
GR5526 Developer Guide

Version: 1.0

Release Date: 2023-01-10

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces the software development kit (SDK) of the Goodix GR5526 Bluetooth Low Energy (Bluetooth
LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started with
secondary development of Bluetooth LE applications.

Audience

This document is intended for:

• GR5526 user

• GR5526 developer

• GR5526 tester

• Technical writer

Release Notes

This document is the initial release of GR5526 Developer Guide, corresponding to GR5526 SoC series.

Revision History

Version Date Description

1.0 2023-01-10 Initial release

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 GR5526 SDK...1
1.2 BLE Stack..1

2 GR5526 Bluetooth LE Software Platform...4

2.1 Hardware Architecture.. 4
2.2 Software Architecture..5
2.3 Memory Mapping..6
2.4 Flash Memory Mapping.. 8

2.4.1 SCA.. 9
2.4.2 NVDS... 12

2.5 RAM Mapping..14
2.5.1 Typical RAM Layout in XIP Mode... 15
2.5.2 Typical RAM Layout in Mirror Mode.. 16
2.5.3 RAM Power Management.. 17

2.6 PSRAM... 18
2.7 GR5526 SDK Directory Structure...19

3 Bootloader.. 22

4 Development and Debugging with GR5526 SDK in Keil... 24

4.1 Installing Keil MDK...24
4.2 Installing GR5526 SDK... 25
4.3 Building a Bluetooth LE Application..25

4.3.1 Preparing ble_app_example... 25
4.3.2 Configuring a Project.. 29

4.3.2.1 Configuring custom_config.h and ble_basic_config.h..29
4.3.2.2 Configuring Memory Layout.. 33
4.3.2.3 Configuring After Build...34

4.3.3 Adding User Code... 35
4.3.3.1 Modifying the main() Function.. 35
4.3.3.2 Implementing Bluetooth LE Business Logic... 36
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.. 40

4.4 Generating Firmware...40
4.5 Downloading .hex Files to Flash..41
4.6 Debugging..43

4.6.1 Configuring the Debugger.. 43
4.6.2 Starting Debugging... 45
4.6.3 Outputting Debug Logs...45

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.6.3.1 Module Initialization.. 46
4.6.3.2 Application..47

4.6.4 Debugging with GRToolbox...49

5 Glossary.. 50

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. III

Introduction

1 Introduction
The Goodix GR5526 family is a single-mode low-power System-on-Chip (SoC) that supports Bluetooth 5.3. It can be
configured as a Broadcaster, an Observer, a Central, or a Peripheral, and supports the combination of all the above
roles; in addition, it supports Bluetooth Low Energy (Bluetooth LE) direction finding: angle of arrival (AoA) and angle of
departure (AoD), as well as LE isochronous channels (LE Audio), making it an ideal choice for Internet of Things (IoT),
LE Audio, and smart wearable devices.

Based on ARM® Cortex®-M4F CPU core, the GR5526 series integrates Bluetooth 5.3 Protocol Stack, a 2.4 GHz RF
transceiver, on-chip programmable Flash memory, RAM, multiple peripherals, enhanced I2C/UART port number for
sensor applications, as well as expanded I/O functionality. GR5526 delivers a feature-rich display and graphics solution
by providing the choice of graphics acceleration (GPU + DC) and internal/external system-in-package (SiP) pseudostatic
RAM (PSRAM) to accommodate display while still leaving plenty of space for wearable schemes.

GR5526 series comes in two package choices: BGA83 and QFN68 (as shown in the table below), that can meet diverse
application scenarios.

Table 1-1 GR5526 series

Features GR5526VGBIP GR5526VGBI GR5526RGNIP GR5526RGNI

CPU Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F

RAM 512 KB 512 KB 512 KB 512 KB

SiP Flash 1 MB 1 MB 1 MB 1 MB

SiP PSRAM 8 MB N/A 8 MB N/A

GPU + DC Yes N/A Yes N/A

I/O number 50 50 48 48

Package (mm) BGA83 (4.3 x 4.3 x 0.96) BGA83 (4.3 x 4.3 x 0.96) QFN68 (7.0 x 7.0 x 0.85) QFN68 (7.0 x 7.0 x 0.85)

1.1 GR5526 SDK

The GR5526 SDK provides comprehensive software development support for GR5526 SoCs. The SDK contains
Bluetooth LE Protocol Stack (BLE Stack) APIs, LE Audio APIs, System APIs, Real Time Location Service (RTLS) APIs,
peripheral drivers, a tool for generating and downloading .hex files, project example code, and related user
documents.

The GR5526 SDK version mentioned in this document is applicable to all GR5526 SoCs.

1.2 BLE Stack

The architecture of BLE Stack is shown in Figure 1-1.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 1

Introduction

BLE Protocol Stack
Host

Generic Aribute Profile (GATT)

Aribute Protocol (ATT)

Logical Link Control and Adapon Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Generic Access Profile (GAP)

Generic Access Profile (GAP)

Security Manager (SM)

Isochronous Adopon Layer (ISOAL)

Host Controller Interface (HCI)

Figure 1-1 BLE Stack architecture

The BLE Stack consists of the Controller, the Isochronous Adaptation Layer (ISOAL), the Host Controller Interface (HCI),
and the Host.

Controller

• Physical Layer (PHY) supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

• Link Layer (LL) controls the RF state of devices. Devices are in one of the following five modes, and can be
switched between the modes on demand: Standby, Advertising, Scanning, Initiating, or Connection.

ISOAL

• The Isochronous Adoption Layer (ISOAL) enables adaptation of isochronous data between the Host and the
Controller by assembling segmented data frames into data streams for the Application layer, or by segmenting
data streams from the Application layer into data frames and transmitting the data frames through air interfaces.

HCI

• The Host Controller Interface (HCI) enables communications between Host and Controller, supported by software
interfaces or standard hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and
events are transferred between Host and Controller through HCI.

Host

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 2

Introduction

• Logical Link Control and Adaption Protocol (L2CAP) provides channel multiplexing, data segmentation, and
reassembly services for upper layers. It also supports logic end-to-end data communications.

• Security Manager (SM) defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functionalities.

• Generic Access Profile (GAP) provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, which fulfills functionalities such as advertising, scanning, connection initiation,
service discovery, connection parameter update, secure process initiation, and response.

• Attribute Protocol (ATT) defines service data interaction protocols between a server and a client.

• Generic Attribute Profile (GATT) is based on the top of ATT. It defines a series of communications procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

For more information about Bluetooth LE technologies and protocols, visit Bluetooth SIG official website.

Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and code
which may be used by BLE applications are listed on the Assigned Numbers page.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 3

http://www.bluetooth.com

GR5526 Bluetooth LE Software Platform

2 GR5526 Bluetooth LE Software Platform
The GR5526 SDK is designed for GR5526 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
5.3 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR5526 SDK.

2.1 Hardware Architecture

The GR5526 hardware architecture is shown as follows. This section introduces the modules in a GR5526 SoC. For
more information, see GR5526 Datasheet.

Figure 2-1 GR5526 hardware architecture

• ARM® Cortex®-M4F: GR5526 CPU. BLE Stack and application code run on the CPU.

• RAM: random access memory that provides memory space for program execution

• ROM: read-only memory, saving Bootloader and BLE Stack software

• Security Cores: the secure computing engine unit, mainly including TRNG, AES, SHA, and PKC modules, which
allows checking encrypted user application firmware. Check on encrypted firmware relies on the secure boot
process launched in ROM. (In Bluetooth Core Spec, the secure computing unit is an independent module in
Communication Core, and is irrelevant to Security Cores.)

• Peripherals: including GPIO, DMA, I2C, I2S, SPI, QSPI, DSPI, OSPI, UART, PWM, Timer, GPU, and DC

• RF Transceiver: 2.4 GHz RF signal transceiver

• Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller. It is also the interface between the
software protocol stack and 2.4 GHz RF hardware.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 4

GR5526 Bluetooth LE Software Platform

• Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC/DC, IO-LDO, Dig-LDO, and RF Subsystem, based on configuration parameters and current
running state.

• Flash: Flash memory unit packaged on the SoC. It stores user code and data, and supports the Execute in Place
(XIP) Mode for user code.

2.2 Software Architecture

The software architecture of the GR5526 SDK is shown in Figure 2-2.

Software

BLE Stack

Hardware

Applicaon

SDK

Bluetooth 5.3 Core ARM® Cortex®-
M4F Peripheral

GATT Services/
Service Clients

Bootloader

Driver

BLE API System API

RTLS API

Graphic

Figure 2-2 GR5526 software architecture

• Bootloader

It is a boot program built in GR5526 SoCs, used for GR5526 software and hardware environment initialization,
and to check and start applications.

• BLE Stack

It is the implementation core of BLE protocol stacks. It consists of Controller, ISOAL, HCI, and Host protocols
(including ATT, L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

• Bluetooth LE SDK

It refers to software development kit that provides easy-to-use SDK Bluetooth LE APIs, SDK System APIs, and SDK
RTLS APIs.

◦ SDK Bluetooth LE APIs include L2CAP, GAP, SM, GATT APIs, and LE Audio APIs.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 5

GR5526 Bluetooth LE Software Platform

◦ SDK System APIs provide API definitions for Non-volatile Data Storage (NVDS), Device Firmware Update
(DFU), system power management, and generic system-level access interfaces.

◦ SDK RTLS APIs support AoA and AoD. The APIs are packaged independently in a library. In their upward
communications with the Application layer, accepting configurations on locating parameters, receiving
commands on locating, reporting raw data about locating, and reporting calculated results of locating are
made possible. In the downward communications with SDK Bluetooth LE APIs, the SoCs obtain Iq data to
report events. In addition, the APIs are also related to other algorithms including music algorithms and
density-based spatial clustering of applications with noise (DBSCAN).

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; users can download these files to GR5526 SoCs for operation and test. Android applications in the SDK also
provide corresponding functionalities as most Bluetooth applications do, to help users with tests.

• Drivers

API definitions and descriptions on peripheral drivers.

• Graphic

An SDK library for the graphic processing unit (GPU) display driver module

2.3 Memory Mapping

The memory mapping of a GR5526 SoC is shown in Figure 2-3.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 6

GR5526 Bluetooth LE Software Platform

ROM
(640 KB)

Reserved
(384 KB)

SRAM Alias1
(512 KB)

Reserved
(512 KB)

ExFlash
(16 MB)

Reserved
(16 MB)

ExFlash Alias
(16 MB)

Reserved
(206 MB)

QSPI M0 XIP
(64 MB)

QSPI M2 XIP
(64 MB)

0x0000 0000

0x0009 FFFF
0x000A 0000

0x000F FFFF
0x0010 0000

0x0017 FFFF
0x0018 0000
0x001F FFFF
0x0020 0000

0x011F FFFF
0x0120 0000
0x021F FFFF
0x0220 0000

0x031F FFFF
0x0320 0000

0x0FFF FFFF

QSPI M1 XIP
(64 MB)

OSPI XIP
(64 MB)

SRAM
(512 KB)

0x1000 0000

0x13FF FFFF
0x1400 0000

0x17FF FFFF
0x1800 0000

0x15FF FFFF
0x1C00 0000

0x1FFF FFFF
0x2000 0000

0x2007 FFFF

QSPI M1 XIP Alias1
(31.5 MB)[*]0x2008 0000

0x21FF FFFF

SRAM Alias
BitBanding

(16 MB)0x2200 0000

0x22FF FFFF

Reserved
(206 MB)0x2300 0000

0x2FFF FFFF

SRAM Alias 2
(512 KB)

0x3000 0000

0x3007 FFFF
0x3008 0000
0x3407 FFFF OSPI XIP Alias

(64 MB)

QSPI M1 XIP Alias2
(64 MB)0x3408 0000

0x3807 FFFF

Reserved
(127 MB)0x3808 0000

0x3FFF FFFF

Peripheral
(1024 KB)

Reserved
(31 MB)

0x400F FFFF

0x4000 0000

0x4010 0000

0x41FF FFFF

Peripheral BitBanding
(32 MB)

0x43FF FFFF

0x4200 0000

0x4400 0000
Reserved

(2496 MB)
0xDFFF FFFF

ARM Private
(1024 KB)

Reserved
(511 MB)

0xE000 0000

0xE00F FFFF

0xE010 0000

0xFFFF FFFF

DSPI

Private peripheral Bus
debugging (external)

Private peripheral Bus
(internal)

OSPI
QSPI2
QSPI1
QSPI0
DMA2
DMA1
DMA0
TRNG
KRAM
EFUSE
HMAC

AES
PKC

GPIO_2
GPIO_1
GPIO_0

I2C5
I2C4
I2C3
I2C2
PDM

ISO_7816
I2S_M
I2S_S

MCU_RET
CLK_CAL

MCU_SUB
SEN_ADC

XQSPI
PWM1
PWM0
UART5
UART4
UART3
HMA2
UART1
UART0

I2C1
I2C0
SPI_S
SPI_M

AON_RF
AON_PMU
AON_WDT

RTC1
RTC0

SLP_TIMER
AON_MEM
AON_PWR

AON_IO
AON_MSIO
AON_CTL

USB
DUAL_TIMER1
DUAL_TIMER0

TIMER1
TIMER0

ROM TABLE
TPIU

DAP
SCB
FPU
MPU
NVIC

SYS_TICK
FPB

DWT
ITM

Note:
 [*] Only a part of XIP range can be accessed.

BLE APB
BLE AHB

Figure 2-3 GR5526 memory mapping

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 7

GR5526 Bluetooth LE Software Platform

• RAM: 0x0010_0000 to 0x0017_FFFF, 0x2000_0000 to 0x2007_FFFF, or 0x3000_0000 to 0x3007_FFFF, 512 KB in
total

◦ 0x2000_0000 to 0x2007_FFFF: bit field operations supported, mapping to the region from 0x2200_0000 to
0x2207_FFFF, in which atomic operations are supported. Variables of the SDK including RW, ZI, HEAP, and
STACK are in this range.

◦ 0x0010_0000 to 0x0017_FFFF: Features higher access efficiency thanks to the Cortex-M4F architecture.
Therefore, executable code RAM_CODE is in this region.

 Note:

QSPI0, QSPI1, QSPI2, and OSPI support XIP mode, which allows mapping of address from Flash or PSRAM to
memories, enabling direct operations on memory

◦ When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming contiguous SRAM space with the
region from 0x2000 0000 to 0x2007 FFFF.

◦ When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming contiguous SRAM space with the
region from 0x3000 0000 to 0x3007 FFFF.

• Flash: 0x0020_0000 to 0x011F_FFFF or 0x0220_0000 to 0x031F_FFFF, 16 MB in total

◦ 0x0020_0000 to 0x011F_FFFF: Stores code and unencrypted data.

◦ 0x0220_0000 to 0x031F_FFFF: Stores encrypted data.

 Note:

Internal Flash of GR5526 SoCs is 1 MB, from 0x0020_0000 to 0x002F_FFFF.

2.4 Flash Memory Mapping

GR5526 packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout of typical GR5526 application scenarios is as shown in Figure 2-4.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 8

GR5526 Bluetooth LE Software Platform

End of Flash

NVDS_START_ADDR

0x0020_2000

0x0020_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store system boot parameter configurations

• User App: an area to store application firmware

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

• NVDS: Non-volatile Data Storage area

 Note:

By default, NVDS occupies the last two sectors of Flash memory. You can configure the start address of NVDS and
the number of occupied sectors according to Flash memory layout of products. For more information about the
configuration, see “Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h”.

It should be noted that the start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It stores flags and other
system configuration parameters used during system boot. The SDK toolchain generates an SCA image file based on
BUILD_IN_APP_INFO in the application firmware (path: Project_Folder\platform\soc\common\gr_pl
atform.c), and programs the image info to SCA. Bootloader will then verify and jump to the entry address of the
firmware based on the boot information in SCA. BUILD_IN_APP_INFO is defined and configured as follows:

 Note:

Project_Folder is the root directory of a project.

const APP_INFO_t BUILD_IN_APP_INFO __attribute__((section(".app_info"))) =
#endif
{
 .app_pattern = APP_INFO_PATTERN_VALUE,
 .app_info_version = APP_INFO_VERSION,
 .chip_ver = CHIP_VER,
 .load_addr = APP_CODE_LOAD_ADDR,
 .run_addr = APP_CODE_RUN_ADDR,
 .app_info_sum = CHECK_SUM,

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 9

GR5526 Bluetooth LE Software Platform

 .check_img = BOOT_CHECK_IMAGE,
 .boot_delay = BOOT_LONG_TIME,
 .sec_cfg = SECURITY_CFG_VAL,
#ifdef APP_INFO_COMMENTS
 .comments = APP_INFO_COMMENTS,
#endif
};

• app_pattern: a fixed value: 0x47525858

• app_info_version: firmware version information, corresponding to APP_INFO_VERSION. The current version
number is 1.

• chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h

• load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

• run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

• app_info_sum: checksum of firmware information, automatic calculation result by CHECK_SUM

• check_img: boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h. When
check_img is set to 1, the firmware will be verified at booting.

• boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When the
value is set to 1, cold boot will be launched after a one-second delay .

• sec_cfg: security configuration parameter, not in use at present

• reserved0: reserved bits

• comments: firmware information, up to 12 bytes

• reserved1: reserved bits

Figure 2-5 shows the SCA layout.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 10

GR5526 Bluetooth LE Software Platform

0x0020_0000

0x0020_1000

0x0020_2000

Boot_Info sector

3554B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

DFU Config Info
(46B)

Reserved

Enc:Hmac(32B)
UnEnc:Free

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

ADV Name Info(22B)

DFU Disable Cmd Info(4B)

NVDS Init Info(8B)

UART Info(12B)

Img_Info_10
(40B)

Figure 2-5 SCA layout

• Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.

◦ In non-security mode, the Bootloader obtains boot information from Boot_Info by default.

◦ In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info
Backup and obtains boot information from it.

• The firmware boot information is stored in the Boot_Info (32 B) area. The Bootloader checks and jumps to the
entry address of the firmware based on the boot information.

◦ The Boot Config area stores the system boot configuration information.

◦ The SPI Access Mode area stores the SPI access mode configuration. It is a fixed configuration of the system
and cannot be modified.

◦ Run Addr indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.

◦ Load Addr indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

◦ The CheckSum area stores the firmware checksum which is computed automatically by the SDK toolchain
after firmware is generated.

◦ The APP Size area stores the firmware size which is computed automatically by the SDK toolchain after
firmware is generated.

• Up to 10 pieces of firmware information are stored in Img_Info areas. Firmware information is stored in Img_Info
areas when you use GProgrammer to download firmware or update firmware in DFU mode.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 11

GR5526 Bluetooth LE Software Platform

◦ The Comments area stores the descriptive information about firmware and supports up to 12 characters.
Every time a firmware file is generated, the file name will be saved in Comments by SDK toolchain.

◦ The Boot_Info (24 B) area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ The Version area stores the firmware version, corresponding to VERSION in custom_config.h.

◦ The Pattern area stores a fixed value: 0x4744.

• The DFU Config Info area stores configurations of DFU module in ROM.

◦ The UART Info area stores UART configurations of DFU module, including status bit, baud rate, and GPIO
configurations.

◦ The ADV Name Info area stores advertising configurations of DFU module, including status bit, advertising
name, and advertising length.

◦ The NVDS Init Info area stores initialization configurations of NVDS system in DFU module, including status
bit, NVDS area size, and start address.

◦ The DFU Disable Cmd Info area stores DFU disable command configurations of DFU module, including
status bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a
DFU command.

• The HMAC area stores the HAMC check value. This area is valid only in security mode.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash Hardware Abstract Layer (Flash HAL). NVDS is located
in the flash memory and data in it will not be lost in power-off status. By default, NVDS uses the last two sectors of the
flash memory, in which the last sector is for defragmentation, and the other sector for data storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data,
states, and user information. BLE Stack stores parameters such as device bonding parameters in NVDS.

NVDS features:

• Each storage item (TAG) has a unique TAG ID for identification. User applications can read and change data
according to TAG IDs, regardless of the physical addresses for storage.

• It is optimized based on medium characteristics of Flash memory and supports data check, word alignment,
defragmentation, and erase balance.

• The size and start address of NVDS are configurable. Compared with Flash memory which is made up of 4 KB
sectors, NVDS can be in several sectors as configured. Make sure the start address of NVDS is 4 KB aligned.

NVDS provides the following eight simple APIs to manipulate non-volatile data in Flash.

Table 2-1 NVDS APIs

Function Prototype Description

uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the Flash sectors used by NVDS.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 12

GR5526 Bluetooth LE Software Platform

Function Prototype Description

uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

uint8_t nvds_put(NvdsTag_t tag, uint16_t len, const uint8_t *p_buf)
Write data to NVDS and mark the data with TAG IDs. If no TAG

exists, create one.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.

uint16_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG.

uint8_t nvds_drv_func_replace(nvds_drv_func_t *p_nvds_drv_func) Replace the APIs that can directly control Flash.

uint8_t nvds_func_replace(nvds_func_t *p_nvds_func) Replace the APIs that controls NVDS.

void nvds_retention_size(uint8_t bond_dev_num)
Reserve space for device bonding. The space reserved

depends on the number of devices to be bonded.

For details about NVDS APIs, see the NVDS header file (SDK_Folder\components\sdk\gr55xx_nvds.h).

Data stored in NVDS is in the format below.

Data Header Data

8 bytes Up to 1024 bytes

Figure 2-6 Data format in NVDS

Details of data header are described below.

Table 2-2 Data header format

Byte Name Description

0–1 tag Data tag

2–3 len Data length

4–4 checksum Checksum of data header

5–5 value_cs Checksum of data

6–7 reserved Reserved bits

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 13

GR5526 Bluetooth LE Software Platform

 Note:

BLE Stack also stores some parameters in NVDS. Therefore, it is required to allocate a flash storage area to NVDS. By
default, the GR5526 SDK uses the last but one sector of flash memory for NVDS storage, and the last one for NVDS
defragmentation. You can modify NVDS_START_ADDR and NVDS_NUM_SECTOR in custom_config.h to configure the
start address and the size of NVDS. BLE Stack and applications share the same NVDS storage area. However, TAG ID
namespace is divided into different categories. You can only use the TAG ID name category assigned to applications.

• Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as an
NVDS API parameter.

• Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x4000 to 0x7FFF.

Before running an application for the first time, you can use GProgrammer to write the initial TAG value used by BLE
Stack and the application to NVDS. If you specify an NVDS area start address, instead of using the default NVDS area in
the GR5526 SDK, make sure the start address configured in GProgrammer is 4 KB aligned.

2.5 RAM Mapping

The RAM of a GR5526 SoC is 512 KB in size with the start address of 0x3000_0000. It consists of 11 RAM blocks. Each
of the first two RAM blocks is 16 KB, followed by two 32-KB blocks, six 64-KB blocks, and a 32-KB block in sequence.
Each RAM block can be powered on/off by software independently.

 Note:

GR5526 provides RAM (start address: 0x3000_0000) with an aliasing memory with the start address being
0x0010_0000 and 0x2000_0000. For more information, see Figure 2-3.

• The region (start address: 0x2000_0000) supports bit field operations, mapping to the region starting from
0x2200_0000.

• The region starting from 0x0010_0000 features higher access efficiency thanks to the Cortex®-M4F architecture.
Therefore, executing code in this region promotes running speed.

• In GR5526 SDK, RW, ZI, HEAP, and STACK use the RAM region starting from 0x2000_0000; RAM_CODE uses the
region starting from 0x0010_0000.

The 512 KB RAM layout is shown in Figure 2-7:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 14

GR5526 Bluetooth LE Software Platform

0x3007_8000

RAM_16K_0

RAM_16K_1

RAM_32K_0

RAM_32K_1

RAM_64K_0

……

RAM_64K_5

0x3006_8000

0x3002_8000

0x3001_8000

0x3001_0000

0x3000_8000

0x3000_4000

0x3000_0000

RAM_32K_2

0x3007_FFFF

Figure 2-7 512 KB RAM layout

Running modes for applications include XIP and Mirror modes. For more information about configurations, see
APP_CODE_RUN_ADDR in “Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h”. RAM layouts of the
two modes are different.

Table 2-3 Running modes for applications

Running Mode Description

XIP Mode

It refers to Execute in Place Mode. User applications are stored in on-chip flash, and

applications use the same space for running and loading. When the system is powered on,

it fetches and executes commands from flash directly through the Cache Controller.

Mirror Mode

In Mirror Mode, user applications are stored in on-chip flash, and the running space of

applications is RAM. During application boot, applications are loaded into RAM from

external flash after check is completed, and the system jumps to RAM for operation.

 Note:

Continuous access to flash is required in XIP Mode. Therefore, power consumption in this mode is a little higher than
that in Mirror Mode.

2.5.1 Typical RAM Layout in XIP Mode

The typical RAM layout under XIP mode is as shown in Figure 2-8. Developers are able to modify the layout based on
product needs.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 15

GR5526 Bluetooth LE Software Platform

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

Unused RAM Space

Stack
End of RAM

Size=SYSTEM_STACK_SIZE

0x2000_6000

Size=24 KB

0x2000_0000

HEAP

RW
ZI

0x2000_B000

Size=APP_RAM_SIZE

Figure 2-8 RAM layout in XIP Mode

RAM_CODE saves code executed in RAM. To boost the efficiency in execution, it is recommended to allocate this
region to Aliasing memory aligned to 0x00100 mapped to the physical address.

The layout in XIP Mode allows application firmware to be run directly in the code loading area, so that more RAM
space is available for applications. During update to contents in Flash memory, XIP Mode is disabled; during erase of
Flash memory, interrupts with priority lower than FLASH_PROTECT_PRIORITY cannot be generated.

 Note:

• QSPI0, QSPI1, QSPI2, and OSPI support XIP mode. In this mode, users can map the address of flash memory or
PSRAM to memory, so that users can operate on memory directly.

◦ When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming continuous SRAM space with
the region from 0x2000 0000 to 0x2007 FFFF.

◦ When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming continuous SRAM space with the
region from 0x3000 0000 to 0x3007 FFFF.

• Users can add self-defined sections as needed. Avoid modifying the default scatter file of the SDK or delete
part of the scatter file (such as deleting RAM_CODE from the scatter file). For details about the scatter file, see
“Section 4.3.2.2 Configuring Memory Layout”.

2.5.2 Typical RAM Layout in Mirror Mode

The typical RAM layout in Mirror Mode is as shown in Figure 2-9. Users can modify the layout based on product needs.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 16

GR5526 Bluetooth LE Software Platform

ROM reserved RAM
including .bss and .data

(retenon)

RAM_CODE

Unused RAM Space

Stack
End of RAM

Size=SYSTEM_STACK_SIZE

0x2000_6000

Size=24 KB

0x2000_0000

HEAP

App Code Execuon Region

RW
ZI

0x2000_B000

APP_CODE_RUN_ADDR

Figure 2-9 RAM layout in Mirror Mode

The layout in Mirror Mode allows application firmware to be run in RAM. The SoC enters cold boot process after
power-on. The Bootloader copies application firmware from flash to the RAM segment App Code Execution Region.
After wake-up from sleep mode, GR5526 SoC enters warm boot process. To shorten the warm boot time, the
Bootloader does not redo copy of application firmware to the RAM segment App Code Execution Region.

The start address of the App Code Execution Region segment depends on APP_CODE_RUN_ADDR in custom_config.h.
Users need to decide the value of APP_CODE_RUN_ADDR based on the use of .data and .bss segments, to avoid
address overlap between the Call Stack segment (higher address segment) and .bss segments (lower address
segment). Users can view the layout of RAM segments from the .map file.

It is recommended to set APP_CODE_RUN_ADDR with RAM Aliasing Memory address (from 0x0010_0000 to
0x0017_FFFF). Once an overlap between RAM segments happens, when a project is to be built, an error will occur and
the overlap part will be indicated, to help users quickly check and locate the overlap part in the RAM.

2.5.3 RAM Power Management

Each RAM Block has three power modes: POWER OFF, RETENTION, and FULL.

• The FULL Mode corresponds to the Active Mode of the system; MCU is permitted to read from and write to RAM
Blocks.

• RETENTION Mode is mainly used in Sleep Mode of the system. Data in RAM Blocks in this power mode does not
get lost and is ready for use by the system when it switches from Sleep Mode to Active Mode.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 17

GR5526 Bluetooth LE Software Platform

• RAM Blocks in POWER OFF Mode are powered off, and data stored in these blocks gets lost. Users shall store the
data in advance.

By default, the PMU in the GR5526 enables all RAM power sources when the system starts. The GR5526 SDK also
provides a complete set of RAM power management APIs. You can configure the power of RAM Blocks based on
application needs.

By default, the system enables automatic RAM power management mode during boot, and automatically implements
power control of RAM Blocks according to RAM usage of applications. The configuration rules are provided as follows:

• When the system is in Active Mode, unused RAM Blocks are set to POWER OFF Mode, and RAM Blocks to be
used are set to FULL Mode.

• When the system enters Sleep Mode, unused RAM Blocks remain in POWER OFF Mode, and RAM Blocks to be
used are set to RETENTION Mode.

Configurations in practice are described below:

• In Bluetooth LE applications, the first 8 KB of RAM_16K_0 and RAM_16K_1 are reserved for Bootloader and BLE
 Stack only, not available for applications. When the system is in Active Mode, RAM_16K_0 and RAM_16K_1 shal
l be in FULL Mode; when the system is in Sleep Mode, the two RAM Blocks shall be in RETENTION Mode. Non-Blu
etooth LE applications can use these two RAM Blocks.

• Purposes of RAM_32K_0 and subsequent RAM Blocks are defined by applications. Generally, user data and the
code segments to be executed in RAM are defined in continuous segments starting from RAM_32K_0; top of
function call stacks are defined in upper address part of RAM. The power mode of these RAM Blocks can be
enabled, or be controlled by applications.

 Note:

• Only if a RAM Block is in FULL Mode, an MCU access is permitted.

• Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

SDK_Folder is the root directory of GR5526 SDK.

2.6 PSRAM

GR5526VGBIP SoC and GR5526RGNIP SoC have an 8-MB PSRAM with OSPI for data access. The PSRAM address is
mapped to 0x30080000, forming a contiguous SRAM space together with the area from 0x3000 0000 to 0x3007 FFFF,
providing larger SRAM space for users. The PSRAM features:

• Low power consumption

◦ Partial array self-refresh (PASR)

◦ Auto Temperature Compensated Self-Refresh (ATCSR) of built-in temperature sensor

◦ User-configurable refresh rate

◦ Ultra-low power consumption (ULP) in half sleep mode with data retained

• Software reset

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 18

GR5526 Bluetooth LE Software Platform

• Output driver low voltage complementary metal oxide semiconductor (LVCMOS) with programmable drive
strength

• Data mask for data write

• Data strobe enabled high-speed data read

• Register-configurable write and read initial latencies

• Write burst length: 2 bytes to 1024 bytes

• Wrap burst and hybrid burst at 16 B, 32 B, 64 B, and 1 KB

• Linear burst command

• Row boundary crossing (RBX)

◦ Read can be enabled by mode register.

◦ RBX write is not supported.

 Note:

• GR5526 SoCs are embedded with PSRAM. By default, PSRAM is disabled. Users can enable PSRAM with OSPI
controller before use.

• To improve power consumption performance, users can modify the impedance matching between the OSPI
controller and PSRAM by adjusting PSRAM drive strength.

◦ Lower drive strength means lower power consumption, and the waveform tends to be triangle wave, which
is of lower quality.

◦ Greater drive strength means higher power consumption, and the waveform tends to be square wave,
which features higher quality.

◦ Set the drive strength appropriate to the application scenario to avoid system crash caused by excessively
high drive strength.

• The efficiency of MCU reading through OSPI is low. Therefore, it is recommended to access OSPI based on DMA
alignment.

2.7 GR5526 SDK Directory Structure

The folder directory structure of GR5526 SDK is as shown in Figure 2-10.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 19

GR5526 Bluetooth LE Software Platform

GR5526 SDK

build

config
gcc
iar
keil

components

drivers_ext
graphics
libraries
profiles
sdk

documentaon

drivers

src
external

fat_fs

projects

freertos
lvgl

ble
peripheral

mbedtls
segger_r

arch
boards

plaorm

include
soc

common
include
linker
src

inc
hal

TinyUSB

unity2.5

Figure 2-10 GR5526 SDK directory structure

Detailed description of folders in GR5526 SDK is as shown in Table 2-4.

Table 2-4 GR5526 SDK folders

Folder Description

build\config

It is the project configuration directory that stores the custom_config.h template

file. Contents in this file are used to configure projects, and to provide related input

parameters for the SDK toolchain.

build\gcc It contains tools used for GCC-based development environment.

build\iar It contains tools used for IAR-based development environment.

build\keil It contains tools used for Keil MDK.

components\drivers_ext It contains drivers of third-party components on the development board.

components\graphics It contains contents about GPU display.

components\libraries It contains libraries provided in the GR5526 SDK.

components\profiles
It contains source files of GATT Services/Service Clients implementation examples provided

in the GR5526 SDK.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 20

GR5526 Bluetooth LE Software Platform

Folder Description

components\sdk It contains API header files provided in the GR5526 SDK.

documentation GR5526 API Reference Manual

drivers\inc\hal It contains HAL and LL header files of the GR5526 peripheral drivers.

drivers\inc It contains driver API header files, which are easy to use for application developers.

drivers\src It contains driver API source code, which is easy to use for application developers.

external\fat_fs It contains source code from FatFs, a third-party program.

external\freertos It contains source code from FreeRTOS, a third-party program.

external\lvgl It contains source code from LVGL, a third-party program.

external\mbedtls It contains source code from mbed TLS, a third-party program.

external\segger_rtt It contains source code from SEGGER RTT, a third-party program.

external\TinyUSB It contains source code from TinyUSB, a third-party program.

external\unity2.5 It contains source code from Unity 2.5, a third-party program.

platform\arch It contains toolchain files of CMSIS.

platform\boards
It stores source files for initialing GR5526 Starter Kit Board (GR5526 SK Board). The files are

used for initializing basic peripherals at board level.

platform\include It stores common header files related to platform.

platform\soc\common
It stores public source files compatible to GR5526 SoCs. The files include gr_interrupt.c,

gr_platform.c, and gr_system.c.

platform\soc\linker It contains symbol table files and library files provided in the GR5526 SDK for the linker.

platform\soc\include
It stores common header files closely related to driver underlying configurations such as

registers and clock configurations.

platform\soc\src

It stores gr_soc.c, which is about initialization processes closely related to SoC

implementation. The processes include initializing flash and NVDS, configuring crystal, and

calibrating PMU.

projects\ble
It contains Bluetooth LE application project examples, such as Heart Rate Sensor and

Proximity Reporter.

projects\peripheral It contains project examples of peripheral applications of a GR5526 SoC.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 21

Bootloader

3 Bootloader
The GR5526 supports two firmware running modes: XIP and Mirror. When the system is powered on, the Bootloader
first reads the system boot configuration information from SCA, then performs application firmware integrity check
and system initialization configuration accordingly, and finally jumps to the code running space to run firmware. The
boot procedures may vary in different running modes.

• In XIP Mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check,
and then jumps to the code run address in flash to run code.

• In Mirror Mode, after finishing application firmware check, the Bootloader loads the firmware in flash to
corresponding RAM running space based on system configurations, and jumps to and runs the firmware in RAM.

The application boot procedures of the GR5526 SDK are shown in Figure 3-1.

Init Flash

Mirror Mode?

Reset_Handler

Read boot informaon
&

Check Integrity of
Applicaon Image

Is Applicaon
 image integral?

Copy Applicaon Image to
RAM from Flash

Init instrucon cache

Boot Start

Start DFU service

Yes Yes

No No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR5526 SDK

1. When the device is powered on, CPU jumps to 0x0000_0000, from which extracts the extended stack pointer
(ESP) of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes reset_handler in ROM to enter the Bootloader.

2. Bootloader initializes flash.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 22

Bootloader

3. Bootloader reads boot information from SCA in flash and checks application firmware integrity.

 Note:

GR5526 enhances security by encrypting and signing application firmware.

• Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
HMAC check; after the check succeeds, the Bootloader decrypts SCA boot information and then implements the
signature verification process in the secure boot process, to guarantee firmware integrity and prevent tampering
or disguise; if signature verification succeeds, the automatic decryption functionality is enabled.

• Non-security mode: If the security mode is not enabled, the Bootloader performs cyclic redundancy check (CRC)
on application firmware based on SCA boot information.

4. If CRC fails, the Bootloader enters J-Link DFU mode. You can update application firmware in flash with
GProgrammer and J-Link.

5. If CRC passes, Bootloader checks the running mode.

• In XIP Mode, the Bootloader jumps to the application firmware in flash to start implementation after XIP
configuration is completed.

• In Mirror Mode, the Bootloader copies the application firmware in flash to a specified segment in RAM, and
then runs the application firmware in RAM.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 23

Development and Debugging with GR5526 SDK in Keil

4 Development and Debugging with GR5526 SDK in Keil
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the GR5526 SDK
in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM® for Cortex® and ARM
devices. You can download and install the Keil installation package from the Keil official website. For the GR5526 SDK,
Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, see ARM online manuals.

The main interface of Keil is as shown in Figure 4-1.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are as shown in Table 4-1.

Table 4-1 Frequently used function buttons of Keil

Keil Icon Description

Options for target

Start/Stop Debug Session

Download

Build

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 24

https://www.keil.com/demo/eval/arm.htm
http://www.keil.com/support/man_arm.htm

Development and Debugging with GR5526 SDK in Keil

4.2 Installing GR5526 SDK

The GR5526 SDK is ready for use after the GR5526 SDK software package is extracted. No manual installation is
required.

 Note:

• SDK_Folder is the root directory of GR5526 SDK.

• Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to build a Bluetooth LE application.

4.3.1 Preparing ble_app_example

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and
rename it as ble_app_example. Rename the base name of .uvoptx and .uvprojx files in ble_app_example\Keil_
5 as ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and select Output in Options for
Target 'GRxx_Soc'; enter ble_app_example in Name of Executable.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 25

Development and Debugging with GR5526 SDK in Keil

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

Figure 4-4 ble_app_example in Keil

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries, gr_profi
les, and external.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 26

Development and Debugging with GR5526 SDK in Keil

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Table 4-2 SDK groups

SDK Group Name Description

gr_startup It contains a system boot file.

gr_arch
It contains configuration files for initializing System Core and PMU, and implementing system interrupt

APIs.

gr_soc It contains the file gr_soc.c.

gr_board It contains a board-level description file.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 27

Development and Debugging with GR5526 SDK in Keil

SDK Group Name Description

gr_stack_lib It contains the GR5526 SDK .lib file.

gr_app_drivers
It contains driver API source files, which are easy to use for application developers. You can add related

application drivers on demand.

gr_libraries
It contains open source files of common assistant software modules and peripheral drivers provided in

the SDK.

gr_profiles
It contains source files of GATT Services/Service Clients. You can add necessary GATT source files for

projects.

external
It contains source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-

party programs on demand.

• User groups

User groups include user_platform and user_app.

Figure 4-6 user_groups

Functionalities for source files in User groups need to be implemented by developers. Group descriptions are
provided below:

Table 4-3 User groups

User Group Name Description

user_platform
It contains the configuration file for setting software and hardware resources, and initializing

applications.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 28

Development and Debugging with GR5526 SDK in Keil

User Group Name Description

user_app

It contains main() function entries, and other source files created by developers, which are used to

configure runtime parameters of BLE Stack and execute event handlers of GATT Services/Service

Clients.

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, After Build, and other configuration items.

4.3.2.1 Configuring custom_config.h and ble_basic_config.h

custom_config.h is used to configure parameters of application projects. A template for custom_config.h is provided
in SDK_Folder\build\config\. The custom_config.h of each application example project is in Src\config
under project directory.

Table 4-4 Parameters in custom_config.h

Macro Description

SOC_GR5526 It indicates the version number of SoC.

SYS_FAULT_TRACE_ENABLE

It is used to enable/disable Callstack Trace Info printing. If printing is enabled, the Callstack Trace

Info is printed when a HardFault occurs.

0: Disable

1: Enable

APP_DRIVER_USE_ENABLE

It is used to enable/disable the App Drivers module.

0: Disable

1: Enable

APP_LOG_ENABLE

It is used to enable/disable the APP LOG module.

0: Disable

1: Enable

APP_LOG_STORE_ENABLE

It is used to enable/disable the APP LOG STORE module.

0: Disable

0: Enable

APP_LOG_PORT

Set the output mode of APP LOG module.

0: UART

1: J-Link RTT

2: ARM ITM

SK_GUI_ENABLE

It is used to enable/disable the GUI module on GR5526 SK Board.

0: Disable

1: Enable

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 29

Development and Debugging with GR5526 SDK in Keil

Macro Description

DTM_TEST_ENABLE

It is used to enable/disable DTM Test.

0: Disable

1: Enable

DFU_ENABLE

It is used to enable/disable DFU.

0: Disable

1: Enable

PMU_CALIBRATION_ENABLE

It is used to enable/disable PMU CALIBRATION. When PMU CALIBRATION is enabled, the system

monitors temperatures and voltages automatically with adaptive adjustment. It shall be enabled in

high/low temperature scenarios. It is recommended to enable this parameter by default.

0: Disable

1: Enable

FLASH_PROTECT_PRIORITY

During flash write or erase, applications can block the interrupts with the priority level lower than or

equal to a set value.

When FLASH_PROTECT_PRIORITY is set to N, interrupt requests with a priority level not higher than

N are suspended. After erase is completed, flash responds to the suspended interrupt requests. By

default, flash does not respond to any interrupt request during erase. Developers can set a value on

demand.

NVDS_START_ADDR

It indicates the start address of NVDS. By default, the macro is commented out in cutom_config.h. If

you need to reconfigure the NVDS address, enable the macro and set the address as needed (4-KB

alignment is compulsory). The start address cannot be set in used areas in the memory (such as SCA

and user App).

NVDS_NUM_SECTOR It represents the number of flash sectors for NVDS.

SYSTEM_STACK_SIZE

It indicates the size of Call Stack required by applications. You can set the value as needed. Please

note that the value shall not be less than 6 KB. The default value is 12 KB.

After compilation of ble_app_example, Maximum Stack Usage is provided in Keil_5\Objects\

ble_app_example.htm for reference.

SYSTEM_HEAP_SIZE
It indicates the size of Heap required by applications. You can set the value as needed. The default

value is 16 KB.

APP_CODE_LOAD_ADDR*
It represents the start address of the application storage area. This address shall be within the flash

address range.

APP_CODE_RUN_ADDR*

It represents the start address of the application running space.

If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP Mode.

If the value is within the RAM address range, applications run in Mirror Mode.

SYSTEM_CLOCK*
It represents the system clock frequency. Optional values are provided as follows:

0: 96 MHz

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 30

Development and Debugging with GR5526 SDK in Keil

Macro Description

1: 64 MHz

2: 16 MHz (XO)

3: 48 MHz

4: 24 MHz

5: 16 MHz

6: 32 MHz (PLL)

CFG_LPCLK_INTERNAL_EN

It is used to enable/disable the OSC clock inside an SoC as the Bluetooth LE low-frequency sleep

clock. If the OSC clock is enabled, CFG_LF_ACCURARY_PPM will be set to 500 PPM by force.

0: Disable

1: Enable

CFG_LF_ACCURARY_PPM
It represents the Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to

500 (unit: ppm).

BOOT_LONG_TIME*

It is used to set necessary 1-second delay (during SoC boot before implementing the second half

Bootloader).

0: No delay

1: Delay for 1 second.

BOOT_CHECK_IMAGE

It determines whether to check the image during cold boot in XIP mode.

0: Do not check.

1: Check.

VERSION*
It represents the version number of application firmware; length: 2 bytes; it is stored in hexadecimal

format.

CHIP_VER It indicates the version of the SoC that the firmware runs on, currently set to 0x5526.

*: BUILD_IN_APP_INFO is defined at 0x200 in the firmware, and is initialized with macros in custom_config.h. When
system boots, the Bootloader reads value from 0x200 and uses it as a boot parameter.

ble_basic_config.h is used to configure Bluetooth LE parameters of application projects. The ble_basic_config.h of
each application example project is in Src\config under the project directory. Applications allocate Bluetooth LE
resources as defined by the macros in ble_basic_config.h, as detailed below.

Table 4-5 Macros in ble_basic_config.h

Macro Description

CFG_CONTROLLER_ONLY

Use BLE Controller only or not.

• 0: Use BLE Controller and Host

• 1: Use BLE Controller only.

CFG_MAX_PRFS
It represents the maximum number of GATT Profiles/Services supported by applications.

Set the value on demand: A larger value means occupying more RAM space.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 31

Development and Debugging with GR5526 SDK in Keil

Macro Description

CFG_MAX_BOND_DEVS It represents the maximum number of devices that can be bonded to applications. Max: 4.

CFG_MAX_CONNECTIONS

It represents the maximum number of devices that can be connected to applications, and

the number shall be no greater than 10. You can set the value based on needs. A larger

value means more RAM space to be occupied by BLE Stack Heaps. The size of BLE Stack

Heaps is defined by the following four macros in flash_scatter_config.h, which cannot be

changed by developers:

• ENV_HEAP_SIZE

• ATT_DB_HEAP_SIZE

• KE_MSG_HEAP_SIZE

• NON_RET_HEAP_SIZE

CFG_MAX_ADVS
It indicates the maximum number of Bluetooth LE legacy advertising and extended

advertising supported by applications.

CFG_MAX_PER_ADVS

It indicates the maximum number of Bluetooth LE periodic advertising supported by

applications.

Note:

The total number of legacy advertising and extended advertising

(CFG_MAX_LEG_EXT_ADVS) plus the number of periodic advertising

(CFG_MAX_PER_ADVS) shall be no greater than 5.

CFG_MAX_SYNCS

It indicates the number of synchronized periodic advertising; used for reserving RAM

for BLE Stack. You can set the value according to the number of synchronized periodic

advertising in use. Max: 5.

CFG_MAX_SCAN
It represents the maximum number of Bluetooth LE device used for scanning in

applications. Max: 1.

CFG_MAX_EATT_CHANNELS
It represents the maximum number of Bluetooth LE EATT channels supported in

Application. Max: 10.

CFG_ISO_SUPPORT

It indicates whether the ISO module is supported.

• 0: No

• 1: Yes

Comments in custom_config.h and ble_basic_config.h are compliant with Configuration Wizard Annotations of Keil,
making it possible for users to configure application projects with Configuration Wizard of Keil. Configuration Wizard
helps avoid invalid parameters, and is therefore strongly recommended.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 32

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

Development and Debugging with GR5526 SDK in Keil

Figure 4-7 custom_config.h in Configuration Wizard

Figure 4-8 ble_basic_config.h in Configuration Wizard

4.3.2.2 Configuring Memory Layout

Keil defines memory segments for the linker in .sct files. The GR5526 SDK provides an example
flash_scatter_common.sct for application developers. The macros used by this .sct file are defined in
flash_scatter_config.h.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 33

Development and Debugging with GR5526 SDK in Keil

 Note:

In Keil, __attribute__((section("name"))) can be used to place a function or a variable at a separate
memory segment, in which name depends on your choice. A scatter (.sct) file specifies the location for a named
segment. For example, place Zero-Initialized (ZI) data of applications at the segment named __attribute__((sec
tion(".bss.app"))).

You can follow the steps below to configure the memory layout:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar, click ... to browse and select the flash_scatter_common.sct file in SDK_Folder\platf
orm\soc\linker\keil; or copy the scatter (.sct) file and its .h file to the ble_app_example project directory
and then select the scatter file.

 Note:

#! armcc -E -I ..\Src\config\ --cpu Cortex-M4 in flash_scatter_common.sct specifies two include
paths: one being the user path of application projects, and the other being the path where the custom_config.h file of
an application project locates. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on product memory layout.

Figure 4-9 Configuration of scatter file

4. Click OK to save the settings.

4.3.2.3 Configuring After Build

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 34

Development and Debugging with GR5526 SDK in Keil

After Build in Keil can specify the command to be executed after a project is built. By default, the after build command
will be executed for ble_app_template. ble_app_example, which is based on ble_app_template, does not require
manual configuration of After Build.

If you build a project, follow the steps below to configure After Build:

1. Click (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
User tab.

2. From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output
Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf
to generate a compiling file based on the selected .axf file.

3. From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
\@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to
generate a .bin file based on the selected .axf file.

4. Click OK to save the settings.

Figure 4-10 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK_HEAP_INIT(heaps_table);
…
int main (void)

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 35

Development and Debugging with GR5526 SDK in Keil

{
 /** Initialize user peripherals. */
 app_periph_init();

 /** Initialize BLE Stack. */
 ble_stack_init(&&m_app_ble_callback, &heaps_table);

 // Main Loop
 while (1)
 {
 /*
 * Add Application code here, e.g. GUI Update.
 */
 app_log_flush();
 pwr_mgmt_schedule();
 }
}

• STACK_HEAP_INIT(heaps_table) defines four global arrays as Heaps for BLE Stack. Do not
modify the definition; otherwise, BLE Stack cannot work. For more information about Heap size, see
CFG_MAX_CONNECTIONS in “Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h”.

• You can initialize peripherals in app_periph_init(). In development and debugging phases, the
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address. user_periph_setup.c in which
this function is contained includes the following main code:

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
 SYS_SET_BD_ADDR(s_bd_addr);
 bsp_log_init();
 pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}

• You should add main loop code of applications to while(1) { }, for example, code to handle external input
and update GUI.

• When using the APP LOG module, call the app_log_flush() in the main loop. This is to ensure logs are
output completely before the SoC enters Sleep Mode. For more information about the APP LOG module, see
“Section 4.6.3 Outputting Debug Logs”.

• Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implementing Bluetooth LE Business Logic

Related Bluetooth LE business logic of applications are driven by a number of Bluetooth LE events which are defined
in the GR5526 SDK. Applications need to implement the corresponding Bluetooth LE event handlers in GR5526
SDK to obtain operation results or state change notifications of BLE Stack. Bluetooth LE event handlers are called in
the interrupt context of Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for
example, blocking function call and infinite loop; otherwise, the system is blocked, causing BLE Stack and the SDK
Bluetooth LE module unable to run in a normal timing.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 36

Development and Debugging with GR5526 SDK in Keil

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client. All Bluetooth LE events supported by GR5526 SDK are
listed below.

Table 4-6 Bluetooth LE Events

Event Type Event Description

Common BLE_COMMON_EVT_STACK_INIT BLE Stack init complete event

BLE_GAPM_EVT_CH_MAP_SET Channel Map Set complete event

BLE_GAPM_EVT_WHITELIST_SET Whitelist Set complete event

BLE_GAPM_EVT_PER_ADV_LIST_SET Periodic Advertising List Set complete event

BLE_GAPM_EVT_PRIVACY_MODE_SET Privacy Mode for Peer Device Set complete event

BLE_GAPM_EVT_LEPSM_REGISTER LEPSM Register complete event

BLE_GAPM_EVT_LEPSM_UNREGISTER LEPSM Unregister complete event

BLE_GAPM_EVT_DEV_INFO_GOT Device Info Get event

BLE_GAPM_EVT_ADV_START Advertising Start complete event

BLE_GAPM_EVT_ADV_STOP Advertising Stop complete event

BLE_GAPM_EVT_SCAN_REQUEST Scan Request event

BLE_GAPM_EVT_ADV_DATA_UPDATE Advertising Data update event

BLE_GAPM_EVT_SCAN_START Scan Start complete event

BLE_GAPM_EVT_SCAN_STOP Scan Stop complete event

BLE_GAPM_EVT_ADV_REPORT Advertising Report event

BLE_GAPM_EVT_SYNC_ESTABLISH
Periodic Advertising Synchronization Establish

event

BLE_GAPM_EVT_SYNC_STOP Periodic Advertising Synchronization Stop event

BLE_GAPM_EVT_SYNC_LOST Periodic Advertising Synchronization Lost event

GAP Management

BLE_GAPM_EVT_READ_RSLV_ADDR Read Resolvable Address event

BLE_GAPC_EVT_PHY_UPDATED PHY Update event

BLE_GAPC_EVT_CONNECTED Connected event

BLE_GAPC_EVT_DISCONNECTED Disconnected event

BLE_GAPC_EVT_CONNECT_CANCEL Connect Cancel event

BLE_GAPC_EVT_AUTO_CONN_TIMEOUT Auto Connect Timeout event

BLE_GAPC_EVT_CONN_PARAM_UPDATED Connect Parameter Updated event

BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ Connect Parameter Request event

BLE_GAPC_EVT_PEER_NAME_GOT Peer Name Get event

BLE_GAPC_EVT_CONN_INFO_GOT Connect Info Get event

GAP Connection

Control

BLE_GAPC_EVT_PEER_INFO_GOT Peer Info Get event

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 37

Development and Debugging with GR5526 SDK in Keil

Event Type Event Description

BLE_GAPC_EVT_DATA_LENGTH_UPDATED Data Length Updated event

BLE_GAPC_EVT_DEV_INFO_SET Device Info Set event

BLE_GAPC_EVT_CONNECT_IQ_REPORT Connection IQ Report info event

BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT Connectionless IQ Report info event

BLE_GAPC_EVT_LOCAL_TX_POWER_READ Local transmit power read indication info event

BLE_GAPC_EVT_REMOTE_TX_POWER_READ
Remote transmit power read indication info

event

BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT Transmit power change reporting info event

BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT Path loss threshold reporting info event

BLE_GAPC_EVT_RANGING_IND Ranging indication event

BLE_GAPC_EVT_RANGING_SAMPLE_REPORT Ranging sample report event

BLE_GAPC_EVT_RANGING_CMP_IND Ranging complete indication event

BLE_GAPC_EVT_DFT_SUBRATE_SET Default subrate param set complete event

BLE_GAPC_EVT_SUBRATE_CHANGE_IND Subrate change indication event

BLE_GATT_COMMON_EVT_MTU_EXCHANGE MTU Exchange event
GATT Common

BLE_GATT_COMMON_EVT_PRF_REGISTER Service Register event

BLE_GATTS_EVT_READ_REQUEST GATTS Read Request event

BLE_GATTS_EVT_WRITE_REQUEST GATTS Write Request event

BLE_GATTS_EVT_PREP_WRITE_REQUEST GATTS Prepare Write Request event

BLE_GATTS_EVT_NTF_IND GATTS Notify or Indicate Complete event

BLE_GATTS_EVT_CCCD_RECOVERY GATTS CCCD Recovery event

BLE_GATTS_EVT_MULT_NTF GATTS Multiple Notifications event

BLE_GATTS_EVT_ENH_READ_REQUEST GATTS Enhanced Read Request event

BLE_GATTS_EVT_ENH_WRITE_REQUEST GATTS Enhanced Write Request event

BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST GATTS Enhanced Prepare Write Request event

BLE_GATTS_EVT_ENH_NTF_IND
GATTS Enhanced Notify or Indicate Complete

event

BLE_GATTS_EVT_ENH_CCCD_RECOVERY GATTS Enhanced CCCD Recovery event

GATT Server

BLE_GATTS_EVT_ENH_MULT_NTF GATTS Enhanced Multiple Notifications event

BLE_GATTC_EVT_SRVC_BROWSE GATTC Service Browse event

BLE_GATTC_EVT_PRIMARY_SRVC_DISC GATTC Primary Service Discovery event

BLE_GATTC_EVT_INCLUDE_SRVC_DISC GATTC Include Service Discovery event

BLE_GATTC_EVT_CHAR_DISC GATTC Characteristic Discovery event

GATT Client

BLE_GATTC_EVT_CHAR_DESC_DISC GATTC Characteristic Descriptor Discovery event

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 38

Development and Debugging with GR5526 SDK in Keil

Event Type Event Description

BLE_GATTC_EVT_READ_RSP GATTC Read Response event

BLE_GATTC_EVT_WRITE_RSP GATTC Write Response event

BLE_GATTC_EVT_NTF_IND GATTC Notify or Indicate Receive event

BLE_GATTC_EVT_CACHE_UPDATE GATTC Cache Update event

BLE_GATTC_EVT_ENH_SRVC_BROWSE GATTC Enhanced Service Browse event

BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC GATTC Enhanced Primary Service Discovery event

BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC GATTC Enhanced Include Service Discovery event

BLE_GATTC_EVT_ENH_CHAR_DISC GATTC Enhanced Characteristic Discovery event

BLE_GATTC_EVT_ENH_CHAR_DESC_DISC
GATTC Enhanced Characteristic Descriptor

Discovery event

BLE_GATTC_EVT_ENH_READ_RSP GATTC Enhanced Read Response event

BLE_GATTC_EVT_ENH_WRITE_RSP GATTC Enhanced Write Response event

BLE_GATTC_EVT_ENH_NTF_IND GATTC Enhanced Notify or Indicate Receive event

BLE_SEC_EVT_LINK_ENC_REQUEST Link Encrypted Request event

BLE_SEC_EVT_LINK_ENCRYPTED Link Encrypted event

BLE_SEC_EVT_KEY_PRESS_NTF Key Press event
Security Manager

BLE_SEC_EVT_KEY_MISSING Key Missing event

BLE_L2CAP_EVT_CONN_REQ L2cap Connect Request event

BLE_L2CAP_EVT_CONN_IND L2cap Connected Indicate event

BLE_L2CAP_EVT_ADD_CREDITS_IND L2cap Credits Add Indicate event

BLE_L2CAP_EVT_DISCONNECTED L2cap Disconnected event

BLE_L2CAP_EVT_SDU_RECV L2cap SDU Receive event

BLE_L2CAP_EVT_SDU_SEND L2cap SDU Send event

BLE_L2CAP_EVT_ADD_CREDITS_CPLT L2cap Credits Add Completed event

BLE_L2CAP_EVT_ENH_CONN_REQ L2cap Enhanced Connect Request event

BLE_L2CAP_EVT_ENH_CONN_IND L2cap Enhanced Connected Indicate event

BLE_L2CAP_EVT_ENH_RECONFIG_CPLT L2cap Enhanced Reconfig Completed event

L2CAP

BLE_L2CAP_EVT_ENH_RECONFIG_IND L2cap Enhanced Reconfig Indicate event

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding events; if
the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only
those event handlers required for products are to be implemented.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 39

Development and Debugging with GR5526 SDK in Keil

For more information about the usage of Bluetooth LE APIs and event APIs, see the source code of Bluetooth LE
examples in SDK_Folder\documentation\GR5526_API_Reference and SDK_Folder\projects\bl
e.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

BLE Stack is the implementation core of BLE protocol stacks. It directly operates the hardware mentioned in the
Bluetooth 5.3 Core (see “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest
priority after SVCall IRQ, ensuring that BLE Stack runs strictly in a time sequence specified in Bluetooth Core Spec.

A state change of BLE Stack triggers BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler, the Bluetooth
LE event handlers (to be executed in applications) are called to send state change notifications of BLE Stack and related
business data to applications. Avoid time-consuming operations when using these event handlers. Perform such
operations in the main loop or in user-level threads instead. You can use the module in SDK_Folder\compone
nts\libraries\app_queue, or your own application framework, to transfer events from Bluetooth LE event
handlers to the main loop.

BLE Stack

BLE_Stack_IRQ

SDK BLE

BLE_SDK_IRQ

Applicaon
Callback

Applicaon
Queue

Applicaon
Main Loop

BLE Event Handler

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-11 System schedule (without OS)

4.4 Generating Firmware

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 40

Development and Debugging with GR5526 SDK in Keil

After building a Bluetooth LE application, you can directly click Build on the Keil toolbar to build a project. After
the project is built, two firmware files are created in Keil_5\Listings and Keil_5\Objects respectively
in the project directory. Both the two types of firmware can be downloaded to and run on GR5526 SoCs through
GProgrammer. See GProgrammer User Manual for details.

Table 4-7 Firmware files generated

Name Description

ble_app_example.bin
Binary application firmware, can be downloaded to and run on GR5526 SoCs through

GProgrammer.

ble_app_example.hex
Binary application firmware, can be downloaded to and run on GR5526 SoCs through

Keil or GProgrammer.

4.5 Downloading .hex Files to Flash

After .hex files are generated, you need to download these files to flash. Specific steps are provided below:

1. Configure Keil flash programming algorithm.

(1). Copy SDK_Folder\build\Keil\GR5xxx_16MB_Flash.FLM to Keil_Folder\ARM\Flash.

(2). Click (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-12 Debug tab

(3). In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 41

Development and Debugging with GR5526 SDK in Keil

Figure 4-13 Default configurations in the Download Function pane

(4). Click Add to add GR5xxx_16MB_Flash.FLM to the Programming Algorithm.

Figure 4-14 Adding GR55xx_16MB_Flash to Programming Algorithm

(5). Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR5526 in the Start input field: 0x30000000. Enter 0xF000 in
the Size input field.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 42

Development and Debugging with GR5526 SDK in Keil

Figure 4-15 Settings of RAM for Algorithm

(6). Click OK to save the settings.

2. Download firmware.

After completing configuration, click (Download) on the Keil toolbar to download ble_app_example.axf to
flash. After download is completed, the following results are displayed in the Build Output window of Keil.

 Note:

During file download, if “No Cortex-M SW Device Found” pops up, it indicates the SoC may be in sleep state currently
(the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to flash. In this case,
developers need to press RESET on the GR5526 SK Board and wait for about 1 second; then click (Download) to
download the file again.

Figure 4-16 Download results

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with diverse debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select Debug tab. In the window, software simulation debugging displays on the

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 43

Development and Debugging with GR5526 SDK in Keil

left, and online hardware debugging displays on the right. Bluetooth LE example projects adopt the online hardware
debugging. Related default configurations of the debugger are shown as follows:

Figure 4-17 Configuring the Debugger

The default initialization file sram.ini is in SDK_Folder\build\keil. You can use this file directly, or copy it to the
project directory.

sram.ini contains a set of debug commands, which are executed during debugging. On the Initialization File bar, click
Edit... on the right side, to open the sram.ini file. Example code of sram.ini is provided as follows:

/**

* GR55xx object loading script through debugger interface
* (e.g.Jlink# *etc).
* The goal of this script is to load the Keils's object file to the
* GR55xx RAM
* assuring that the GR55xx has been previously cleaned up.

*/
// Debugger reset(check Keil debugger settings)
// Preselected reset type(found in Options->Debug->Settings)is
// Normal(0);
// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
// RESET
// Load object file
LOAD %L
// Load stack pointer
SP = _RDWORD(0x00000000)
// Load program counter
$ = _RDWORD(0x00000004)
// Write 0 to vector table register# remap vector
_WDWORD(0xE000ED08# 0x00000000)

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 44

Development and Debugging with GR5526 SDK in Keil

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Load Application at Startup (Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup) is
enabled, the debugger first loads the file under Name of Executable (Options for Target ‘GRxx_Soc’ > Output >
Name of Executable).

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g,main is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-18. This is to
ensure when you click Reset on the Keil toolbar after enabling Start Debug Session, the program can run normally.

Figure 4-18 Setting Connect and Reset to Normal in Connect & Reset Options

4.6.3 Outputting Debug Logs

GR5526 SDK supports outputting debug logs of applications from hardware ports based on customization. Hardware
ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM ITM). GR5526 SDK provides an APP

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 45

Development and Debugging with GR5526 SDK in Keil

LOG module to facilitate log output. To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and
configure APP_LOG_PORT based on the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to set log parameters by calling app_log_init() during peripheral initialization and
to initialize the APP LOG module by registering log output APIs and Flush APIs. The APP LOG module supports using
the printf() (a C standard library function) and APP LOG APIs to output debug logs. If you choose APP LOG APIs,
you can optimize logs by setting log level, log format, filter type, or other parameters; if you choose printf(), set
log parameters as NULL.

Call the initialization function of corresponding module (see SDK_Folder\components\libraries\bsp\bs
p.h for details) and register corresponding transmission and flush functions (see user_log_debug_init() for reference)
according to the configured output port. If UART is the output port, related APIs are provided below.

static void user_log_debug_init(void)
{
 app_log_init_t log_init;

 log_init.filter.level = APP_LOG_LVL_DEBUG;
 log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
 log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_LVL;
 log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_LVL;

 app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);

#if APP_LOG_STORE_ENABLE
 app_log_store_info_t store_info;
 app_log_store_op_t op_func;

 store_info.nv_tag = APP_LOG_NVDS_TAG;
 store_info.db_addr = APP_LOG_DB_START_ADDR;
 store_info.db_size = APP_LOG_DB_SIZE;
 store_info.blk_size = APP_LOG_ERASE_BLK_SIZE;

 op_func.flash_init = hal_flash_init;
 op_func.flash_erase = hal_flash_erase;
 op_func.flash_write = hal_flash_write;
 op_func.flash_read = hal_flash_read;
 op_func.time_get = NULL;

 app_log_store_init(&store_info, &op_func);
#endif

}

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 46

Development and Debugging with GR5526 SDK in Keil

 Note:

• The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API
(optional for registration).

• GR5526 SDK provides an APP LOG STORE module, which supports storing the debug logs in flash and outputting
the logs from flash. To use the APP LOG STORE module, users need to enable APP_LOG_STORE_ENABLE in
custom_config.h. This module is configured in the ble_app_rscs project (in SDK_Folder\projects\ble\bl
e_peripheral\ble_app_rscs). This configuration can be a reference when the APP LOG STORE module is
used.

• Application logs output by using printf() cannot be stored by the APP LOG STORE module.

When debug logs are output through UART, the implemented log output API and flush API are bsp_uart_send
and bsp_uart_flush respectively. The former API is the basis for two log output APIs: app_uart asynchronization
(app_transmit_async) and hal_uart synchronization (hal_uart_transmit). Users can choose the output methods as
needed. The latter API is used to output the remaining data that is cached in memory in interrupt mode. You can
rewrite the above two APIs.

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is
bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARNING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() function to output all the debug logs cached, to ensure that all debug
logs are output before the SoC is reset or the system enters the Sleep Mode.

If you choose armcc for compilation and output logs through J-Link RTT, it is recommended to make the following
modifications in SEGGER_RTT.c:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 47

Development and Debugging with GR5526 SDK in Keil

Figure 4-19 Creating RTT Control Block and placing it at 0x20005000

In addition, make configurations in J-Link RTT Viewer as follows:

Figure 4-20 Configurations in J-Link RTT Viewer

You can also obtain the address by searching from the _SEGGER_RTT structure in the .map file generated by the
project, and then select Address in the configuration interface to specify the RTT Control Block address. If you have
created RTT Control Block and placed it at 0x20005000 as recommended in Figure 4-19, enter 0x20005000 in the field
shown in the figure above.

Figure 4-21 Obtaining RTT Control Block address

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 48

Development and Debugging with GR5526 SDK in Keil

 Note:

If you choose GCC for compilation, modifications shown in Figure 4-19 are not required. The address to be entered
for RTT Control Block in J-Link RTT Viewer should be the address of _SEGGER_RTT in the .map file generated by the
compilation project.

4.6.4 Debugging with GRToolbox

GR5526 SDK provides an Android App, GRToolbox, to debug GR5526 Bluetooth LE applications, which is in SDK_fold
er\tools\GRToolbox\GRToolbox-Version.apk. GRToolbox features the following:

• General Bluetooth LE scanning and connecting; characteristics read/write

• Demos for standard profiles, including Heart Rate and Blood Pressure

• Goodix-customized applications

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 49

Glossary

5 Glossary
Table 5-1 Glossary

Acronym Description

AoA/AoD Angle of Arrival/Angle of Departure

ATT Attribute Protocol

BLE Bluetooth Low Energy

DFU Device Firmware Update

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

IoT Internet of Things

ISOAL Isochronous Adoption Layer

L2CAP Logical Link Control and Adaption Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

UART Universal Asynchronous Receiver/Transmitter

XIP Execute in Place

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 50

	Preface
	Contents
	1 Introduction
	1.1 GR5526 SDK
	1.2 BLE Stack

	2 GR5526 Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout in XIP Mode
	2.5.2 Typical RAM Layout in Mirror Mode
	2.5.3 RAM Power Management

	2.6 PSRAM
	2.7 GR5526 SDK Directory Structure

	3 Bootloader
	4 Development and Debugging with GR5526 SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing GR5526 SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h and ble_basic_config.h
	4.3.2.2 Configuring Memory Layout
	4.3.2.3 Configuring After Build

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Business Logic
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	5 Glossary

