(1). Enter the directory of example project SDK_Folder\projects\ble\ble_peripheral\ble_app
_template_dfu\Keil_5. Double-click ble_app_template_dfu.uvprojx to open the example project in
Keil.

(2). Click (Options for Target) on Keil toolbar. Then, choose the C/C++ tab in the popped up window Options
for Target ‘GR551x_SK’.

(3). Add USE_SECOND_BOOT_MODE in the Define field in the Preprocessor Symbols area.

 Note:

The added USE_SECOND_BOOT_MODE shall be separated from the previous macro with a semicolon.

(4). After saving the settings, click on the Keil toolbar to compile the example project, and generate a .bin
file.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 8

Initial Operation

Figure 3-5 To enable the Second Boot mode

3. Download second_boot_fw.bin and ble_tem_dfu_fw.bin to the GR5515 SK Board, and set second_boot_fw.bin for
startup.

Figure 3-6 Choosing second_boot_fw.bin for startup

4. ble_tem_dfu_fw.bin is detected when the GR551x SoC is started. After the firmware passes validity check, the
GR551x SoC jumps to the start address of the application firmware and starts to run the firmware. The interface
of GRUart is shown as below.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 9

Initial Operation

Figure 3-7 Application firmware running after successful update

3.5.3 Secure Signature Verification

Secure signature verification on OTA firmware is supported in the Second Boot example. Users can choose to enable/
disable the function as needed. To enable the function, set BOOTLOADER_SIGN_ENABLE = 1 in user_config.h in the
project directory of the Second Boot example.

Before signature verification, users can sign the application firmware by using GProgrammer. The process for signing
and verification is as follows:

1. Generate the hash values of the public key and the private key.

For operations about generating signatures, see “Encrypt & Sign” in GProgrammer User Manual. For related
mechanisms, see “Digital Signature” in GR55xx Firmware Encryption Application Note.

The files used for encryption and signing generated through GProgrammer are shown as below:

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 10

Initial Operation

Figure 3-8 Files used for encryption and signing

2. Sign the firmware.

Import product.json and ble_tem_dfu_fw.bin, and click Sign, as shown in Figure 3-9.

Figure 3-9 Signing the application firmware

Specify the path for signed files, and the signed application firmware file is generated (the one whose file name
ends with _sign, which is ble_tem_dfu_fw_sign.bin in this example), as shown in Figure 3-10:

Figure 3-10 Signed firmware file

3. Copy the hash value of the public key in Public_key_hash.txt to the public_key_hash array in user_config.h and
re-compile second_boot_fw.bin.

//Hash value of the signed public key
static const uint8_t public_key_hash[] =
{
 0x08,0x57,0x41,0xDD,0x34,0x17,0x0C,0x01,0x43,0xFB,0xCA,0xA5,0x5C,0x51,0x81,0xF5
};

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 11

Initial Operation

4. Verify the signed firmware.

Download the recompiled second_boot_fw.bin file and the signed ble_tem_dfu_fw_sign.bin file to the GR5515
SK Board; set second_boot_fw.bin as the firmware for startup, and run the firmware. The Second Boot firmware
checks and verifies the signed ble_tem_dfu_sign.bin file. When the application firmware passes the checking and
verification, the system jumps to and runs the application firmware. GRUart shows as follows:

Figure 3-11 Verifying the signed firmware

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 12

Application Details

4 Application Details
This chapter introduces the project directory, the main interaction processes, and related code of the Second Boot
example.

4.1 Project Directory

The source code and the project file of the Second Boot example are in SDK_Folder\projects\ble\dfu\sec
ond_boot\Keil_5.

Double-click the project file, second_boot.uvprojx, to check the project directory structure of the Second Boot
example in Keil. Related files are described in Table 4-1.

Table 4-1 Project files of Second Boot example

Group File Description

gr_profiles otas.c Implements OTA Service.

user_gap_callback.c
Implements GAP callbacks, such as connection, disconnection, and GAP

parameter update.user_callback

user_gatt_common_callback.c Implements GATT common callbacks, such as MTU update.

user_platform user_periph_setup.c Configures APP logs and the WDT.

main.c Contains the main() function.

user_app.c Initializes OTA Service and handles Bluetooth LE events.

user_dfu.c Initializes the DFU service.

user_boot.c Checks the validity of firmware and enables jumping to the firmware.

sign_verify.lib This is the static library that verifies firmware signatures.

user_app

user_config.h Configures WDT and firmware signature verification.

4.2 Interaction Process and Main Code

This section introduces the process and the critical code for copying and upgrading the firmware for DFU, checking,
jumping to, and running the application firmware, to help users better understand the operating mechanism of the
Second Boot example.

The process for running the Second Boot example is shown in Figure 4-1.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 13

Application Details

Start

1. Copy the firmware for DFU
to Bank0.
2. Update APP Image Info.
3. Erase DFU Image Info.
4. Reset the GR551x SoC.

OTA completes.

Enter the OTA process for
Second Boot.

Jump to and run the
applicaon firmware.

The firmware for DFU
passes the validity check and is ready to be

copied?

The applicaon firmware is detected
and passes the validity check?

Yes

No

Yes

No

Figure 4-1 Process for running Second Boot example

1. Read DFU Image Info. When firmware for DFU in Bank1 needs to be copied to Bank0, and the firmware has
passed validity check, proceed to Step 2. Otherwise, proceed to Step 3.

2. Copy the firmware for DFU from Bank1 to Bank0. After updating APP Image Info and erasing DFU Image Info,
reset the GR551x SoC.

3. Read APP Image Info. When application firmware is in Bank0 and the firmware has passed validity check, the
system jumps to and runs the application firmware. If the firmware has not passed validity check, proceed to
Step 4.

4. Enter Second Boot OTA. After OTA completes, update APP Image Info, and reset the GR551x SoC.

4.2.1 Copying Firmware for DFU

Application firmware of the GR551x SoC adopts dual-bank background update for OTA:

1. Save the firmware for DFU in Bank1, and update the related information in the DFU Image Info area;

2. Reset the GR551x SoC and run the Second Boot firmware, to copy the firmware for DFU from Bank1 to Bank0.

Code for copying the firmware for DFU is described below:

Path: user_app\user_boot.c under the project directory

Name: is_fw_need_copy();

is_fw_need_copy() is used to read DFU Image Info, to check whether any firmware copying task for DFU is waiting.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 14

Application Details

static bool is_fw_need_copy(void)
{
 copy_load_addr = 0;
 hal_flash_read_judge_security(IMG_INFO_DFU_ADDR, (uint8_t*)©_load_addr, 4);
 memset((uint8_t*)&dfu_img_info, 0, sizeof(img_info_t));
 hal_flash_read_judge_security(IMG_INFO_DFU_ADDR+4, (uint8_t*)&dfu_img_info,
 sizeof(img_info_t));

 if (dfu_img_info.pattern ! = 0x4744 ||\
 (memcmp(dfu_img_info.comments, USER_FW_COMMENTS, strlen(USER_FW_COMMENTS)) ! = 0))
 {
 APP_LOG_DEBUG("There is no incomplete DFU copy task.");
 return false;
 }

 APP_LOG_DEBUG("---");
 APP_LOG_DEBUG("copy addr = 0x%08x", copy_load_addr);
 APP_LOG_DEBUG("DFU fw boot info:");
 log_boot_info(&dfu_img_info.boot_info);
 APP_LOG_DEBUG("---");

 APP_LOG_DEBUG("There is incomplete DFU copy task.");
 return true;
}

Path: user_app\user_boot.c under the project directory

Name: incplt_dfu_task_continue();

incplt_dfu_task_continue() is used to check the validity of the firmware for DFU. After the firmware passes the validity
check, copy the firmware from Bank1 to Bank0, update APP Image Info, and erase DFU Image Info. Reset the GR551x
SoC. The system then jumps to and runs the firmware in Bank0. The code snippet is as follows:

static void incplt_dfu_task_continue(void)
{
 if (!boot_fw_valid_check(copy_load_addr, &dfu_img_info.boot_info))
 {
 APP_LOG_DEBUG("DFU FW image valid check fail.");
 return;
 }
 if(copy_load_addr ! = dfu_img_info.boot_info.load_addr)
 {
 uint32_t copy_size = dfu_img_info.boot_info.bin_size + 48;
 APP_LOG_DEBUG("DFU FW image start copy.");

 if(sys_security_enable_status_check())
 {
 copy_size += 856;
 }
 else
 {
 #if BOOTLOADER_SIGN_ENABLE
 copy_size += 856;
 #endif
 }
 dfu_fw_copy(dfu_img_info.boot_info.load_addr, copy_load_addr, copy_size);
 }
 user_img_info_update(&dfu_img_info);
 hal_flash_erase(IMG_INFO_DFU_ADDR, CODE_PAGE_SIZE);//clear copy info
hal_nvic_system_reset();

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 15

Application Details

}

4.2.2 Checking Validity, Jumping to, and Running Application Firmware

When no firmware copying task is waiting, the Second Boot example checks the validity of the application firmware,
and jumps to and runs the firmware if it passes the validity check.

Path: user_app\user_boot.c under the project directory

Name: is_jump_user_fw();

is_jump_user_fw() is used to check the validity of the application firmware before the system jumps to and runs the
firmware.

is_jump_user_fw() reads the comments in APP Image Info and compares the comments with those of the application
firmware (USER_FW_COMMENTS).

If the comments from the two sources are the same, it means the application firmware has been copied to Bank0.
Then, check the validity of the application firmware in APP Image Info, and the system jumps to and runs the firmware
after it passes the validity check.

If the comments from the two sources are different, it means the application firmware has not been copied
to Bank0. In this case, search for and read comments in the SCA Info area, and compare the comments with
USER_FW_COMMENTS. If comments from the two sources are the same, check the validity of the application
firmware in the SCA Info area. If the firmware passes validity check, update the application firmware in APP Image Info
with the firmware in SCA Info. If comments from the two sources are different, or the validity check fails, the system
cannot jump to the application firmware.

static bool is_jump_user_fw(void)
{
 memset((uint8_t*)&app_img_info, 0, sizeof(img_info_t));
 hal_flash_read_judge_security(IMG_INFO_APP_ADDR, (uint8_t*)&app_img_info,
 sizeof(img_info_t));

 if ((app_img_info.pattern == 0x4744) &&\
 (0 == memcmp(app_img_info.comments, USER_FW_COMMENTS, strlen(USER_FW_COMMENTS))))
 {
 APP_LOG_DEBUG("found APP img info.");
 log_boot_info(&app_img_info.boot_info);
 if (boot_fw_valid_check(app_img_info.boot_info.load_addr, &app_img_info.boot_info))
 {
 APP_LOG_DEBUG("check APP img valid.");
 return true;
 }
 }
 APP_LOG_DEBUG("Not found APP img info on the third page,continue to search on the first
 page");

 img_info_t img_info_main;
 for (uint8_t i = 0; i < IMG_INFO_SAVE_NUM_MAX; i++)
 {
 fw_img_info_get(BOOT_INFO_ADDR + 0x40, i, &img_info_main);

 if (0 == memcmp(img_info_main.comments, USER_FW_COMMENTS, strlen(USER_FW_COMMENTS)))
 {
 if (boot_fw_valid_check(img_info_main.boot_info.load_addr,
 &img_info_main.boot_info))

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 16

Application Details

 {
 user_img_info_update(&img_info_main);
 memcpy(&app_img_info, &img_info_main, sizeof(img_info_t));
 APP_LOG_DEBUG("Found the APP firmware on the first page");
 return true;
 }
 }
 }

 APP_LOG_DEBUG("Not found APP FW image info.");
 return false;
}

Path: user_app\user_boot.c under the project directory

Name1: jump_user_fw();

Name2: sec_boot_jump();

Before the system jumps to the firmware, it is required to update the information for warm boot, set the main stack
pointer (MSP), and relocate the vector table.

static void jump_user_fw(void)
{
 APP_LOG_DEBUG("Jump to APP FW.");
 APP_LOG_DEBUG("---");
 sec_boot_jump(&app_img_info.boot_info);
}
 static void sec_boot_jump(boot_info_t *p_boot_info)
{
 extern void rom_init(void);
 extern void jump_app(uint32_t addr);
 extern boot_info_t bl1_boot_info;
 extern void bl_xip_dis(void);
 uint16_t enc_mode = *(uint16_t*)0x30000020;
 bool mirror_mode = false;

 if(p_boot_info->run_addr ! = p_boot_info->load_addr)//mirror mode
 {
 mirror_mode = true;
 if(!enc_mode)
 SET_CODE_LOAD_FLAG();
 memcpy((uint8_t*)p_boot_info->run_addr, (uint8_t*)p_boot_info->load_addr,
 p_boot_info->bin_size);
 }
 if(enc_mode)
 {
 REG(0xA000C578UL) &= ~0xFFFFFC00;
 REG(0xA000C578UL) |= (p_boot_info->run_addr & 0xFFFFFC00);
 }

 memcpy(&bl1_boot_info, p_boot_info, sizeof(boot_info_t));
 if(mirror_mode)
 {
 if(enc_mode)
 {
 REG(0xa000d470) = ENCRY_CTRL_DISABLE;
 }
 }
 sys_firmware_jump(p_boot_info->run_addr);
}

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 17

Application Details

 Note:

To ensure the GR551x SK Board jumps to the application firmware directly upon the firmware warm boot after
wake-up from the sleep mode, assign boot_info of the application firmware to the global variable bl1_boot_info:
“memcpy(&bl1_boot_info, p_boot_info, sizeof(boot_info_t));”. The value shall not be modified.

4.2.3 Custom Strategies for Firmware Update, Verification, and Jumping

To use the custom strategies, set BOOTLOADER_DEFAULT_STRATEGY_ENABLE to 0, and implement
vendor_fw_copy_update() and vendor_fw_verify() based on customization for firmware update (by copying the
firmware) and verification, and vendor_fw_jump() (customization is not compulsory) to jump to the application
firmware.

The three functions are available in user_app\user_boot.c, and all can be customized for extended
functionalities.

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 18

FAQ

5 FAQ
This chapter describes possible problems, reasons, and solutions when using and verifying the Second Boot example.

5.1 Why does OTA DFU by Using the Second Boot Example Fail?

• Description

When I perform OTA DFU by using the Second Boot example, signature verification fails.

• Analysis

It fails to obtain the public key when users perform signature verification for firmware update.

• Solution

Make sure the private key for signing pairs with the public key for verification. Copy the hash value of the public
key in Public_key_hash.txt to the public_key_hash array in user_config.h.

5.2 Why do I Fail to Wake up the Application Firmware from Sleep Mode?

• Description

I cannot wake up the application firmware from the sleep mode when using the Second Boot example.

• Analysis

The code in the Second Boot firmware file for firmware verification and jumping has been modified, and
boot_info of the current application firmware has not been assigned to bl1_boot_info, resulting in warm boot
failure from the sleep mode.

• Solution

Assign boot_info of the application firmware to the global variable bl1_boot_info in sec_boot_jump().

Copyright © 2021 Shenzhen Goodix Technology Co., Ltd. 19

	Preface
	Contents
	1 Introduction
	2 Flash Layout
	3 Initial Operation
	3.1 Preparation
	3.2 Hardware Connection
	3.3 Firmware Download
	3.4 Serial Port Settings
	3.5 Test and Verification
	3.5.1 Second Boot OTA
	3.5.2 Validity Check, Redirection, and Operation of Application Firmware
	3.5.3 Secure Signature Verification

	4 Application Details
	4.1 Project Directory
	4.2 Interaction Process and Main Code
	4.2.1 Copying Firmware for DFU
	4.2.2 Checking Validity, Jumping to, and Running Application Firmware
	4.2.3 Custom Strategies for Firmware Update, Verification, and Jumping

	5 FAQ
	5.1 Why does OTA DFU by Using the Second Boot Example Fail?
	5.2 Why do I Fail to Wake up the Application Firmware from Sleep Mode?

