
GR5525 Developer Guide

Version: 1.1

Release Date: 2024-03-29

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces the Software Development Kit (SDK) of the Goodix GR5525 Bluetooth Low Energy
(Bluetooth LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started
with secondary development of Bluetooth LE applications.

Audience

This document is intended for:

• GR5525 user

• GR5525 developer

• GR5525 tester

• Technical writer

Release Notes

This document is the second release of GR5525 Developer Guide, corresponding to GR5525 SoC series.

Revision History

Version Date Description

1.0 2023-08-30 Initial release

1.1 2024-03-29 Optimized some descriptions.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 GR5525 SDK...1
1.2 Bluetooth LE Protocol Stack.. 1

2 GR5525 Bluetooth LE Software Platform...4

2.1 Hardware Architecture.. 4
2.2 Software Architecture..5
2.3 Memory Mapping..6
2.4 Flash Memory Mapping.. 8

2.4.1 SCA.. 9
2.4.2 NVDS... 11

2.5 RAM Mapping..13
2.5.1 Typical RAM Layout in XIP Mode... 14
2.5.2 Typical RAM Layout in Mirror Mode.. 15
2.5.3 RAM Power Management.. 16

2.6 SDK Directory Structure.. 17

3 Bootloader.. 20

4 Development and Debugging with GR5525 SDK in Keil... 22

4.1 Installing Keil MDK...22
4.2 Installing GR5525 SDK... 23
4.3 Building a Bluetooth LE Application..23

4.3.1 Preparing ble_app_example... 23
4.3.2 Configuring a Project.. 27

4.3.2.1 Configuring custom_config.h..27
4.3.2.2 Configuring Memory Layout.. 32
4.3.2.3 Configuring After Build...33

4.3.3 Adding User Code... 34
4.3.3.1 Modifying the main() Function.. 34
4.3.3.2 Implementing Bluetooth LE Service Logics.. 35
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.. 39

4.4 Generating Firmware...40
4.5 Downloading .hex Files to Flash..41
4.6 Debugging..44

4.6.1 Configuring the Debugger.. 44
4.6.2 Starting Debugging... 46
4.6.3 Outputting Debug Logs...46

4.6.3.1 Module Initialization.. 47

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.6.3.2 Application..48
4.6.4 Debugging with GRToolbox...50

5 Glossary.. 51

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
The Goodix GR5525 series is a single-mode low-power System-on-Chip (SoC) that supports Bluetooth 5.3. It can be
configured as a Broadcaster, an Observer, a Central, or a Peripheral, and supports the combination of all the above
roles, making it an ideal choice for Internet of Things (IoT) and smart wearable devices.

Based on Arm® Cortex®-M4F CPU core, the GR5525 series integrates Bluetooth 5.3 Protocol Stack, a 2.4 GHz RF
transceiver, on-chip programmable Flash memory, RAM, and multiple peripherals.

The GR5525 series comes in two package choices: QFN56 and QFN68 packages. The specific configurations are listed
below.

Table 1-1 Configuration of GR5525 series

GR5525 Series GR5525RGNI GR5525IGNI GR5525IENI GR5525I0NI

CPU Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F

RAM 256 KB 256 KB 256 KB 256 KB

SiP Flash 1 MB 1 MB 512 KB N/A

I/O Number 50 39 39 39

I/O Voltage 1.8 V–3.6 V 1.8 V–3.6 V 1.8 V–3.6 V In line with Flash voltage

Package (mm) QFN68 (7.0 x 7.0 x 0.85) QFN56 (7.0 x 7.0 x 0.75) QFN56 (7.0 x 7.0 x 0.75) QFN56 (7.0 x 7.0 x 0.75)

1.1 GR5525 SDK

The GR5525 Software Development Kit (SDK) provides comprehensive software development support for GR5525
SoCs. The SDK contains Bluetooth LE APIs, System APIs, peripheral drivers, a tool for debugging and download, project
example code, and related user documents.

The GR5525 SDK version mentioned in this document is applicable to all GR5525 SoCs.

1.2 Bluetooth LE Protocol Stack

The Bluetooth LE Protocol Stack (Bluetooth LE Stack) architecture is as shown in the figure below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 1

Introduction

Bluetooth LE Protocol Stack
Host

Generic Aribute Profile (GATT)

Aribute Protocol (ATT)

Logical Link Control and Adaptaon Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Generic Access Profile (GAP)

Security Manager (SM)

Host Controller Interface (HCI)

Figure 1-1 Bluetooth LE Stack architecture

The Bluetooth LE Stack consists of the Controller, the Host Controller Interface (HCI), and the Host.

Controller

• Physical Layer (PHY): Supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

• Link Layer (LL): Controls the RF state of devices. Devices are in one of the following five states, and can switch
between the states on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

• HCI: Enables communication between Host and Controller, supported by software interfaces or standard
hardware interfaces; for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

• Logical Link Control and Adaptation Protocol (L2CAP): Provides channel multiplexing and data segmentation and
reassembly services for upper layers. It also supports logic end-to-end data communication.

• Security Manager (SM): Defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functionalities.

• Generic Access Profile (GAP): Provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, fulfilling functionalities such as advertising, scanning, connection initiation, service
discovery, connection parameter update, secure process initiation, and response.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 2

Introduction

• Attribute Protocol (ATT): Defines service data interaction protocols between a server and a client.

• Generic Attribute Profile (GATT): Based on the top of ATT, it defines a series of communication procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

Tip:

For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website: https://
www.bluetooth.com.

Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and code
which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 3

http://www.bluetooth.com
http://www.bluetooth.com

GR5525 Bluetooth LE Software Platform

2 GR5525 Bluetooth LE Software Platform
The GR5525 SDK is designed for GR5525 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
LE 5.3 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR5525 SDK.

2.1 Hardware Architecture

The GR5525 hardware architecture is shown as follows.

AHB

ROM

Cache 8 KB

Crypto

Analog

Comparator

Temperature sensor

SADC

APB

3 DMA

Cache Ctrl

Fl
as

h
&

 X
IP

 C
tr

l

Audio

2 × I2S

PDM

eFuse

Fl
as

h
1

M
B

AHB
MCU Subsystem

Bluetooth Subsystem

PMU Subsystem

AP
B

Br
id

ge

AH
B

AH
B

AH
B

APB

AP
B

SRAM 256 KB

Comm

Timer

Acve Mode Idle Mode Deep Sleep Mode Ultra Deep Sleep Mode

2 × PWM

32/16-bit Dual
Timer

2 × 32-bit
Timer

AON_SLP
Timer

AON_WDT

2 × AON_RTC

3 × QSPI

SPI Master

4 × I2C

4 × UART

SPI Slave

DSPI

I/O

Cortex-M4F

SWD

MPU

FPU

Trace
64 KB

32 KB

64 KB

32 KB

16 KB

16 KB

16 KB

16 KB

SX PLL

ADC
M

ixer
BB

CLK Gen
HFXO

_32M

PA

LN
A

Digital Front End

Bluetooth LE Modem

Bluetooth LE MAC

Packet Buffer

HALF-IO-MUX

HA
LF

-IO
-M

U
X

HA
LF

-IO
-M

U
X

8 × MSIO

8 × AON I/O

34 × GPIO

PKC

AES

HMAC

PERSENT

TRNG

APB
Bridge

Clock

HFXO_32M LFXO_32K

HFRC_192M

LFRC_32K

RNG_OSCCPLL_192M

Power

BODDCDC

LP_LDO

DIG_CORE_LDO

IO_LDO POR

Figure 2-1 GR5525 hardware architecture

• Bluetooth subsystem:

◦ Include a 2.4 GHz RF transceiver and a digital communication controller, both supporting Bluetooth LE 5.3.

• MCU subsystem:

◦ Include an Arm® Cortex®-M4F CPU core, memories, and peripherals.

◦ Security modules supports security application and secure boot implementation.

• Power Management Unit (PMU) subsystem:

◦ Power supply for the whole SoC, including internal modules and peripherals

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 4

GR5525 Bluetooth LE Software Platform

◦ Support ultra deep sleep mode in standby state and control the power state of the system or peripherals
by HFRC_192M, RNG_OSC, LFRC_32K, wake-up GPIOs (Wake-up), low-power comparator (LP Comp.) and
power state controller (Power Sequencer).

Tip:

For more details about GR5525 modules, refer to GR5525 Datasheet.

2.2 Software Architecture

The software architecture of GR5525 SDK is shown below.

Software

Bluetooth LE Stack

Hardware

Applicaon

SDK

Bluetooth 5.3 Core ARM® Cortex®-
M4F Peripheral

GATT Services/
Service Clients

Bootloader

Bluetooth LE API System API

HAL Driver

LL Driver

APP Driver

Figure 2-2 GR5525 software architecture

• Bootloader

A boot program built in GR5525 SoCs, used for GR5525 software and hardware environment initialization, and to
check and start applications

• Bluetooth LE Stack

The core to implement Bluetooth LE protocols. It consists of Controller, HCI, and Host protocols (including ATT,
L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 5

GR5525 Bluetooth LE Software Platform

• HAL Driver

Hardware Abstraction Layer (HAL) drivers; the HAL Driver layer is between the APP Driver layer and the LL Driver
layer. HAL drivers offer a set of standard APIs, to allow the APP Driver layer to access the LL peripheral resources
by calling HAL APIs.

 Note:

Generally, HAL APIs are used for developing LL drivers and system services, not for developing common applications.
Therefore, it is not recommended for developers to directly call HAL APIs.

• LL Driver

Low Layer (LL) drivers which control and manage peripherals by registers

• Bluetooth LE SDK

SDK that provides easy-to-use Bluetooth LE APIs, system APIs, and APP driver APIs.

◦ Bluetooth LE APIs: Includes L2CAP, GAP, SM, and GATT APIs.

◦ System APIs: Provides APIs for Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system
power management, and generic system-level access.

◦ APP driver APIs: Provides definitions for APIs of common peripherals such as UART, I2C, and ADC. APP driver
APIs call HAL/LL APIs to enable the corresponding functionalities.

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; you can download these files to GR5525 SoCs for operation and test. GRToolbox (Android) in the SDK
provides rich functionalities to allow users to test most Bluetooth applications with ease.

2.3 Memory Mapping

The memory mapping of a GR5525 SoC is shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 6

GR5525 Bluetooth LE Software Platform

ROM
(320 KB)

Reserved
(704 KB)

SRAM Alias
(256 KB)

Reserved
(768 KB)

ExFlash
(16 MB)

Reserved
(16 MB)

ExFlash Alias
(16 MB)

Reserved
(206 MB)

QSPI M0 XIP
(64 MB)

QSPI M2 XIP
(64 MB)

0x0000 0000

0x0004 FFFF
0x0005 0000

0x000F FFFF
0x0010 0000

0x0013 FFFF
0x0014 0000
0x001F FFFF
0x0020 0000

0x011F FFFF
0x0120 0000
0x021F FFFF
0x0220 0000

0x031F FFFF
0x0320 0000

0x0FFF FFFF

QSPI M1 XIP
(64 MB)

Reserved
(64 MB)

SRAM
(256 KB)

0x1000 0000

0x13FF FFFF
0x1400 0000

0x17FF FFFF
0x1800 0000

0x1BFF FFFF
0x1C00 0000

0x1FFF FFFF
0x2000 0000

0x2003 FFFF

QSPI M1 XIP Alias
(31.75 MB)[*]0x2004 0000

0x21FF FFFF

Reserved
(480 MB)

0x2200 0000

0x3FFF FFFF

APB Subsys
(64 KB)0x4000 0000

0x4000 FFFF

GPIO Ctrl
(12 KB)

0x4001 0000

0x4001 2FFF
0x4001 3000
0x4001 3FFF Reserved

(4 KB)

Security
(20 KB)0x4001 4000

0x4001 8FFF

DMA
(12 KB)0x4001 9000

0x4001 BFFF

Reserved
(20 KB)

QSPI M0 REG
(4 KB)

0x4002 0FFF

0x4001 C000

0x4002 1000

0x4002 1FFF

QSPI M1 REG
(4 KB)

0x4002 2FFF

0x4002 2000

0x4002 3FFF QSPI M2 REG
(4 KB)

Reserved
(40 KB)

DSPI
(4 KB)

0x4002 4000

0x4002 DFFF

0x4002 E000

0x4002 EFFF

Note:
[*] Only a part of XIP range can be accessed.

0x4002 3000

Reserved
(708 KB)

Bluetooth LE
(128 KB)

0x4002 F000

0x400D FFFF

0x400E 0000
0x400F FFFF

Figure 2-3 GR5525 memory mapping

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 7

GR5525 Bluetooth LE Software Platform

• RAM: 0x0010_0000 to 0x0013_FFFF, or 0x2000_0000 to 0x2003_FFFF; 256 KB in total

◦ 0x2000_0000 to 0x2003_FFFF: bit field operations supported, mapping to the region from 0x2200_0000 to
0x227F_FFFF, in which atomic operations are supported. Variables of the SDK including RW, ZI, HEAP, and
STACK are in this range.

◦ 0x0010_0000 to 0x0013_FFFF: This region features higher access efficiency thanks to the Cortex®-M4F
architecture. Therefore, RAM_CODE is in this area.

 Note:

QSPI0, QSPI1, and QSPI2 support the Execute in Place (XIP) mode, which allows mapping of address from QSPI Flash to
memories, enabling direct operations on memories.

• Flash: 0x0020_0000 to 0x011F_FFFF or 0x0220_0000 to 0x031F_FFFF, 16 MB in total

◦ 0x0020_0000 to 0x011F_FFFF: Stores code and unencrypted data.

◦ 0x0220_0000 to 0x031F_FFFF: Stores encrypted data.

 Note:

Internal Flash of GR5525 SoCs is 1 MB, from 0x0020_0000 to 0x002F_FFFF.

2.4 Flash Memory Mapping

GR5525 packages an external erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout for typical GR5525 application scenarios is shown below.

End of Flash

NVDS_START_ADDR

0x0020_2000

0x0020_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store configurations such as system boot parameters

• User App: an area to store application firmware

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 8

GR5525 Bluetooth LE Software Platform

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

• NVDS: non-volatile data storage area

 Note:

By default, NVDS occupies the last two sectors of Flash memory. You can configure the start address of NVDS and
the number of occupied sectors according to Flash memory layout of products. For more information about the
configuration, refer to “Section 4.3.2.1 Configuring custom_config.h”.

The start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It mainly stores flags and
other system configuration parameters used during system boot.

During firmware download, the download algorithm or GProgrammer will generate Image Info based on the
BUILD_IN_APP_INFO structure in the application firmware, and program the Image Info (stored in SCA) to Flash along
with the application firmware. During system boot, Bootloader will check the boot information in SCA, and then jump
to the entry address of the firmware if the check passes.

The BUILD_IN_APP_INFO structure is defined and configured as follows:

Tip:

The BUILD_IN_APP_INFO structure is in SDK_Folder\platform\soc\common\gr_platform.c, and
SDK_Folder is the root directory of GR5525 SDK.

const APP_INFO_t BUILD_IN_APP_INFO __attribute__((section(".app_info"))) =
#endif
{
 .app_pattern = APP_INFO_PATTERN_VALUE,
 .app_info_version = APP_INFO_VERSION,
 .chip_ver = CHIP_VER,
 .load_addr = APP_CODE_LOAD_ADDR,
 .run_addr = APP_CODE_RUN_ADDR,
 .app_info_sum = CHECK_SUM,
 .check_img = BOOT_CHECK_IMAGE,
 .boot_delay = BOOT_LONG_TIME,
 .sec_cfg = SECURITY_CFG_VAL,
#ifdef APP_INFO_COMMENTS
 .comments = APP_INFO_COMMENTS,
#endif
};

• app_pattern: a fixed value 0x47525858

• app_info_version: firmware version information, corresponding to APP_INFO_VERSION

• chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h

• load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 9

GR5525 Bluetooth LE Software Platform

• run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

• app_info_sum: checksum of firmware information, which is automatically calculated by CHECK_SUM

• check_img: system boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h.
When check_img is set to 1, Bootloader will check the firmware at booting.

• boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When
boot_delay is set to 1, the system cold boot will be launched after a one-second delay.

• sec_cfg: security configuration parameter, reserved

• comments: firmware information, up to 12 bytes

The SCA layout is shown below.

0x0020_0000

0x0020_1000

0x0020_2000

Boot_Info sector

3554B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

DFU Config Info
(46B)

Reserved

Enc:Hmac(32B)
UnEnc:Free

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

ADV Name Info(22B)

DFU Disable Cmd Info(4B)

NVDS Init Info(8B)

UART Info(12B)

Img_Info_10
(40B)

Figure 2-5 SCA layout

• Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.

◦ In non-security mode, the Bootloader obtains boot information from Boot_Info by default.

◦ In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info
Backup and obtains boot information from it.

• The firmware boot information is stored in the Boot_Info (32 B) area. During system boot, Bootloader will check
the boot information, and then jump to the entry address of the firmware if the check passes.

◦ Boot Config: This area stores the system boot configuration information.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 10

GR5525 Bluetooth LE Software Platform

◦ SPI Access Mode: This area stores the SPI access mode configuration. It is a fixed configuration of the
system and cannot be modified.

◦ Run Addr: Indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.

◦ Load Addr: Indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

◦ CheckSum: This area stores the firmware checksum which is calculated automatically by the download
algorithm after firmware is generated.

◦ APP Size: This area stores the firmware size which is calculated automatically by the download algorithm
after firmware is generated.

• Up to 10 pieces of firmware information can be stored in Img_Info areas. Firmware information is stored in
Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

◦ Comments: This area stores the descriptive information (up to 12 characters) about firmware. Every time a
firmware file is generated, the file name will be saved in the Comments area by the download algorithm.

◦ Boot Info (24 B): This area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ Version: This area stores the firmware version, corresponding to VERSION in the custom_config.h.

◦ Pattern: This area stores a fixed value 0x4744.

• The DFU Config Info area stores configurations of DFU module in ROM#

◦ UART Info: This area stores UART configurations of DFU module, including state bit, baud rate, and GPIO
configurations.

◦ ADV Name Info: This area stores advertising configurations of DFU module, including state bit, advertising
name, and advertising length.

◦ NVDS Init Info: This area stores initialization configurations of NVDS system in DFU module, including state
bit, NVDS area size, and start address.

◦ DFU Disable Cmd Info: This area stores DFU disable command configurations of DFU module, including
state bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a DFU
command.

• The HMAC area stores the HMAC check value. This area is valid only in security mode.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash HAL. NVDS is located in the Flash memory and data
in it will not get lost in power-off state. By default, NVDS uses the last two sectors of the Flash memory. You can also
configure the number of Flash sectors to be occupied. In NVDS, the last sector is for defragmentation, and the other
sector(s) for data storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data,
states, and user information. Bluetooth LE Stack stores parameters such as device binding parameters in NVDS.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 11

GR5525 Bluetooth LE Software Platform

NVDS features:

• Each storage item (TAG) has a unique TAG ID. User applications can read and change data according to TAG IDs,
regardless of physical storage addresses.

• It is optimized based on medium characteristics of Flash memory and supports data check, word alignment,
defragmentation, and erase/write balance.

• The size and start address of NVDS are configurable. Compared with Flash memory which is made up of 4 KB
sectors, NVDS can be in several sectors as configured. Make sure the start address of NVDS is 4 KB aligned.

 Note:

• You can configure the start address and size of the NVDS area by adding the NVDS_START_ADDR macro and
modifying the NVDS_NUM_SECTOR macro respectively in custom_config.h.

• Bluetooth LE Stack and the application share the same NVDS storage area. However, TAG ID namespace is divided
into different categories. You can only use the TAG ID name category assigned to an application.

◦ Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as
an NVDS API parameter.

◦ Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x4000 to
0x7FFF.

• Before running an application for the first time, you can use GProgrammer to write the initial TAG ID value used
by Bluetooth LE Stack and the application to NVDS.

• If you specify an NVDS area, instead of using the default NVDS area in the GR5525 SDK, make sure the start
address of the NVDS area configured in GProgrammer is 4 KB aligned.

Data stored in NVDS is in the format below.

Data Header Data

8 bytes Up to 1024 bytes

Figure 2-6 Data format in NVDS

Details of data header are described below.

Table 2-1 Data header format

Byte Name Description

0–1 tag Data tag

2–3 len Data length

4–4 checksum Checksum of data header

5–5 value_cs Checksum of data

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 12

GR5525 Bluetooth LE Software Platform

Byte Name Description

6–7 reserved Reserved bits

GR5525 SDK provides the following NVDS APIs to allow developers to manipulate non-volatile data in Flash.

Table 2-2 NVDS APIs

Function Prototype Description

uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the Flash sectors used by NVDS.

uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

uint8_t nvds_put(NvdsTag_t tag, uint16_t len, const uint8_t *p_buf)
Write data to NVDS and mark the data with TAG IDs. You

need to create a TAG ID when writing data for the first time.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.

uint16_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG ID.

uint8_t nvds_drv_func_replace(nvds_drv_func_t *p_nvds_drv_func) Replace the APIs that can directly control Flash.

uint8_t nvds_func_replace(nvds_func_t *p_nvds_func) Replace the APIs that control NVDS.

void nvds_retention_size(uint8_t bond_dev_num)
Reserve space for device bonding. The space reserved

depends on the number of devices to be bonded.

 Note:

For details of NVDS APIs, refer to the NVDS header file (in SDK_Folder\components\sdk\gr55xx_nvds.h).

2.5 RAM Mapping

The RAM of a GR5525 SoC is 256 KB in size with the start address of 0x2000_0000. It consists of eight RAM blocks.
Each of the first four RAM blocks is 16 KB, followed by two 32 KB blocks, and two 64 KB blocks in sequence. Each RAM
block can be powered on or off by software independently.

 Note:

GR5525 provides RAM (start address: 0x2000_0000) with an aliasing memory (start address: 0x0010_0000). For more
information, see Figure 2-3.

• The region (start address: 0x2000_0000) supports bit field operations, mapping to the region starting from
0x2200_0000.

• The region starting from 0x0010_0000 features higher access efficiency thanks to the Cortex®-M4F architecture.
Therefore, executing code in this region promotes running speed.

• In the GR5525 SDK, RW, ZI, HEAP, and STACK use the RAM region starting from 0x2000_0000; RAM_CODE uses
the region starting from 0x0010_0000.

The 256 KB RAM layout is shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 13

GR5525 Bluetooth LE Software Platform

0x2003_0000

RAM_16K_0

RAM_16K_1

RAM_16K_2

RAM_16K_3

RAM_32K_0

RAM_32K_1

RAM_64K_0

0x2002_0000

0x2001_8000

0x2001_0000

0x2000_C000

0x2000_8000

0x2000_4000

0x2000_0000

RAM_64K_1

0x2003_FFFF

Figure 2-7 256 KB RAM layout

Running modes for applications include XIP and mirror modes. For more information about configurations, see
APP_CODE_RUN_ADDR in “Section 4.3.2.1 Configuring custom_config.h”. RAM layouts of the two modes are
different.

Table 2-3 Running modes for applications

Running Mode Description

XIP mode

It refers to Execute in Place mode. User applications are stored in on-chip Flash, and applications

use the same space for running and loading. When the system is powered on, it fetches and

executes commands from Flash directly through the Cache Controller.

Mirror mode

In mirror mode, user applications are stored in on-chip Flash, and the running space for applications

is defined in RAM. During application boot, applications are loaded into RAM from external Flash

after check is completed, and the system jumps to RAM for operation.

 Note:

Continuous access to Flash is required in XIP mode. Therefore, power consumption in this mode is a little higher than
that in mirror mode.

2.5.1 Typical RAM Layout in XIP Mode

The typical RAM layout in XIP mode is shown below. Users can modify the layout based on product needs.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 14

GR5525 Bluetooth LE Software Platform

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

Unused RAM Space

Stack
End of RAM

Size=SYSTEM_STACK_SIZE

0x2000_4000

Size=16 KB

0x2000_0000

HEAP

RW
ZI

0x2000_5FB0

Figure 2-8 RAM layout in XIP mode

RAM_CODE saves code executed in RAM. To boost the efficiency in execution, it is recommended to define this region
in the aliasing memory (at physical address 0x0010_0000).

The layout in XIP mode allows application firmware to be run directly in the code loading area, so that more RAM
space is available for applications. During update to contents in Flash memory, XIP mode is disabled; during erase/
write operations with the smallest granularity (256 bytes for writing and 4 KB for erasing), interrupts cannot be
generated.

 Note:

• QSPI0, QSPI1, and QSPI2 support the XIP mode, which allows mapping of address from QSPI Flash to memories,
enabling direct operations on memories.

• Users can add self-defined sections as needed. Avoid modifying the default scatter file of the SDK or deleting
part of the scatter file (such as deleting RAM_CODE from the scatter file). For details about the scatter file, see
“Section 4.3.2.2 Configuring Memory Layout”.

2.5.2 Typical RAM Layout in Mirror Mode

The typical RAM layout in mirror mode is shown below. Users can modify the layout based on product needs.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 15

GR5525 Bluetooth LE Software Platform

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

Unused RAM Space

Stack
End of RAM

Size=SYSTEM_STACK_SIZE

0x2000_4000

Size=16 KB

0x2000_0000

HEAP

App Code Execuon Region

RW
ZI

0x2000_5FB0

APP_CODE_RUN_ADDR

Figure 2-9 RAM layout in mirror mode

The layout in mirror mode allows application firmware to be run in RAM. The SoC enters cold boot process after
power-on. The Bootloader copies application firmware from flash to the RAM segment App Code Execution Region.
After wake-up from sleep mode, GR5525 SoC enters warm boot process. To shorten the warm boot time, the
Bootloader does not redo copy of application firmware to the RAM segment App Code Execution Region.

The start address of the App Code Execution Region segment depends on APP_CODE_RUN_ADDR in custom_config.h.
Users need to decide the value of APP_CODE_RUN_ADDR based on the use of .data and .bss segments, to avoid
overlapping with the .bss segment at lower address or the Call Stack segment at higher address. Users can view the
layout of RAM segments from the .map file.

It is recommended to set APP_CODE_RUN_ADDR with RAM Aliasing Memory address (from 0x0010_0000 to
0x0013_FFFF). Once overlapping with RAM segments happens, when a project is to be built, an error will occur and
the overlapped part will be indicated, to help users quickly check and locate the overlapped part in the RAM.

2.5.3 RAM Power Management

Each RAM block has three power modes: Full Power, Retention Power, and Power Off.

• Full Power: The system is in active state; MCU is permitted to read from and write to RAM blocks.

• Retention Power: The system is in sleep state; data in RAM blocks does not get lost and is ready for use by the
system when it switches from sleep state to active state.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 16

GR5525 Bluetooth LE Software Platform

• Power Off: The system is in power-off state; RAM blocks will be powered off and the data in the blocks will get
lost. Therefore, you need to save the data before the system is powered off.

By default, the PMU in the GR5525 enables all RAM power sources when the system starts. The GR5525 SDK also
provides a complete set of RAM power management APIs. You can configure the power state of RAM blocks based on
application needs.

By default, the system enables automatic RAM power management mode during boot: It automatically implements
power mode control of RAM blocks according to RAM usage of applications. The configuration rules are provided as
follows:

• When the system is in active state, set the unused RAM blocks to Power Off mode, and RAM blocks to be used to
Full Power mode.

• When the system is in sleep state, set the unused RAM blocks to Power Off mode, and RAM blocks to be used to
Retention Power mode.

Recommended RAM configurations in practice are described below:

• In Bluetooth LE applications, the first 8 KB of RAM_16K_0 and RAM_16K_1 are reserved for Bootloader and
Bluetooth LE Stack only, not available for applications. When the system is in active state, RAM_16K_0 and
RAM_16K_1 shall be in Full Power mode; when the system is in sleep state, the two RAM blocks shall be in
Retention Power mode. Non-Bluetooth LE MCU applications can use these two RAM blocks.

• Purposes of RAM_16K_2 and subsequent RAM blocks are defined by applications. Generally, user data and the
code segments to be executed in RAM are defined in continuous segments starting from RAM_16K_2; the top
of function call stacks is defined in upper address part of RAM. The power mode of these RAM blocks can be
enabled, or be controlled by applications.

 Note:

• An MCU access is permitted only when a RAM block is in Full Power mode.

• Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

2.6 SDK Directory Structure

The folder directory structure of GR5525 SDK is shown as follows.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 17

GR5525 Bluetooth LE Software Platform

GR5525 SDK

build

config
gcc
iar
keil

components

drivers_ext
libraries
profiles
sdk

documentaon

drivers

src

external

inc

tools

freertos

nanopb
segger_r

mbedtls

plaorm

arch
boards
include
soc

common
include
linker
src

projects

ble

peripheral
bt

Figure 2-10 GR5525 SDK directory structure

Detailed description of folders in the GR5525 SDK is shown below.

Table 2-4 GR5525 SDK folders

Folder Description

build\config
Project configuration directory that stores the custom_config.h template file. This file is

used to configure projects and parameters.

build\gcc GCC tools

build\keil Keil MDK tools

build\iar IAR tools

components\drivers_ext Drivers of third-party components on the development board

components\libraries Libraries provided in the GR5525 SDK

components\profiles
Source files of GATT Services/Service Clients implementation examples provided in the

GR5525 SDK

components\sdk API header files provided in the GR5525 SDK

documentation GR5525 API Reference Manual

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 18

GR5525 Bluetooth LE Software Platform

Folder Description

drivers\inc Driver API header files which are easy to use for application developers

drivers\src Driver API source code which is easy to use for application developers

external\freertos Source code of FreeRTOS (a third-party program)

external\mbedtls Source code of Mbed TLS (a third-party program)

external\nanopb Source code of Nanopb (a third-party program)

external\segger_rtt Source code of SEGGER RTT (a third-party program)

platform\arch Toolchain files of CMSIS

platform\boards
Source files for initializing GR5525 Starter Kit Board. The files are used for initializing basic

peripherals at board level.

platform\include Common header files related to platform

platform\soc\common
Public source files compatible to GR5525 SoCs. The files include gr_interrupt.c,

gr_platform.c, and gr_system.c.

platform\soc\linker Symbol table files and library files for the linker

platform\soc\include
Common header files closely related to underlying driver configurations such as registers

and clock configurations

platform\soc\src
gr_soc.c which is about initialization processes closely related to SoC implementation. The

processes include initializing Flash and NVDS, configuring crystal, and calibrating PMU.

projects\ble
Bluetooth LE application project examples, such as Heart Rate Sensor and Proximity

Reporter

projects\bt BT example project

projects\peripheral Peripheral project examples of a GR5525 SoC

tools GR5525 development and debugging tools

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 19

Bootloader

3 Bootloader
The GR5525 supports two firmware running modes: XIP and mirror. When the system is powered on, the Bootloader
first reads the system boot configuration information from SCA, then performs application firmware integrity check
and initialization configuration accordingly, and finally jumps to the code running space to run firmware. The boot
procedures may vary in different running modes.

• In XIP mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check,
and then jumps to the code run address in Flash to run code.

• In mirror mode, after finishing application firmware check, the Bootloader loads the firmware in Flash to
corresponding RAM running space based on system configurations, and jumps to and runs the firmware in RAM.

The application boot procedures of the GR5525 SDK are shown as follows.

Inialize Flash.

In mirror mode?

Reset_Handler

Read boot informaon
and check the integrity of

Applicaon Image.

Is Applicaon
 Image integral?

Copy Applicaon Image to
RAM from Flash.

Inialize instrucon cache.

Boot start

Start DFU service.

Yes Yes

No No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR5525 SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 to extract the extended stack pointer (ESP)
of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes Reset_Handler in ROM to enter the Bootloader.

2. Bootloader initializes Flash.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 20

Bootloader

3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

 Note:

GR5525 supports encrypting and signing application firmware in security mode.

• Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
HMAC check; after the check succeeds, the Bootloader decrypts SCA boot information and then implements the
signature verification process in the secure boot process, to guarantee firmware integrity and prevent tampering
or disguise; if signature verification succeeds, the automatic decryption functionality is enabled.

• Non-security mode: If the security mode is not enabled, the Bootloader performs cyclic redundancy check (CRC)
on application firmware based on SCA boot information.

4. If the integrity check fails, the Bootloader starts the Bluetooth LE DFU service.

5. If the integrity check succeeds, the Bootloader checks the running mode.

• In XIP mode, the Bootloader jumps to the application firmware in Flash to start implementation after XIP
configuration is completed.

• In mirror mode, the Bootloader copies the application firmware in Flash to a specified segment in RAM, and
then runs the application firmware in RAM.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 21

Development and Debugging with GR5525 SDK in Keil

4 Development and Debugging with GR5525 SDK in Keil
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the GR5525 SDK
in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by Arm® for Cortex® and
Arm devices. You can download and install the Keil installation package from the Keil official website: https://
www.keil.com/demo/eval/arm.htm. For the GR5525 SDK, Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, refer to online manuals provided by ARM®: https://
www.keil.com/support/man_arm.htm.

The main interface of Keil is as shown below.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are listed below:

Table 4-1 Frequently used function buttons of Keil

Button Description

Options for Target

Start/Stop Debug Session

Download

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 22

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm
https://www.keil.com/support/man_arm.htm

Development and Debugging with GR5525 SDK in Keil

Button Description

Build

4.2 Installing GR5525 SDK

The GR5525 SDK is in a .zip file. You can access the details after extracting the file.

 Note:

• SDK_Folder is the root directory of GR5525 SDK.

• Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to quickly build a custom Bluetooth LE application with Keil and GR5525 SDK.

4.3.1 Preparing ble_app_example

This section elaborates on how to create a project based on the template project provided in the GR5525 SDK.

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and
rename it as ble_app_example. Change the base name of .uvoptx and .uvprojx files in ble_app_example\Keil_
5 to ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and the Options for Target
'GRxx_Soc' window opens. Choose the Output tab, and type ble_app_example in the Name of Executable field, to
name the output file as ble_app_example.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 23

Development and Debugging with GR5525 SDK in Keil

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

Figure 4-4 ble_app_example groups

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries,
gr_profiles, and external.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 24

Development and Debugging with GR5525 SDK in Keil

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Table 4-2 SDK groups

SDK Group Name Description

gr_startup System boot file

gr_arch Initialization configuration files and system interrupt API implementation files for System Core and PMU

gr_soc
gr_soc.c which is used for initializing and calibrating modules such as Clock, PMU, and Vector before

entering the main() function

gr_board Board-level description file which is used for implementing components such as log, key, and LED

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 25

Development and Debugging with GR5525 SDK in Keil

SDK Group Name Description

gr_stack_lib GR5525 SDK .lib file

gr_app_drivers
Driver API source files which are easy to use for application developers. You can add related APP drivers

on demand.

gr_libraries Open source files of common assistant software modules and peripheral drivers provided in the SDK

gr_profiles
Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects on

demand.

external
Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party

programs on demand.

• User groups

User groups include user_platform and user_app.

Figure 4-6 user_groups

Functionalities for source files in User groups need to be implemented by developers. Group descriptions are
provided below:

Table 4-3 User groups

User Group Name Description

user_platform
Software and hardware resource setting and application initialization; you need to execute

corresponding APIs on demand.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 26

Development and Debugging with GR5525 SDK in Keil

User Group Name Description

user_app

main() function entries and other source files created by developers, which are used to configure

runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, After Build, and other configuration items.

4.3.2.1 Configuring custom_config.h

custom_config.h is used to configure parameters of application projects. Developers can directly modify the
configurations in the file or configure parameters in the Configuration Wizard interface of Keil.

 Note:

custom_config.h of each application example project is in Src\config under the project directory.

• Modify the configurations in custom_config.h.

GR5525 SDK provides a template configuration file custom_config.h (in SDK_Folder\build\config\cust
om_config.h). You can directly modify the template file to configure parameters for application projects.

Table 4-4 Parameters in custom_config.h

Macro Description

SOC_GR5525 Define the SoC version number.

SYS_FAULT_TRACE_ENABLE

Enable/Disable trace info printing.

If printing is enabled, the trace info is printed when a HardFault occurs.

◦ 0: Disable

◦ 1: Enable

ENABLE_BACKTRACE_FEA

Enable/Disable the stack backtrace functionality.

◦ 0: Disable

◦ 1: Enable

APP_DRIVER_USE_ENABLE

Enable/Disable the APP Drivers module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_ENABLE

Enable/Disable the APP LOG module.

◦ 0: Disable

◦ 1: Enable

APP_LOG_STORE_ENABLE Enable/Disable the APP LOG STORE module.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 27

Development and Debugging with GR5525 SDK in Keil

Macro Description

◦ 0: Disable

◦ 1: Enable

DTM_TEST_ENABLE

Enable/Disable DTM test.

◦ 0: Disable

◦ 1: Enable

PMU_CALIBRATION_ENABLE

Enable/Disable PMU calibration. When PMU calibration is enabled, the system monitors

temperature and voltage automatically with adaptive adjustment.

◦ 0: Disable

◦ 1: Enable

Note:

PMU calibration shall be enabled in high/low temperature scenarios.

NVDS_START_ADDR

Start address of NVDS in Flash.

By default, this macro is commented out in cutom_config.h. If you need to reconfigure

the NVDS address, enable the macro and set the address as needed (4-KB alignment is

compulsory).

Note:

The start address cannot be set in used areas in the memory (such as SCA and User App).

NVDS_NUM_SECTOR Number of Flash sectors for NVDS

SYSTEM_STACK_SIZE

Size of Call Stack required by applications. The default value is 32 KB.

You can set the value as needed. Please note that the value shall not be less than 6 KB.

Note:

After compilation of ble_app_example, the Maximum Stack Usage is provided in Keil_5\O

bjects\ble_app_example.htm for reference.

SYSTEM_HEAP_SIZE
Size of Heap required by applications. The default value is 16 KB.

You can set the value as needed.

APP_CODE_LOAD_ADDR*

Start address of the application storage area

Note:

This address shall be within the Flash address range.

APP_CODE_RUN_ADDR*

Start address of the application running space

If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP mode.

If the value is within the RAM address range, applications run in mirror mode.

SYSTEM_CLOCK*

Set the system clock frequency.

◦ 0: 96 MHz

◦ 1: 64 MHz

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 28

Development and Debugging with GR5525 SDK in Keil

Macro Description

◦ 2: 16 MHz (XO)

◦ 3: 48 MHz

◦ 4: 24 MHz

◦ 5: 16 MHz

◦ 6: 32 MHz (PLL)

CFG_LPCLK_INTERNAL_EN

Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep clock. If the

OSC clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 ppm by force.

◦ 0: Disable

◦ 1: Enable

CFG_LF_ACCURACY_PPM
Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to 500 (unit:

ppm).

BOOT_LONG_TIME*

Set 1-second delay (during SoC boot before implementing the second half Bootloader).

◦ 0: No delay

◦ 1: Delay for 1 second.

BOOT_CHECK_IMAGE

Determine whether to check the image during cold boot in XIP mode.

◦ 0: Do not check.

◦ 1: Check.

IO_LDO_USE_3P3_V

Enable/Disable LDO 3.3 V.

◦ 0: Disable

◦ 1: Enable

SECURITY_CFG_VAL

Configure the algorithm security level.

◦ 0: Level 1

◦ 1: Level 2

CHIP_VER Version of the SoC that the firmware runs on

CFG_CONTROLLER_ONLY

Use Bluetooth LE Controller only or not.

◦ 0: Use Bluetooth LE Controller and Host.

◦ 1: Use Bluetooth LE Controller only.

CFG_MAX_PRFS
Maximum number of GATT Profiles/Services supported by applications. You can set the value

on demand. A larger value means occupying more RAM space.

CFG_MAX_BOND_DEVS Maximum number of devices that can be bonded to applications; max.: 4

CFG_MAX_CONNECTIONS

Maximum number of devices that can be connected to applications; the number shall be

no greater than 10. You can set the value based on needs. A larger value means more RAM

space to be occupied by Bluetooth LE Stack Heaps. The size of Bluetooth LE Stack Heaps is

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 29

Development and Debugging with GR5525 SDK in Keil

Macro Description

defined by the following four macros in flash_scatter_config.h, which cannot be changed by

developers.

◦ ENV_HEAP_SIZE

◦ ATT_DB_HEAP_SIZE

◦ KE_MSG_HEAP_SIZE

◦ NON_RET_HEAP_SIZE

CFG_MAX_ADVS
Maximum number of Bluetooth LE legacy advertising and extended advertising supported by

applications

CFG_MAX_SCAN

Support scanning or not.

◦ 0: No

◦ 1: Yes

CFG_MUL_LINK_WITH_SAME_DEV

Support multi-link functionality for a single device or not.

◦ 0: No

◦ 1: Yes

CFG_BT_BREDR

Support generating Bluetooth Classic link keys through the LE link or not.

◦ 0: No

◦ 1: Yes

CFG_CAR_KEY_SUPPORT

Support car key applications or not.

◦ 0: No

◦ 1: Yes

CFG_MASTER_SUPPORT

Support master role or not.

◦ 0: No

◦ 1: Yes

CFG_SLAVE_SUPPORT

Support slave role or not.

◦ 0: No

◦ 1: Yes

CFG_LEGACY_PAIR_SUPPORT

Support legacy pairing or not.

◦ 0: No

◦ 1: Yes

CFG_SC_PAIR_SUPPORT

Support secure pairing or not.

◦ 0: No

◦ 1: Yes

CFG_COC_SUPPORT Support Connection-oriented Channel (COC) or not.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 30

Development and Debugging with GR5525 SDK in Keil

Macro Description

◦ 0: No

◦ 1: Yes

CFG_GATTS_SUPPORT

Support GATT Server module or not.

◦ 0: No

◦ 1: Yes

CFG_GATTC_SUPPORT

Support GATT Client module or not.

◦ 0: No

◦ 1: Yes

CFG_CONN_AOA_AOD_SUPPORT

Support connection-based AoA/AoD or not.

◦ 0: No

◦ 1: Yes

CFG_CONNLESS_AOA_AOD_SUPPORT

Support connectionless AoA/AoD or not.

◦ 0: No

◦ 1: Yes

CFG_RANGING_SUPPORT

Support ranging or not.

◦ 0: No

◦ 1: Yes

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure
which is defined at 0x200 in the firmware and is initialized with the macros in custom_config.h. When the system
boots, the Bootloader reads value from 0x200 and uses it as a boot parameter.

• Configure parameters in the Configuration Wizard interface.

Comments in custom_config.h are compliant with Configuration Wizard Annotations of Keil, making it possible
for developers to open custom_config.h in Keil and configure application project parameters in the Configuration
Wizard interface of Keil.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 31

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

Development and Debugging with GR5525 SDK in Keil

Figure 4-7 custom_config.h in the Configuration Wizard interface

4.3.2.2 Configuring Memory Layout

In a Keil project, the memory area for the linker is defined in scatter (.sct) files. The GR5525 SDK provides an
example scatter file (SDK_Folder\platform\soc\linker\keil\flash_scatter_common.sct) to
help developers quickly configure memory layout. The macros used by flash_scatter_common.sct are defined in
flash_scatter_config.h.

 Note:

In Keil, __attribute__((section("name"))) can be used to define a function or a variable in a specific
memory segment, in which name can be customized by developers. The scatter (.sct) file defines the location for
customized fields. For example, to define the Zero-Initialized (ZI) data of applications in the segment named as
.bss.app, you can set attribute to __attribute__((section(".bss.app"))).

You can follow the steps below to configure the memory layout:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar of the Linker tab, click ... to browse and select the flash_scatter_common.sct file in SDK_
Folder\platform\soc\linker\keil. You can also copy the scatter (.sct) file and the configuration (.h)
file to the ble_app_example project directory and then select the scatter file.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 32

Development and Debugging with GR5525 SDK in Keil

 Note:

#! armcc -E -I in flash_scatter_common.sct specifies the directory of the header file on which
flash_scatter_common.sct depends. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on practical product memory layout.

Figure 4-8 Configuration of scatter file

4. Click OK to save the settings.

4.3.2.3 Configuring After Build

After Build in Keil can specify the command to be executed after a project is built.

By default, After Build has been configured for the ble_app_template project. Therefore, ble_app_example, which is
based on ble_app_template, does not require manual configuration of After Build.

If you build a project in Keil, follow the steps below to configure After Build:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
User tab.

2. From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output
Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf
to generate a compiling file based on the selected .axf file.

3. From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
\@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to
generate a compiling file based on the selected .axf file.

4. Click OK to save the settings.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 33

Development and Debugging with GR5525 SDK in Keil

Figure 4-9 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK_HEAP_INIT(heaps_table);
…
int main (void)
{
 /** Initialize user peripherals. */
 app_periph_init();

 /** Initialize BLE Stack. */
 ble_stack_init(&&m_app_ble_callback, &heaps_table);

 // Main Loop
 while (1)
 {
 app_log_flush();
 pwr_mgmt_schedule();
 }
}

• STACK_HEAP_INIT(heaps_table) defines seven global arrays as Heaps for Bluetooth LE Stack. Do not
modify the definition; otherwise, Bluetooth LE Stack may not work properly. The Heap size is determined by the
Bluetooth LE service volume in “Section 4.3.2.1 Configuring custom_config.h”.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 34

Development and Debugging with GR5525 SDK in Keil

• app_periph_init() is used to initialize peripherals. In development and debugging phases,
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address; pwr_mgmt_mode_set()
sets the MCU operation mode (SLEEP/IDLE/ACTIVE) during automatic power management; app_periph_init() is
implemented in user_periph_setup.c, and the example code is as follows.

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
 SYS_SET_BD_ADDR(s_bd_addr);
 bsp_log_init();
 pwr_mgmt_mode_set(PMR_MGMT_IDLE_MODE);
}

• Add main loop code of applications to while(1) { }, for example, code to handle external input and update
GUI.

• To use the APP LOG module, call app_log_flush() in the main loop, to ensure logs are output completely
before the system enters sleep state. For more information about the APP LOG module, refer to “Section 4.6.3
Outputting Debug Logs”.

• Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Service Logics

Bluetooth LE service logics of applications are driven by a number of Bluetooth LE events which are defined in GR5525
SDK. Therefore, applications need to implement the corresponding event handlers in GR5525 SDK to obtain operation
results or state change notifications of Bluetooth LE Stack. The event handlers are called in the interrupt context of
Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking function
call and infinite loop; otherwise, the system is blocked, causing Bluetooth LE Stack and the SDK Bluetooth LE module
unable to run in a normal timing.

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client. All Bluetooth LE events supported by GR5525 SDK are
listed below.

Table 4-5 Bluetooth LE events

Event Type Event Name Description

Common BLE_COMMON_EVT_STACK_INIT
Bluetooth LE Stack init complete

event

BLE_GAPM_EVT_CH_MAP_SET Channel Map Set complete event

BLE_GAPM_EVT_WHITELIST_SET Whitelist Set complete event
GAP Management

BLE_GAPM_EVT_PER_ADV_LIST_SET
Periodic Advertising List Set

complete event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 35

Development and Debugging with GR5525 SDK in Keil

Event Type Event Name Description

BLE_GAPM_EVT_PRIVACY_MODE_SET
Privacy Mode for Peer Device Set

complete event

BLE_GAPM_EVT_LEPSM_REGISTER LEPSM Register complete event

BLE_GAPM_EVT_LEPSM_UNREGISTER LEPSM Unregister complete event

BLE_GAPM_EVT_DEV_INFO_GOT Device Info Get event

BLE_GAPM_EVT_ADV_START Advertising Start complete event

BLE_GAPM_EVT_ADV_STOP Advertising Stop complete event

BLE_GAPM_EVT_SCAN_REQUEST Scan Request event

BLE_GAPM_EVT_ADV_DATA_UPDATE Advertising Data update event

BLE_GAPM_EVT_SCAN_START Scan Start complete event

BLE_GAPM_EVT_SCAN_STOP Scan Stop complete event

BLE_GAPM_EVT_ADV_REPORT Advertising Report event

BLE_GAPM_EVT_SYNC_ESTABLISH
Periodic Advertising

Synchronization Establish event

BLE_GAPM_EVT_SYNC_STOP
Periodic Advertising

Synchronization Stop event

BLE_GAPM_EVT_SYNC_LOST
Periodic Advertising

Synchronization Lost event

BLE_GAPM_EVT_READ_RSLV_ADDR Read Resolvable Address event

BLE_GAPC_EVT_PHY_UPDATED PHY Update event

BLE_GAPC_EVT_CONNECTED Connected event

BLE_GAPC_EVT_DISCONNECTED Disconnected event

BLE_GAPC_EVT_CONNECT_CANCEL Connect Cancel event

BLE_GAPC_EVT_AUTO_CONN_TIMEOUT Auto Connect Timeout event

BLE_GAPC_EVT_CONN_PARAM_UPDATED Connect Parameter Updated event

BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ Connect Parameter Request event

BLE_GAPC_EVT_PEER_NAME_GOT Peer Name Get event

BLE_GAPC_EVT_CONN_INFO_GOT Connect Info Get event

BLE_GAPC_EVT_PEER_INFO_GOT Peer Info Get event

BLE_GAPC_EVT_DATA_LENGTH_UPDATED Data Length Updated event

BLE_GAPC_EVT_DEV_INFO_SET Device Info Set event

BLE_GAPC_EVT_CONNECT_IQ_REPORT Connection IQ Report info event

GAP Connection Control

BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT Connectionless IQ Report info event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 36

Development and Debugging with GR5525 SDK in Keil

Event Type Event Name Description

BLE_GAPC_EVT_LOCAL_TX_POWER_READ
Local transmit power read

indication info event

BLE_GAPC_EVT_REMOTE_TX_POWER_READ
Remote transmit power read

indication info event

BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT
Transmit power change reporting

info event

BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT
Path loss threshold reporting info

event

BLE_GAPC_EVT_RANGING_IND Ranging indication event

BLE_GAPC_EVT_RANGING_SAMPLE_REPORT Ranging sample report event

BLE_GAPC_EVT_RANGING_CMP_IND Ranging complete indication event

BLE_GAPC_EVT_DFT_SUBRATE_SET
Default subrate param set complete

event

BLE_GAPC_EVT_SUBRATE_CHANGE_IND Subrate change indication event

BLE_GATT_COMMON_EVT_MTU_EXCHANGE MTU Exchange event
GATT Common

BLE_GATT_COMMON_EVT_PRF_REGISTER Service Register event

BLE_GATTS_EVT_READ_REQUEST GATTS Read Request event

BLE_GATTS_EVT_WRITE_REQUEST GATTS Write Request event

BLE_GATTS_EVT_PREP_WRITE_REQUEST GATTS Prepare Write Request event

BLE_GATTS_EVT_NTF_IND
GATTS Notify or Indicate Complete

event

BLE_GATTS_EVT_CCCD_RECOVERY GATTS CCCD Recovery event

BLE_GATTS_EVT_MULT_NTF GATTS Multiple Notifications event

BLE_GATTS_EVT_ENH_READ_REQUEST
GATTS Enhanced Read Request

event

BLE_GATTS_EVT_ENH_WRITE_REQUEST
GATTS Enhanced Write Request

event

BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST
GATTS Enhanced Prepare Write

Request event

BLE_GATTS_EVT_ENH_NTF_IND
GATTS Enhanced Notify or Indicate

Complete event

GATT Server

BLE_GATTS_EVT_ENH_CCCD_RECOVERY
GATTS Enhanced CCCD Recovery

event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 37

Development and Debugging with GR5525 SDK in Keil

Event Type Event Name Description

BLE_GATTS_EVT_ENH_MULT_NTF
GATTS Enhanced Multiple

Notifications event

BLE_GATTC_EVT_SRVC_BROWSE GATTC Service Browse event

BLE_GATTC_EVT_PRIMARY_SRVC_DISC
GATTC Primary Service Discovery

event

BLE_GATTC_EVT_INCLUDE_SRVC_DISC
GATTC Include Service Discovery

event

BLE_GATTC_EVT_CHAR_DISC
GATTC Characteristic Discovery

event

BLE_GATTC_EVT_CHAR_DESC_DISC
GATTC Characteristic Descriptor

Discovery event

BLE_GATTC_EVT_READ_RSP GATTC Read Response event

BLE_GATTC_EVT_WRITE_RSP GATTC Write Response event

BLE_GATTC_EVT_NTF_IND
GATTC Notify or Indicate Receive

event

BLE_GATTC_EVT_CACHE_UPDATE GATTC Cache Update event

BLE_GATTC_EVT_ENH_SRVC_BROWSE
GATTC Enhanced Service Browse

event

BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC
GATTC Enhanced Primary Service

Discovery event

BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC
GATTC Enhanced Include Service

Discovery event

BLE_GATTC_EVT_ENH_CHAR_DISC
GATTC Enhanced Characteristic

Discovery event

BLE_GATTC_EVT_ENH_CHAR_DESC_DISC
GATTC Enhanced Characteristic

Descriptor Discovery event

BLE_GATTC_EVT_ENH_READ_RSP
GATTC Enhanced Read Response

event

BLE_GATTC_EVT_ENH_WRITE_RSP
GATTC Enhanced Write Response

event

GATT Client

BLE_GATTC_EVT_ENH_NTF_IND
GATTC Enhanced Notify or Indicate

Receive event

BLE_SEC_EVT_LINK_ENC_REQUEST Link Encrypted Request event

BLE_SEC_EVT_LINK_ENCRYPTED Link Encrypted eventSecurity Manager

BLE_SEC_EVT_KEY_PRESS_NTF Key Press event

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 38

Development and Debugging with GR5525 SDK in Keil

Event Type Event Name Description

BLE_SEC_EVT_KEY_MISSING Key Missing event

BLE_L2CAP_EVT_CONN_REQ L2CAP Connect Request event

BLE_L2CAP_EVT_CONN_IND L2CAP Connected Indicate event

BLE_L2CAP_EVT_ADD_CREDITS_IND L2CAP Credits Add Indicate event

BLE_L2CAP_EVT_DISCONNECTED L2CAP Disconnected event

BLE_L2CAP_EVT_SDU_RECV L2CAP SDU Receive event

BLE_L2CAP_EVT_SDU_SEND L2CAP SDU Send event

BLE_L2CAP_EVT_ADD_CREDITS_CPLT L2CAP Credits Add Completed event

BLE_L2CAP_EVT_ENH_CONN_REQ
L2CAP Enhanced Connect Request

event

BLE_L2CAP_EVT_ENH_CONN_IND
L2CAP Enhanced Connected

Indicate event

BLE_L2CAP_EVT_ENH_RECONFIG_CPLT
L2CAP Enhanced Reconfig

Completed event

L2CAP

BLE_L2CAP_EVT_ENH_RECONFIG_IND
L2CAP Enhanced Reconfig Indicate

event

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only
those event handlers required for products are to be implemented.

Tip:

For details about the usage of Bluetooth LE APIs and event APIs, refer to the source code of Bluetooth LE examples in
SDK_Folder\documentation\GR5525_API_Reference and SDK_Folder\projects\ble.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Bluetooth LE Stack is the core to implement Bluetooth LE protocols. It can directly operate the Bluetooth 5.3 Core
(refer to “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall
IRQ, which ensures that Bluetooth LE Stack runs strictly in a timing specified in Bluetooth Core Spec.

A state change of Bluetooth LE Stack triggers the BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler,
the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of
Bluetooth LE Stack and related service data to applications. Avoid time-consuming operations when using these event
handlers. Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK_
Folder\components\libraries\app_queue, or your own application framework, to transfer events from
Bluetooth LE event handlers to the main loop.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 39

Development and Debugging with GR5525 SDK in Keil

Bluetooth LE
Stack

BLE_Stack_IRQ

SDK
Bluetooth LE

BLE_SDK_IRQ

Applicaon
Callback

Applicaon
Queue

Applicaon
Main Loop

Bluetooth LE Event
Handler

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-10 System schedule (without OS)

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click (Build) on the Keil toolbar to build a project. After
project compilation is completed, two firmware files (in .bin and .hex formats) are created in Keil_5\Listings
and Keil_5\Objects respectively in the project directory.

Table 4-6 Firmware files generated

Name Description

ble_app_example.bin
Binary application firmware, can be downloaded to Flash through GProgrammer for

running

ble_app_example.hex
Binary application firmware, can be downloaded to Flash through Keil or GProgrammer

for running

Tip:

Both the two types of firmware can be downloaded to Flash through GProgrammer for running. Refer to
GProgrammer User Manual for details.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 40

Development and Debugging with GR5525 SDK in Keil

4.5 Downloading .hex Files to Flash

After a firmware file is are generated, you need to download the file to Flash. Specific steps are provided below:

1. Configure Keil Flash programming algorithm.

(1). Copy SDK_Folder\build\binaries\download_algorithm\Keil\GR5xxx_16MB_Flash.F
LM to Keil_Folder\ARM\Flash.

(2). Click (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-11 Debug tab

(3). In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 41

Development and Debugging with GR5525 SDK in Keil

Figure 4-12 Default configurations in the Download Function pane

(4). Click Add to add GR5xxx_16MB_Flash.FLM (in SDK_Folder\build\keil\) to Programming
Algorithm.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 42

Development and Debugging with GR5525 SDK in Keil

Figure 4-13 Adding GR5xxx_16MB_Flash.FLM to Programming Algorithm

(5). Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR5525 in the Start input field: 0x20000000. Enter 0xF000 in
the Size input field.

Figure 4-14 Settings of RAM for Algorithm

(6). Click OK to save the settings.

2. Download firmware.

After completing configuration, click (Download) on the Keil toolbar to download ble_app_example.axf to
Flash. After download is completed, the following results are displayed in the Build Output window of Keil.

 Note:

During file download, if No Cortex-M SW Device Found pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this
case, developers need to press RESET on the GR5525 SK Board and wait for about 1 second; then click (Download)
to download the file again.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 43

Development and Debugging with GR5525 SDK in Keil

Figure 4-15 Download results

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select the Debug tab. In the window, software simulation debugging configurations
display on the left side, and online hardware debugging configurations display on the right side. Bluetooth LE example
projects adopt the online hardware debugging. Related default configurations of the debugger are shown as follows:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 44

Development and Debugging with GR5525 SDK in Keil

Figure 4-16 Configuring the debugger

The default initialization file sram.ini is in SDK_Folder\build\keil. You can use this file directly, or copy it to the
project directory.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the
Initialization File bar, click Edit... on the right side, to open sram.ini. Example code of sram.ini is provided as follows:

/**

* GR55xx object loading script through debugger interface
* (e.g.Jlink, *etc).
* The goal of this script is to load the Keils's object file to the
* GR55xx RAM
* assuring that the GR55xx has been previously cleaned up.

*/
// Debugger reset(check Keil debugger settings)
// Preselected reset type(found in Options->Debug->Settings)is
// Normal(0);
// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
// RESET
// Load object file
LOAD %L
// Load stack pointer
SP = _RDWORD(0x00000000)
// Load program counter
$ = _RDWORD(0x00000004)
// Write 0 to vector table register, remap vector
_WDWORD(0xE000ED08, 0x00000000)

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 45

Development and Debugging with GR5525 SDK in Keil

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup is enabled, the debugger first loads
the file under Options for Target ‘GRxx_Soc’ > Output > Name of Executable.

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g,main is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-17. This is to
ensure when you click Reset on the Keil toolbar after enabling Debug Session, the program can run normally.

Figure 4-17 Setting Connect and Reset to Normal in Connect & Reset Options

4.6.3 Outputting Debug Logs

GR5525 SDK provides an APP LOG module and supports outputting debug logs of applications from hardware ports
based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 46

Development and Debugging with GR5525 SDK in Keil

ITM). To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and configure APP_LOG_PORT based
on the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to call app_log_init() during peripheral initialization to initialize the APP LOG module,
including setting log parameters, and registering log output APIs and flush APIs.

The APP LOG module supports using printf() (a C standard library function) and APP LOG APIs to output
debug logs. If you choose APP LOG APIs, you can optimize logs by setting log level, log format, filter type, or other
parameters; if you choose printf(), set log parameters as “NULL”.

Call the initialization function of corresponding module (refer to SDK_Folder\platform\boards\board_SK.
h for details) and register corresponding transmission and flush APIs (see bsp_log_init() for reference) according to the
configured output port. If UART is the output port, bsp_log_init() is implemented as follows:

void bsp_log_init(void)
{
#if APP_LOG_ENABLE

#if (APP_LOG_PORT == 0)
 bsp_uart_init();
#elif (APP_LOG_PORT == 1)
 SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0, SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL);
#endif

#if (APP_LOG_PORT <= 2)
 app_log_init_t log_init;

 log_init.filter.level = APP_LOG_LVL_DEBUG;
 log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
 log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_LVL;

#if (APP_LOG_PORT == 0)
 app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);
#elif (APP_LOG_PORT == 1)
 app_log_init(&log_init, bsp_segger_rtt_send, NULL);
#elif (APP_LOG_PORT == 2)
 app_log_init(&log_init, bsp_itm_send, NULL);
#endif

#endif
 app_assert_init();
#endif
}

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 47

Development and Debugging with GR5525 SDK in Keil

 Note:

• The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API
(optional for registration).

• GR5525 SDK provides an APP LOG STORE module, which supports storing the debug logs in Flash and outputting
the logs from Flash. To use the APP LOG STORE module, users need to enable APP_LOG_STORE_ENABLE in
custom_config.h. This module is configured in the ble_app_rscs project (in SDK_Folder\projects\ble\bl
e_peripheral\ble_app_rscs). This configuration can be a reference when the APP LOG STORE module is
used.

• Application logs output by using printf() cannot be stored by the APP LOG STORE module.

When debug logs are output through UART, the implemented log output API and flush API are bsp_uart_send() and
bsp_uart_flush() respectively.

• bsp_uart_send() is the basis for two log output APIs: app_uart asynchronization (app_uart_transmit_async) and
hal_uart synchronization (hal_uart_transmit). Users can choose the output methods as needed.

• bsp_uart_flush() is used to output the log data that is cached in memory in interrupt mode.

 Note:

You can rewrite the above two APIs.

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is
bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARNING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() to output all the debug logs cached, to ensure that all debug logs are
output before the SoC is reset or the system enters the sleep mode.

If you choose armcc for compilation and output logs through J-Link RTT, it is recommended to make the following
modifications in SEGGER_RTT.c:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 48

Development and Debugging with GR5525 SDK in Keil

Figure 4-18 Creating RTT Control Block and placing it at 0x20005000

The figure below shows the reference configurations for J-Link RTT Viewer.

Figure 4-19 Configurations in J-Link RTT Viewer

The address of RTT Control Block can be specified by clicking Address and then entering a custom value; the input
value can be set to the address of the _SEGGER_RTT structure in the .map file generated by the compiled project, as
shown in the figure below. If creating RTT Control Block through the method recommended in Figure 4-18 and placing
it at 0x20005000, you need to set Address to 0x20005000.

Figure 4-20 Obtaining RTT Control Block address

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 49

Development and Debugging with GR5525 SDK in Keil

 Note:

If you choose GCC for compilation, modifications shown in Figure 4-18 is not required. The address to be entered
for RTT Control Block in J-Link RTT Viewer should be the address of _SEGGER_RTT in the .map file generated by the
compilation project.

4.6.4 Debugging with GRToolbox

GR5525 SDK provides an Android App, GRToolbox, to debug GR5525 Bluetooth LE applications. GRToolbox features the
following:

• General Bluetooth LE scanning and connecting; characteristics read/write

• Demos for standard profiles, including Heart Rate and Blood Pressure

• Goodix-customized applications

Tip:

GRToolbox installation file is in SDK_Folder\tools\GRToolbox\GRToolbox-Version.apk.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 50

Glossary

5 Glossary
Table 5-1 Glossary

Name Description

AoA/AoD Angle of Arrival/Angle of Departure

API Application Programming Interface

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DAP Debug Access Port

DFU Device Firmware Update

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

IoT Internet of Things

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

UART Universal Asynchronous Receiver/Transmitter

XIP Execute in Place

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 51

	Preface
	Contents
	1 Introduction
	1.1 GR5525 SDK
	1.2 Bluetooth LE Protocol Stack

	2 GR5525 Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout in XIP Mode
	2.5.2 Typical RAM Layout in Mirror Mode
	2.5.3 RAM Power Management

	2.6 SDK Directory Structure

	3 Bootloader
	4 Development and Debugging with GR5525 SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing GR5525 SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout
	4.3.2.3 Configuring After Build

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Service Logics
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	5 Glossary

