
GR551x Serial Port Profile Example Application

Version: 1.7

Release Date: 2020-12-15

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338099

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces how to use and verify the Serial Port Profile (SPP) example in a GR551x SDK, to help users
quickly get started with secondary development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Hobbyist developer

• Technical writer

Release Notes

This document is the fifth release of GR551x Serial Port Profile Example Application, corresponding to GR551x SoC
series.

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16 Updated the release time in the footers.

1.5 2020-05-30
Updated two parameters (from GUS_NTF_ENABLE and BLE_TX_CPLT to GUS_TX_NTF_ENABLE)

in “Chapter 4 Application Details”.

1.6 2020-06-30 Updated the document version based on SDK changes.

1.7 2020-12-15 Updated GRToolbox UI figures based on software update.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Profile Overview... 2

3 Initial Operation..4

3.1 Preparation.. 4
3.2 Hardware Connection..4
3.3 Firmware Download.. 5
3.4 Serial Port Settings.. 5
3.5 Test and Verification..6

4 Application Details.. 9

4.1 Project Directory..9
4.2 Main Process and Code...9

5 FAQ... 14

5.1 Why does the Mobile Phone Receive Data in Multiple Units, with Each Less Than or Equal to 20 Bytes?......14
5.2 Why Is the Data Sent Through Serial Ports in String, But the Data Received in Hexadecimal?......................... 15

6 Appendix: Throughput Test Result.. 18

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. II

Introduction

1 Introduction
Serial Port Profile (SPP) defines how to pass through data from virtual serial ports to peer Bluetooth Low Energy
(Bluetooth LE) devices by adopting Bluetooth LE technology.

Bluetooth Special Interest Group (Bluetooth SIG) does not define standard profiles for Bluetooth LE serial port pass-
through. Therefore, to make Goodix-customized SPP user-friendly, this document introduces how to use and verify the
Goodix SPP example in a GR551x SDK.

Before you get started, it is recommended to refer to the documents listed below.

Table 1-1 Reference documents

Name Description

GR551x Sample Service Application and

Customization

Introduces how to apply and customize Goodix Sample Service in developing Bluetooth

LE applications based on GR551x SDK.

GR551x Developer Guide
Provides GR551x software and hardware introduction, quick start, and resource

overview.

Bluetooth Core Spec v5.1
Offers official Bluetooth standards and core specification (v5.1) from Bluetooth SIG.

Available at https://www.bluetooth.com/specifications/bluetooth-core-specification/.

Bluetooth GATT Spec
Provides details about Bluetooth profiles and services. Available at www.bluetooth.com/

specifications/gatt.

J-Link/J-Trace User Guide
Provides J-Link operational instructions. Available at www.segger.com/downloads/jlink/

UM08001_JLink.pdf.

Keil User Guide
Offers detailed Keil operational instructions. Available at www.keil.com/support/man/

docs/uv4/.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 1

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
http://www.keil.com/support/man/docs/uv4/
http://www.keil.com/support/man/docs/uv4/

Profile Overview

2 Profile Overview
Goodix SPP defines two device roles:

• Initiator: the device that issues a connection request to another device

• Acceptor: the device that waits for connection requests from other devices

The figure below shows how the two kinds of devices get connected and pass through data.

Nofy Receive Flow Control (if changed)

Write BLE Data

Nofy BLE Data

Scan,Connect and Discover Services

Enable Tx,Flow Control CCCD

Broadcast

Write Receive Flow Control (if changed)

Acceptor Iniator

Figure 2-1 Acceptor-Initiator interaction process

Goodix SPP only defines the data pass-through service of GR551x (Goodix UART Service, GUS). The service is
customized by Goodix, with the 128-bit vendor-specific UUID of A6ED0201-D344-460A-8075-B9E8EC90D71B to
transmit data, and to update Bluetooth LE data flow control.

GUS is characterized by:

• RX characteristic: Receives the written data from the initiator.

• TX characteristic: Sends data through serial ports to the initiator.

• Flow Control characteristic: Updates the capacities of the acceptor and the initiator in receiving Bluetooth LE
data (0x00: Cannot receive more Bluetooth LE data; 0x01: Can receive more Bluetooth LE data).

These characteristics are described in detail as follows:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 2

Profile Overview

Table 2-1 GUS characteristics

Characteristic UUID Type Support Security Property

RX A6ED0202-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None Write

TX A6ED0203-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None Notify

Flow Control A6ED0204-D344-460A-8075-B9E8EC90D71B 128 bits Mandatory None
Notify and

Write

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 3

Initial Operation

3 Initial Operation
This chapter introduces how to quickly verify an SPP example in a GR551x SDK.

 Note:

SDK_Folder is the root directory of GR551x SDK.

3.1 Preparation

Get ready as described below, before verifying and testing the Goodix SPP example.

• Hardware preparation

Table 3-1 Hardware preparation

Item Description

J-Link debug probe
JTAG emulator launched by SEGGER. For more information, visit

www.segger.com/products/debug-probes/j-link/.

Development board GR5515 Starter Kit Board (GR5515 SK Board)

Connection Cable Micro USB 2.0 cable

• Software preparation

Table 3-2 Software preparation

Item Description

Windows Windows 7/Windows 10

J-Link driver A J-Link driver. Available at www.segger.com/downloads/jlink/.

Keil MDK5 An integrated development environment (IDE). Available at www.keil.com/download/product/.

GRToolbox (Android) A GR551x Bluetooth LE debugging tool. Available in SDK_Folder\tools\GRToolbox.

GRUart (Windows) A GR551x serial port debugging tool. Available in SDK_Folder\tools\GRUart.

GProgrammer (Windows) A GR551x programming tool. Available in SDK_Folder\tools\GProgrammer.

3.2 Hardware Connection

Connect a GR5515 SK Board to a PC with a Micro USB 2.0 cable, as shown in the figure below.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 4

https://www.segger.com/products/debug-probes/j-link/
http://www.segger.com/downloads/jlink/
http://www.keil.com/download/product/

Initial Operation

Micro USB Cable

Figure 3-1 Hardware connection

3.3 Firmware Download

For instructions on how to download ble_app_uart_fw.bin firmware to the board, see GProgrammer User Manual.

 Note:

ble_app_uart_fw.bin is in SDK_Folder\projects\ble\ble_peripheral\ble_app_uart\build.
SDK_Folder is the root directory of GR551x SDK.

3.4 Serial Port Settings

Start GRUart, and configure the serial ports according to the parameters in the table below.

Table 3-3 Configuring serial port parameters on GRUart

PortName BaudRate DataBits Parity StopBits Flow Control

Select on demand 115200 8 None 1 Uncheck

When configuration is complete, click Open Port, as shown in the figure below.

Figure 3-2 Serial port settings on GRUart

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 5

Initial Operation

3.5 Test and Verification

Launch GRToolbox on an Android mobile phone to search for the device Goodix_UART (advertising name, which can
be modified in the user_app.c file).

Figure 3-3 Discovering Goodix_UART on the mobile phone

Tap CONNECT to connect to Goodix_UART, and the screen shows Goodix UART Service information, including TX
Characteristic, RX Characteristic, and Flow Control Characteristic, as shown in the figure below.

Figure 3-4 Discovering Goodix UART Service on the mobile phone

After getting prepared as mentioned above, follow the steps below to verify the Goodix SPP example.

1. Send data through GRToolbox.

Enable notifications for TX Characteristic and Flow Control Characteristic in GUS on the peer device through
GRToolbox. The mobile phone displays as below:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 6

Initial Operation

Figure 3-5 Interface after enabling notifications for TX Characteristic and Flow Control Characteristic

Write data (such as “12345678”) to GUS and tap SEND.

Figure 3-6 Entering RX Characteristic attributes

Data sent through GRToolbox is shown in the Receive Data area of GRUart, as shown in the figure below.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 7

Initial Operation

Figure 3-7 Printing data sent from GRToolbox on GRUart

2. Send data through GRUart.

Enter “abcdefgh” in the Send data pane in GRUart, and click Send.

The Value of TX Characteristic in GRToolbox shows the data sent from GRUart, as shown in the figure below.

Figure 3-8 Showing data sent from GRUart on GRToolbox

If the two applications function as described above, the Goodix SPP example runs successfully.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 8

Application Details

4 Application Details
This chapter introduces the project directory, main processes, and some critical code of the Goodix SPP example.

4.1 Project Directory

The source code and the project file of the Goodix SPP example are in SDK_Folder\projects\ble
\ble_peripheral\ble_app_uart, and project file is in the folder Keil_5.

Double-click the project file ble_app_uart.uvprojx to check the structure of the project directory of the Goodix SPP
example, ble_app_uart. Details of related files are described in the table below.

Table 4-1 File descriptions of ble_app_uart

Group File Description

gr_libraries ring_buffer.c This file implements operations with ring buffers.

ble_prf_utils.c This file contains profile-related operational tools.
gr_profiles

gus.c This file implements Goodix UART Service.

user_gap_callback.c
This file implements GAP Callback, such as connection, disconnection,

and GAP parameter update.user_callback

user_gatt_common_callback.c This file implements GATT Common Callback, such as MTU exchange.

user_platform user_periph_setup.c
This file initializes UART, device address, and sets power management

modes.

main.c This file contains main() function.

user_app.c This file sets GUS advertising parameters.
user_app

transport_scheduler.c
This file implements the distribution of serial port data and Bluetooth

LE data.

4.2 Main Process and Code

After powering on the GR5515 SK Board downloaded with the firmware of Goodix SPP example, the SK Board
automatically initializes the peripherals, BLE Protocol Stack, and GUS.

 Note:

Locations of the main logic code of the Goodix SPP example:

• user_app.c and transport_scheduler.c in user_app in the Keil project directory tree

• user_periph_setup.c in user_platform in the Keil project directory tree

After the initiator discovers and connects to the Goodix SPP example, the main process is shown in the figure below:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 9

Application Details

gus_service_process_event()

CCCD

Write Data

GUS

Iniator

Goodix SPP BLE Stack

Iniator

Data

Data
UART

UART

gus_write_a_cb()

gus_write_a_cb()

gus_service_process_event()

gus_tx_data_send

ble_gas_no_ind()

Nofy Data
Iniator

Operaon: lniator Enables TX and Flow Control CCCD

Operaon: Receive Data from Iniator and Send Data to UART

Operaon: Receive Data from UART and Upload Data to Iniator

Figure 4-1 Main process of the Goodix SPP example

1. The initiator enables or disables Bluetooth LE data transmission and Bluetooth LE data flow control.

This process is mainly implemented by the gus_service_process_event() function in user_app.c.

• When notification of GUS TX Characteristic on the acceptor is enabled by the initiator, the Goodix SPP
receives GUS_EVT_TX_PORT_OPENED. This enables the acceptor to transmit data from serial ports to the
initiator.

• When notification of GUS Flow Control Characteristic on the acceptor is enabled by the initiator, the
Goodix SPP receives GUS_EVT_FLOW_CTRL_ENABLE. This enables the acceptor to notify the initiator of the
capacity for receiving Bluetooth LE data.

• When the initiator disables notifications of the above two characteristics, Goodix SPP sets corresponding
labels as False.

A code snippet is as follows:

static void gus_service_process_event(gus_evt_t *p_evt)
{
 switch (p_evt->evt_type)
 {
 case GUS_EVT_TX_PORT_OPENED:
 transport_flag_set(GUS_TX_NTF_ENABLE, true);
 break;

 case GUS_EVT_TX_PORT_CLOSED:
 transport_flag_set(GUS_TX_NTF_ENABLE, false);
 break;
 ...
 case GUS_EVT_FLOW_CTRL_ENABLE:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 10

Application Details

 transport_flag_set(BLE_FLOW_CTRL_ENABLE, true);
 break;

 case GUS_EVT_FLOW_CTRL_DISABLE:
 transport_flag_set(BLE_FLOW_CTRL_ENABLE, false);
 break;
 ...
 }
}

2. The acceptor receives data from the initiator and transmits the data to serial ports.

After receiving Bluetooth LE data from the initiator, the Goodix SPP receives GUS_EVT_RX_DATA_RECEIVED,
and stores the data in the corresponding ring buffers. Poll the tasks in the ring buffers by executing the function
transport_schedule(). When new data in the ring buffers is detected, call the transport_uart_data_send()
function. The function retrieves data from the ring buffers and transmits the data to serial ports. A code snippet
is as follows:

static void gus_service_process_event(gus_evt_t *p_evt)
{
 switch (p_evt->evt_type)
 {
 ...
 case GUS_EVT_RX_DATA_RECEIVED:
 ble_to_uart_push(p_evt->p_data, p_evt->length);
 break;
 ...
 }
}

void transport_schedule(void)
{
 transport_uart_data_send();
 ...
}

static void transport_uart_data_send(void)
{
 uint16_t read_len;
 uint16_t items_avail;

 items_avail = ring_buffer_items_count_get(&s_ble_RX_ring_buffer);

 if (items_avail > 0)
 {
 read_len = ring_buffer_read(&s_ble_RX_ring_buffer, s_uart_TX_data,
 UART_ONCE_SEND_SIZE);
 transport_flag_set(UART_TX_CPLT, false);
 uart_TX_data_send(s_uart_TX_data, read_len);
 }
}

3. The acceptor receives data from the serial ports and transmits the data to the initiator.

After receiving data from the serial ports, the acceptor keeps the data received from serial port events in the ring
buffers temporarily supported by the app_uart_evt_handler() function. A code snippet is as follows:

static void app_uart_evt_handler(app_uart_evt_t *p_evt)

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 11

Application Details

{
 if (APP_UART_EVT_RX_DATA == p_evt->type)
 {
 uart_to_ble_push(s_uart_RX_buffer, p_evt->data.size);
 app_uart_receive_async(APP_UART_ID, s_uart_RX_buffer,
 UART_RX_BUFFER_SIZE);
 }
 ...
}

When there are no Bluetooth LE data transmission tasks, the function transport_schedule() calls the function
transport_ble_data_send() to poll the ring buffers. If there is data to be transmitted in the ring buffers, the
Bluetooth LE data transmission tasks are executed. A code snippet is as follows:

void transport_schedule(void)
{
 ...
 if (transport_flag_cfm(GUS_TX_NTF_ENABLE) &&
 transport_flag_cfm(BLE_TX_CPLT) &&
 transport_flag_cfm(BLE_TX_FLOW_ON) &&
 transport_flag_cfm(BLE_SCHEDULE_ON))
 {
 transport_ble_data_send();
 }
}

static void transport_ble_data_send(void)
{
 uint16_t read_len;
 uint16_t items_avail;

 items_avail = ring_buffer_items_count_get(&s_uart_RX_ring_buffer);

 if (items_avail > 0)
 {
 read_len = ring_buffer_read(&s_uart_RX_ring_buffer, s_ble_TX_data,
 s_mtu_size - 3);
 transport_flag_set(BLE_TX_CPLT, false);
 gus_TX_data_send(0, s_ble_TX_data, read_len);
 }
}

When one Bluetooth LE data transmission task is completed, the Goodix SPP receives GUS_EVT_TX_DATA_SENT,
and calls the function transport_ble_continue_send() to check the ring buffers. If there is data to be transmitted
in the ring buffers, the Goodix SPP continues retrieving the data and transmitting the data to the initiator.

void transport_ble_continue_send(void)
{
 uint16_t read_len;
 uint16_t items_avail;

 transport_flag_set(BLE_SCHEDULE_ON, true);

 // Read data from m_uart_RX_ring_buffer and send to peer via BLE.
 if (transport_flag_cfm(BLE_TX_FLOW_ON))
 {
 items_avail = ring_buffer_items_count_get(&s_uart_RX_ring_buffer);

 if (items_avail > 0)

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 12

Application Details

 {
 read_len = ring_buffer_read(&s_uart_RX_ring_buffer, s_ble_TX_data,
 s_mtu_size - 3);
 transport_flag_set(BLE_TX_CPLT, false);
 transport_flag_set(BLE_SCHEDULE_ON, false);
 gus_TX_data_send(0, s_ble_TX_data, read_len);
 }
 }
}

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 13

FAQ

5 FAQ
This chapter introduces possible problems, reasons, and solutions during verification and application of the Goodix
SPP example.

5.1 Why does the Mobile Phone Receive Data in Multiple Units, with Each Less
Than or Equal to 20 Bytes?

• Description

When the data input through GRUart is more than 20 bytes, the data is split into smaller packets and transmitted
in several times.

• Analysis

Before the initiator and the acceptor exchange the maximum transmission unit (MTU), the MTU size is 23 bytes
by default, including the 1-byte opcode, and the 2-byte attribute handle. Therefore, the length for one data
transmission is limited to 20 bytes.

When the length of data to be transmitted exceeds 20 bytes, the data is transmitted in sequence and in units of
no more than 20 bytes in several times.

This problem can be solved by modifying the MTU value.

• Solution

Tap > Request MTU in the upper-right corner of GRToolbox, as shown in the figure below.

Figure 5-1 Choosing Request MTU

 Note:

MTU can only be updated once in one connection. If an MTU update fails, it is probably because one MTU update has
been made before.

Enter a customized MTU value, such as “400” bytes, and tap OK to update the value (range of MTU value: 23 bytes to
512 bytes).

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 14

FAQ

Figure 5-2 Setting the MTU value

5.2 Why Is the Data Sent Through Serial Ports in String, But the Data Received in
Hexadecimal?

• Description

The data sent through serial ports is in strings (such as “abcdefgh”), but the received data in GRToolbox is in
hexadecimal (unit: byte).

• Analysis

The data format is incorrect in settings.

• Solution

The data format in GRToolbox (both for received data and transmitted data) can be set in string or in byte. As
shown in the figure below, the received data is presented in byte.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 15

FAQ

Figure 5-3 Format of received data in GRToolbox (in byte)

Tap Value and the data format menu pops up.

Figure 5-4 Choosing a data format

Choose ASCII and tap Confirm, and the string “abcdefgh” is presented, as shown in the figure below.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 16

FAQ

Figure 5-5 Presenting the string “abcdefgh”

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 17

Appendix: Throughput Test Result

6 Appendix: Throughput Test Result
Bluetooth LE throughput tests on Goodix SPP are performed based on the GR5515 SK Board.

The test results include baud rates for serial ports (115200 bps, 230400 bps, and 460800 bps), and the throughputs in
cases of 1 M PHY and 2 M PHY, and in different pass-throughput modes.

Table 6-1 Throughput in different modes

Baud Rate (bps) Pass-through Mode 1M PHY 2M PHY

accepter → initiator 10.032 KB/s 10.246 KB/s

accepter ← initiator 10.015 KB/s 10.167 KB/s115200

accepter ↔ initiator 19.534 KB/s 19.758 KB/s

accepter → initiator 20.329 KB/s 21.011 KB/s

accepter ← initiator 20.009 KB/s 19.907 KB/s230400

accepter ↔ initiator 40.069 KB/s 41.01 KB/s

accepter → initiator 37.38 KB/s 37.826 KB/s

accepter ← initiator 37.38 KB/s 37.648 KB/s460800

accepter ↔ initiator 70.243 KB/s 71.141 KB/s

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 18

	Preface
	Contents
	1 Introduction
	2 Profile Overview
	3 Initial Operation
	3.1 Preparation
	3.2 Hardware Connection
	3.3 Firmware Download
	3.4 Serial Port Settings
	3.5 Test and Verification

	4 Application Details
	4.1 Project Directory
	4.2 Main Process and Code

	5 FAQ
	5.1 Why does the Mobile Phone Receive Data in Multiple Units, with Each Less Than or Equal to 20 Bytes?
	5.2 Why Is the Data Sent Through Serial Ports in String, But the Data Received in Hexadecimal?

	6 Appendix: Throughput Test Result

