

GR551x Bluetooth Low Energy Throughput Example Application

Version: 1.8

Release Date: 2020-12-15

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co., Ltd is prohibited.

Trademarks and Permissions

GODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as "Goodix") makes no representation or guarantee for this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any other means.

Shenzhen Goodix Technology Co., Ltd.

Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 FAX: +86-755-33338099

Website: www.goodix.com

Purpose

This document introduces how to use and verify a Bluetooth Low Energy (Bluetooth LE) throughput example in a GR551x SDK, to help users quickly get started with secondary development.

Audience

This document is intended for:

- GR551x user
- GR551x developer
- GR551x tester
- Hobbyist developer
- Technical writer

Release Notes

This document is the sixth release of *GR551x Bluetooth Low Energy Throughput Example Application*, corresponding to GR551x SoC series.

Revision History

Version	Date	Description
1.0	2019-12-08	Initial release
1.3	2020-03-16	Updated the release time in the footers.
1.5	2020-05-30	Updated the logos in the headers.
1.6	2020-06-30	Updated the document version based on SDK changes.
1.7	2020-11-09	Updated Figure 3-3 in "Section 3.4 Test and Verification".
1.8	2020-12-15	Updated GRToolbox UI figures based on software update.

Contents

PrefaceI
1 Introduction1
2 Profile Overview
2.1 Device Roles2
2.2 Throughput Service
3 Initial Operation4
3.1 Preparation
3.2 Hardware Connection4
3.3 Firmware Download5
3.4 Test and Verification5
3.4.1 Test Between GR5515 SK Board A and a Mobile Phone5
3.4.2 Test Between THS Server and THS Client
4 Application Details
4 Application Details
4 Application Details 12 4.1 Project Directory of Bluetooth LE THS Server 12
4 Application Details
4 Application Details
4 Application Details. 12 4.1 Project Directory of Bluetooth LE THS Server. 12 4.2 Project Directory of Bluetooth LE THS Client. 12 4.3 Implementation Procedures. 13 5 Set THS Parameters on GRUart. 14
4 Application Details.124.1 Project Directory of Bluetooth LE THS Server.124.2 Project Directory of Bluetooth LE THS Client.124.3 Implementation Procedures.135 Set THS Parameters on GRUart.145.1 Scan Device.14
4 Application Details. 12 4.1 Project Directory of Bluetooth LE THS Server. 12 4.2 Project Directory of Bluetooth LE THS Client. 12 4.3 Implementation Procedures. 13 5 Set THS Parameters on GRUart. 14 5.1 Scan Device. 14 5.2 Update Connection Parameters. 14
4 Application Details.124.1 Project Directory of Bluetooth LE THS Server.124.2 Project Directory of Bluetooth LE THS Client.124.3 Implementation Procedures.135 Set THS Parameters on GRUart.145.1 Scan Device.145.2 Update Connection Parameters.145.3 Set MTU.14
4 Application Details.124.1 Project Directory of Bluetooth LE THS Server.124.2 Project Directory of Bluetooth LE THS Client.124.3 Implementation Procedures.135 Set THS Parameters on GRUart.145.1 Scan Device.145.2 Update Connection Parameters.145.3 Set MTU.145.4 Set PDU.15

G@DiX

1 Introduction

The Bluetooth LE throughput example in this document demonstrates how link parameters influence the data throughput in Bluetooth LE connections. These link parameters include Connection Interval, Maximum Transmission Unit (MTU), Data Length, PHY, and TX Power. This example can also verify Bluetooth LE data throughput of GR551x SoCs in different transfer modes (Notify, Write, and Notify & Write).

This document introduces how to use a Bluetooth LE throughput example in a GR551x SDK to verify Bluetooth LE data throughput of GR551x SoCs.

Before you get started, it is recommended to refer to the following documents.

Name	Description		
GR551x Sample Service Application and	Introduces how to apply and customize Goodix Sample Service in developing Bluetooth LE		
Customization	applications based on GR551x SDK.		
GR551x Developer Guide	Introduces the software/hardware and quick start guide of GR551x SoCs.		
Divetesth Care Specul 1	Offers official Bluetooth standards and core specification (v5.1) from Bluetooth SIG.		
Bluetooth Core Spec v5.1	Available at <u>https://www.bluetooth.com/specifications/bluetooth-core-specification/</u> .		
Plustaath CATT Space	Provides details about Bluetooth profiles and services. Available at www.bluetooth.com/		
Bluetooth GATT Spec	specifications/gatt.		
J-Link/J-Trace User Guide	Provides J-Link operational instructions. Available at www.segger.com/downloads/jlink/		
J-LinkyJ-Hace Oser Guide	UM08001_JLink.pdf.		
Keil User Guide	Offers detailed Keil operational instructions. Available at www.keil.com/support/man/		
	docs/uv4/.		

Table 1-	1 Reference	documents
----------	-------------	-----------

2 Profile Overview

2.1 Device Roles

Goodix Throughput Profile defines two device roles:

- Throughput Server: Initiate advertising, wait for a connection request from Throughput Client, receive data from Throughput Client, and send data to Throughput Client using Notify.
- Throughput Client: Send a connection request, establish connections with Throughput Server, send data to Throughput Server using Write without Response, and receive data from Throughput Server.

2.2 Throughput Service

Throughput Service interactions between Throughput Server and Throughput Client are shown in Figure 2-1.

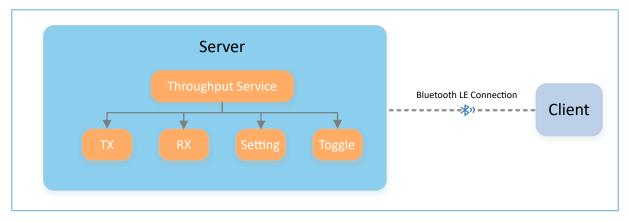


Figure 2-1 Server-client interactions

The Throughput Service (THS) is a type of service customized by Goodix. THS is intended for setting the data transfer rate and parameters in Bluetooth LE THS tests, and the 128-bit vendor-specific UUID of which is A6ED0301-D344-460A-8075-B9E8EC90D71B.

THS characteristics include:

- TX: Send data to THS Client.
- RX: Receive data from THS Client.
- Setting: Receive parameter settings of THS tests, such as MTU, PHY, TX Power, and Connection Interval, and notify setting results to THS Client.
- Toggle: Start/Stop THS tests.

THS characteristics are described in Table 2-1.

Table 2-1 THS characteristics

Characteristic	UUID	Туре	Support	Security	Property
ТХ	A6ED0302-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Notify

Characteristic	UUID	Туре	Support	Security	Property
RX	A6ED0303-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Write without Response
Setting	A6ED0304-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Notify, Write without Response
Toggle	A6ED0305-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Write without Response

Three transfer modes are available for Bluetooth LE THS tests:

- Unidirectional transfer from THS Server: THS Server sends TX characteristic value to THS Client by means of Notify.
- Unidirectional transfer from THS Client: THS Client sends RX characteristic value to THS Server by means of Write without Response.
- Bidirectional transfer between THS Server and THS Client: Simultaneous data transfers between each other are allowed.

In the three transfer modes mentioned above, THS Server receives Setting characteristic value from THS Client to set parameters for THS tests, and notifies setting results to THS Client.

3 Initial Operation

This chapter introduces how to use a Bluetooth LE throughput example (THS Server and THS Client) in a GR551x SDK.

🛄 Note:

SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Perform the following tasks before running the Bluetooth LE throughput example.

• Hardware preparation

Table 3-1 Hardware preparation

Name	Description
J-Link debug probe	JTAG emulator launched by SEGGER. For more information, visit <u>www.segger.com/products/debug-probes/j-link/</u> .
Development board	GR5515 Starter Kit Board (GR5515 SK Board) (2 boards in total)
Cable	Micro USB 2.0 cable
Android Phone	A mobile phone running on Android 4.4 (KitKat) or later versions

• Software preparation

Table 3-2 Software preparation

Name	Description
Windows	Windows 7/Windows 10
J-Link driver	A J-Link driver. Available at <u>www.segger.com/downloads/jlink/</u> .
Keil MDK5	An integrated development environment (IDE). Available at <u>www.keil.com/download/product/</u> .
GRToolbox (Android)	A Bluetooth LE debugging tool for GR551x. Available in SDK_Folder\tools\GRToolbox.
GProgrammer (Windows)	A GR551x programming tool. Available in SDK_Folder \tools \GProgrammer $\ .$

3.2 Hardware Connection

Connect a GR5515 Starter Kit Board to a PC with a Micro USB 2.0 cable.

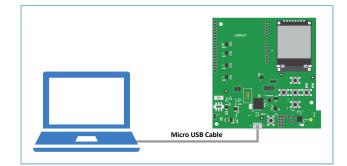


Figure 3-1 Hardware connection

3.3 Firmware Download

Users need to download *ble_app_throughput_fw.bin* firmware to GR5515 SK Board A which serves as THS Server. Download *ble_app_throughput_c_fw.bin* firmware to GR5515 SK Board B which serves as THS Client. For details on downloading firmware to the GR5515 SK Boards, see *GProgrammer User Manual*.

🛄 Note:

- The *ble_app_throughput_fw.bin* is in SDK_Folder\projects\ble\ble_peripheral\ble_app_throughput\build.
- The ble_app_throughput_c_fw.bin is in SDK_Folder\projects\ble\ble_central\ble_app_throughput_c\build.
 SDK_Folder is the root directory of GR551x SDK.

3.4 Test and Verification

In this document, two scenarios are involved in Bluetooth LE THS tests:

- Scenario 1: Perform a THS test between GR5515 SK Board A and a mobile phone.
- Scenario 2: Perform a THS test between GR5515 SK Board A and B.

3.4.1 Test Between GR5515 SK Board A and a Mobile Phone

Perform Bluetooth LE THS test and verification between THS Server (GR5515 SK Board A) and THS Client (an Android phone), as shown in Figure 3-2.

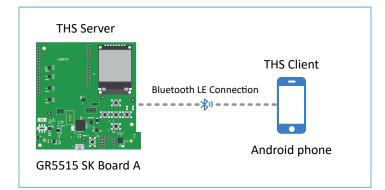


Figure 3-2 Test between GR5515 SK Board A and a mobile phone

Steps for the test between GR5515 SK Board A and the mobile phone are described below:

1. Enable the Bluetooth.

Enable the Bluetooth of the mobile phone and power on GR5515 SK Board A.

2. Scan Goodix THS devices.

Run GRToolbox on the mobile phone and tap **Application** > **THS**.

Figure 3-3 Choosing THS

Start scanning. A GR5515 SK Board with the advertising name Goodix_THS is discovered, as shown in Figure 3-4.

	Select Device	
Bonded D	evices	
8	Goodix_HRM 33:22:22:11:00:00	
8	Goodix_HRM EA:CB:3E:CF:00:08	
Available	Devices	
8	Goodix_THS EA:CB:3E:CF:00:12	-50dBm
		\otimes

Figure 3-4 Discovering Goodix_THS

3. Connect Goodix_THS.

Tap and connect **Goodix_THS** to enter the THS test interface, as shown in Figure 3-5.

← т	HS				:
Goodix_T	HS		Star	t Test 🦲	
CI:7.5ms	MTU:247	PDU:251	PHY:1M	MODE	:0
Throughp	out	Average kbps		Instant kbps	
1,800					0
1,500					-20
1,200					-40
600					-60
300					-80
0 — Average	0 20 e — Instant —	30 RSSI	40	50	100 60
Transmit F	Packet	Total	packet:		
Receive Pa	acket				
Total data:		Total	packet:		
		DISCONNE	СТ)	

Figure 3-5 THS test interface

4. Set test parameters.

Tap in the upper-right corner of the THS test interface, to enter the test parameter setting interface and configure parameters, as shown in Figure 3-6.

← GRToolbox
Connect Interval 45.0ms
Maximum Transmission Unit 247
Protocol Data Unit 251
Transmission Frequency 2M
Data Tx Mode Notify-Write Cmd
Tx Power OdB

Figure 3-6 Test parameter setting interface

GODIX

🛄 Note:

Users need to set the MTU value on GRToolbox before connecting the mobile phone to the GR551x SK Board. This is because an MTU exchange takes place immediately once the mobile phone is connected to the GR5515 SK Board, and only one MTU exchange takes place during one connection.

5. Start the THS test.

Tap \sim to start the test. The average value and instant value of Bluetooth LE data throughputs between the mobile phone and the GR5515 SK Board are displayed in a statistical graph, as shown in Figure 3-7.

← THS			:
Goodix_THS		Start	Test 🔵
CI:45.0ms MTU:247	PDU:251	PHY:2M	MODE:2
Throughput	Average 1162kbps		nstant I 239kbps
1,800			0
1,500			-20
1,200	∀		-40
600			-60
300			-80
0 10 20 — Average — Instant —	30	40	-100 50 60
Transmit Packet Total data:1987624	Total	packet:8146	
Receive Packet			
Total data: 1980304	lotal	packet:8116	
	DISCONNE	ст)

Figure 3-7 Starting the THS test

3.4.2 Test Between THS Server and THS Client

Perform Bluetooth LE THS test and verification between THS Server (GR5515 SK Board A) and THS Client (GR5515 SK Board B), as shown in Figure 3-8.

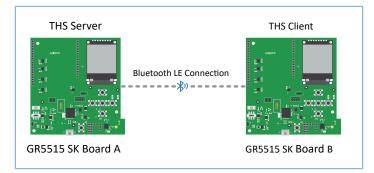


Figure 3-8 Test between THS Server and THS Client

Steps for Bluetooth LE THS test and verification are described below:

1. Power on Board A and Board B.

Enable advertising after THS Server (Board A) is powered on.

Wait for scanning THS Server after THS Client (Board B) is powered on. The state is displayed on the screen of Board B, as shown in Figure 3-9.

Figure 3-9 Board B: waiting for scanning

2. Start scanning and establish connection with Board A.

Press **OK** on THS Client (Board B). Board B starts scanning (Figure 3-10). After THS Server (Board A) is discovered, Board B sends a connection request to Board A automatically.

Figure 3-10 Board B: scanning device

When THS Client (Board B) is connected to THS Server (Board A) successfully, the parameter setting interface of Board B automatically displays, as shown in Figure 3-11.

	SET	PARAM
SET	PHY	2M
SET	MTU	247
SET	CI	45ms
SET	PDU	251
SET	MODE	DOUBLE
SET	POWER	ØdB
STRI	RT SET	

Figure 3-11 Parameter setting interface on Board B

3. Set THS parameters.

Press **UP/DOWN** on THS Client (Board B) to select the parameters to be set (such as **SET PHY**). Press **OK** to enter the setting interface. The **SET PHY** interface is shown in Figure 3-12.

Figure 3-12 SET PHY interface

In the SET PHY interface, select a PHY parameter on demand, and press OK.

4. Start the THS test.

After all THS parameters are set, select **START TEST** and press **OK**, as shown in Figure 3-13.

SET	MTU	247	OK
BET	CI	45ms	OK.
BET	PDU	251	OK
BET	MODE	DOUBL	E OK
SET	POWER	ØdB	OK
CLI	ск ок (START	TEST

Figure 3-13 SETTING interface

The THS test results are displayed on the screen. An example is shown in Figure 3-14.

Figure 3-14 THS test results

Parameter descriptions of the THS test results are shown in Table 3-3:

Table 3-3 Parameter description of THS test results

Parameter	Description
INS	Instant Throughput
AVE	Average Throughput
RSSI	Received Signal Strength Indication

To update test parameters during the test, press **LEFT** to go back to the parameter setting interface, and reset parameters.

G@DiX

🛄 Note:

THS Client (Board B) supports parameter setting and real-time output of test results on GRUart. Users can also press buttons on Board B to set parameters and view test results on the display, as mentioned in "Section 3.4.2 Test Between THS Server and THS Client". Users can select either of the two approaches. For more information about formats of serial port commands, see "Chapter 5 Set THS Parameters on GRUart".

4 Application Details

This chapter introduces the project directory and implementation procedures of the Bluetooth LE THS example (including THS Server and THS Client).

4.1 Project Directory of Bluetooth LE THS Server

The source code and project file of the Bluetooth LE THS Server example are in SDK_Folder\projects\ble \ble_peripheral\ble_app_throughput, and project file is in the Keil_5 folder.

Double-click the project file, *ble_app_throughput.uvprojx*, to view the ble_app_throughput project directory structure of the Bluetooth LE THS Server example in Keil. For related files, see Table 4-1.

Group	File	Description
	ble_prf_utils.c	This file contains profile-related operational tools.
gr_profiles	ths.c	This file implements Throughput Service.
	ota.s	This file implements OTA Service.
	user gap callback.c	This file implements GAP callback, such as connection, disconnection, and
user_callback	usei_gap_canback.c	GAP parameter update.
	user_gatt_common_callback.c	This file implements GATT common callback, such as MTU exchange.
	user_sm_callback.c	This file implements SM callback, such as pairing and bonding.
user_platform	user_periph_setup.c	This file configures App logs, device address, and power management mode.
	main.c	This file contains the main() function.
user_app		This file implements profile registration and logical processing for THS Server
	user_app.c	applications.
	throughput.c	This file handles THS events.

Table 4-1	File	description	of ble	app	_throughput

4.2 Project Directory of Bluetooth LE THS Client

The source code and project file of the Bluetooth LE THS Client example are in SDK_Folder\projects\ble \ble_central\ble_app_throughput_c, and project file is in the Keil_5 folder.

Double-click the project file, *ble_app_throughput_c.uvprojx*, to view the ble_app_throughput_c project directory structure of the Bluetooth LE THS Client example in Keil. For related files, see Table 4-2.

Group	File	Description	
gr profiles	ble_prf_utils.c	This file contains profile-related operational tools.	
gi_promes	ths_c.c	This file implements Throughput Service Client Profile.	
user callback	user_gap_callback.c	This file implements GAP callback, such as connection, disconnection, and	
_		GAP parameter update.	

Table 4-2 File description of ble_app_throughput_c

Group	File	Description
	user_gatt_common_callback.c	This file implements GATT common callback, such as MTU exchange.
usor platform	user_periph_setup.c	This file configures device serial port, device address, and device buttons.
user_platform	user_interrupt.c	This file contains the serial port interrupt handler.
user_app	main.c	This file contains the main() function.
	user_app.c	This file implements profile registration and logical processing for THS Client applications.
	throughput_c.c	This file processes Throughput Service Client events and provides throughput statistics.
	user_gui.c	This file implements THS Client GUI.

4.3 Implementation Procedures

Interactions between THS Server and THS Client are shown in Figure 4-1:

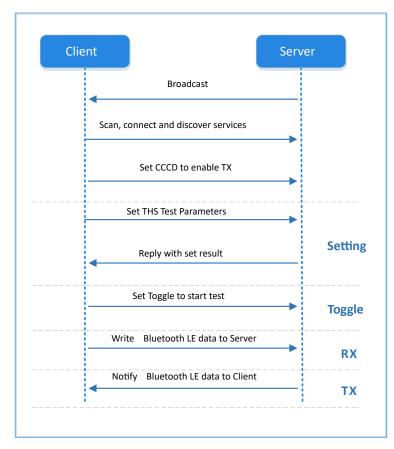


Figure 4-1 Implementation procedures

5 Set THS Parameters on GRUart

During the Bluetooth LE THS test, THS Client receives commands input on GRUart to test related parameters. All input commands should end with a newline ('rn'). The specific command formats are defined as follows.

5.1 Scan Device

Table 5-1 Scanning command

Command	SCAN
Description	None
Note	None
Example	SCAN
Response	Results from GRUart:
	Start scan device.
	Connected.
	Throughput Service discovery completely.
	Enabled TX Notification.
	Enabled SETTING Notification.

5.2 Update Connection Parameters

Table 5-2 Connection parameter update command

Command	CI: <conn_interval_min>:<conn_interval_max>:<latency>:<timeout></timeout></latency></conn_interval_max></conn_interval_min>
Description	<conn_interval_min>: minimum value of connection interval (unit: 1.25 ms)</conn_interval_min>
	<conn_interval_max>: maximum value of connection interval (unit: 1.25 ms)</conn_interval_max>
	<latency>: connection latency</latency>
	<timeout>: connection timeout (unit: 10 ms)</timeout>
Note	If a fixed connection interval is required, set the maximum and the minimum connection intervals to the same
	value.
	For tests on optimal throughput, set the latency value to 0.
	Timeout > (1 + Latency) x conn_interval x 2
Example	CI:12:12:0:100
Response	Setting results from GRUart

5.3 Set MTU

Table 5-3 MTU setting command

Command	MTU: <mtu_value></mtu_value>		
---------	------------------------------	--	--

Description	<mtu_value>: MTU; value range: 23 to 247</mtu_value>
Note	The MTU value is exchanged for once only during one connection.
Example	MTU: 247
Response	Setting results from GRUart

5.4 Set PDU

Table 5-4 PDU setting command

Command	PDU: <payload_octets>:<time></time></payload_octets>
Description	<payload_octets>: payload octets</payload_octets>
	< time >: time for TX
Note	None
Example	PDU:251:2120
Response	Setting results from GRUart

5.5 Set PHY

Table 5-5 PHY setting command

Command	PHY: <tx_phy>:<rx_phy>:<phy_opt></phy_opt></rx_phy></tx_phy>
Description	<tx_phy>: Preferred transmit PHYs</tx_phy>
	• 1: 1M PHY
	• 2: 2M PHY
	• 4: Coded PHY
	<rx_phy>: Preferred receive PHYs</rx_phy>
	• 1: 1M PHY
	• 2: 2M PHY
	• 4: Coded PHY
	< phy_opt >: Options for PHY
	• 0: Host has no preferred coding when transmitting on the LE Coded PHY.
	• 1: Host prefers that S=2 coding be used when transmitting on the LE Coded PHY.
	• 2: Host prefers that S=8 coding be used when transmitting on the LE Coded PHY.
Note	None
Example	PHY:1:1:0
Response	Setting results from GRUart

5.6 Test Mode

Table 5-6 Test mode command

Command	TRANS_MODE: <mode></mode>
Description	<mode>: test mode</mode>
	0: Send data from THS Server only (Notify).
	1: Send data from THS Client only (Write).
	2: Send data from both THS Server and THS Client.
Note	None
Example	TRANS_MODE: 2
Response	Setting results from GRUart

5.7 Start/Stop Test

Table 5-7 Test start/stop command

Command	TOGGLE_SET: <start_or_stop></start_or_stop>
Description	< start_or_stop >: Start or stop the test.
	0: Stop the test.
	1: Start the test.
Note	None
Example	TOGGLE_SET: 1
Response	Setting results from GRUart