

GR5526 Developer Guide

Version: 1.0

Release Date: 2023-01-10

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co., Ltd. is prohibited.

Trademarks and Permissions

GODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as "Goodix") makes no representation or guarantee for this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any other means.

Shenzhen Goodix Technology Co., Ltd.

Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 Zip Code: 518000

Website: www.goodix.com

Preface

Purpose

This document introduces the software development kit (SDK) of the Goodix GR5526 Bluetooth Low Energy (Bluetooth LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started with secondary development of Bluetooth LE applications.

Audience

This document is intended for:

- GR5526 user
- GR5526 developer
- GR5526 tester
- Technical writer

Release Notes

This document is the initial release of *GR5526 Developer Guide*, corresponding to GR5526 SoC series.

Revision History

Version	Date	Description
1.0	2023-01-10	Initial release

G@DiX

Contents

Preface	I
1 Introduction	1
1.1 GR5526 SDK	1
1.2 BLE Stack	1
2 GR5526 Bluetooth LE Software Platform	4
2.1 Hardware Architecture	
2.2 Software Architecture	5
2.3 Memory Mapping	6
2.4 Flash Memory Mapping	
2.4.1 SCA	9
2.4.2 NVDS	
2.5 RAM Mapping	14
2.5.1 Typical RAM Layout in XIP Mode	
2.5.2 Typical RAM Layout in Mirror Mode	
2.5.3 RAM Power Management	
2.6 PSRAM	
2.7 GR5526 SDK Directory Structure	19
3 Bootloader	
A Development and Debugging with CREE26 SDK in Keil	24
4 Development and Debugging with GR5526 SDK in Keil	
4 Development and Debugging with GR5526 SDK in Keil 4.1 Installing Keil MDK	
 4 Development and Debugging with GR5526 SDK in Keil 4.1 Installing Keil MDK 4.2 Installing GR5526 SDK	
 4 Development and Debugging with GR5526 SDK in Keil	
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 25 29 29
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 29 29 29
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 25 29 29 29 29 29 29
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 29 29 29 33 34
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 25 29 29 29 33 33 34 35
 4 Development and Debugging with GR5526 SDK in Keil	24
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 29 29 29 33 33 34 35 35 36 40
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 29 29 29 33 34 35 35 36 40
 4 Development and Debugging with GR5526 SDK in Keil	24 24 25 25 25 29 29 29 33 34 35 35 35 36 40 40
 4 Development and Debugging with GR5526 SDK in Keil	24
 4 Development and Debugging with GR5526 SDK in Keil	24
 4 Development and Debugging with GR5526 SDK in Keil	24
 4 Development and Debugging with GR5526 SDK in Keil	24

5 Glossary	50
4.6.4 Debugging with GRToolbox	49
4.6.3.2 Application	47
4.6.3.1 Module Initialization	46

1 Introduction

The Goodix GR5526 family is a single-mode low-power System-on-Chip (SoC) that supports Bluetooth 5.3. It can be configured as a Broadcaster, an Observer, a Central, or a Peripheral, and supports the combination of all the above roles; in addition, it supports Bluetooth Low Energy (Bluetooth LE) direction finding: angle of arrival (AoA) and angle of departure (AoD), as well as LE isochronous channels (LE Audio), making it an ideal choice for Internet of Things (IoT), LE Audio, and smart wearable devices.

Based on ARM[®] Cortex[®]-M4F CPU core, the GR5526 series integrates Bluetooth 5.3 Protocol Stack, a 2.4 GHz RF transceiver, on-chip programmable Flash memory, RAM, multiple peripherals, enhanced I2C/UART port number for sensor applications, as well as expanded I/O functionality. GR5526 delivers a feature-rich display and graphics solution by providing the choice of graphics acceleration (GPU + DC) and internal/external system-in-package (SiP) pseudostatic RAM (PSRAM) to accommodate display while still leaving plenty of space for wearable schemes.

GR5526 series comes in two package choices: BGA83 and QFN68 (as shown in the table below), that can meet diverse application scenarios.

Features	GR5526VGBIP	GR5526VGBI	GR5526RGNIP	GR5526RGNI
CPU	Cortex [®] -M4F	Cortex [®] -M4F	Cortex [®] -M4F	Cortex [®] -M4F
RAM	512 КВ	512 KB	512 КВ	512 KB
SiP Flash	1 MB	1 MB	1 MB	1 MB
SIP PSRAM	8 MB	N/A	8 MB	N/A
GPU + DC	Yes	N/A	Yes	N/A
I/O number	50	50	48	48
Package (mm)	BGA83 (4.3 x 4.3 x 0.96)	BGA83 (4.3 x 4.3 x 0.96)	QFN68 (7.0 x 7.0 x 0.85)	QFN68 (7.0 x 7.0 x 0.85)

1.1 GR5526 SDK

The GR5526 SDK provides comprehensive software development support for GR5526 SoCs. The SDK contains Bluetooth LE Protocol Stack (BLE Stack) APIs, LE Audio APIs, System APIs, Real Time Location Service (RTLS) APIs, peripheral drivers, a tool for generating and downloading .hex files, project example code, and related user documents.

The GR5526 SDK version mentioned in this document is applicable to all GR5526 SoCs.

1.2 BLE Stack

The architecture of BLE Stack is shown in Figure 1-1.

Figure 1-1 BLE Stack architecture

The BLE Stack consists of the Controller, the Isochronous Adaptation Layer (ISOAL), the Host Controller Interface (HCI), and the Host.

Controller

- Physical Layer (PHY) supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift Keying (GFSK).
- Link Layer (LL) controls the RF state of devices. Devices are in one of the following five modes, and can be switched between the modes on demand: Standby, Advertising, Scanning, Initiating, or Connection.

ISOAL

• The Isochronous Adoption Layer (ISOAL) enables adaptation of isochronous data between the Host and the Controller by assembling segmented data frames into data streams for the Application layer, or by segmenting data streams from the Application layer into data frames and transmitting the data frames through air interfaces.

HCI

• The Host Controller Interface (HCI) enables communications between Host and Controller, supported by software interfaces or standard hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred between Host and Controller through HCI.

Host

GODIX

- Logical Link Control and Adaption Protocol (L2CAP) provides channel multiplexing, data segmentation, and reassembly services for upper layers. It also supports logic end-to-end data communications.
- Security Manager (SM) defines pairing and key distribution methods, providing upper-layer protocol stacks and applications with end-to-end secure connection and data exchange functionalities.
- Generic Access Profile (GAP) provides upper-layer applications and profiles with interfaces to communicate and interact with protocol stacks, which fulfills functionalities such as advertising, scanning, connection initiation, service discovery, connection parameter update, secure process initiation, and response.
- Attribute Protocol (ATT) defines service data interaction protocols between a server and a client.
- Generic Attribute Profile (GATT) is based on the top of ATT. It defines a series of communications procedures for upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

For more information about Bluetooth LE technologies and protocols, visit <u>Bluetooth SIG official website</u>.

Specifications of GAP, SM, L2CAP, and GATT are provided in *Bluetooth Core Spec*. Specifications of other profiles/ services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and code which may be used by BLE applications are listed on the Assigned Numbers page.

2 GR5526 Bluetooth LE Software Platform

The GR5526 SDK is designed for GR5526 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth 5.3 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based on example projects in the GR5526 SDK.

2.1 Hardware Architecture

The GR5526 hardware architecture is shown as follows. This section introduces the modules in a GR5526 SoC. For more information, see *GR5526 Datasheet*.

Figure 2-1 GR5526 hardware architecture

- ARM[®] Cortex[®]-M4F: GR5526 CPU. BLE Stack and application code run on the CPU.
- RAM: random access memory that provides memory space for program execution
- ROM: read-only memory, saving Bootloader and BLE Stack software
- Security Cores: the secure computing engine unit, mainly including TRNG, AES, SHA, and PKC modules, which allows checking encrypted user application firmware. Check on encrypted firmware relies on the secure boot process launched in ROM. (In *Bluetooth Core Spec*, the secure computing unit is an independent module in Communication Core, and is irrelevant to Security Cores.)
- Peripherals: including GPIO, DMA, I2C, I2S, SPI, QSPI, DSPI, OSPI, UART, PWM, Timer, GPU, and DC
- RF Transceiver: 2.4 GHz RF signal transceiver
- Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller. It is also the interface between the software protocol stack and 2.4 GHz RF hardware.

- Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for modules, including DC/DC, IO-LDO, Dig-LDO, and RF Subsystem, based on configuration parameters and current running state.
- Flash: Flash memory unit packaged on the SoC. It stores user code and data, and supports the Execute in Place (XIP) Mode for user code.

2.2 Software Architecture

The software architecture of the GR5526 SDK is shown in Figure 2-2.

Figure 2-2 GR5526 software architecture

Bootloader

It is a boot program built in GR5526 SoCs, used for GR5526 software and hardware environment initialization, and to check and start applications.

BLE Stack

It is the implementation core of BLE protocol stacks. It consists of Controller, ISOAL, HCI, and Host protocols (including ATT, L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

Bluetooth LE SDK

It refers to software development kit that provides easy-to-use SDK Bluetooth LE APIs, SDK System APIs, and SDK RTLS APIs.

• SDK Bluetooth LE APIs include L2CAP, GAP, SM, GATT APIs, and LE Audio APIs.

- SDK System APIs provide API definitions for Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system power management, and generic system-level access interfaces.
- SDK RTLS APIs support AoA and AoD. The APIs are packaged independently in a library. In their upward communications with the Application layer, accepting configurations on locating parameters, receiving commands on locating, reporting raw data about locating, and reporting calculated results of locating are made possible. In the downward communications with SDK Bluetooth LE APIs, the SoCs obtain Iq data to report events. In addition, the APIs are also related to other algorithms including music algorithms and density-based spatial clustering of applications with noise (DBSCAN).
- Application

GODIX

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary files; users can download these files to GR5526 SoCs for operation and test. Android applications in the SDK also provide corresponding functionalities as most Bluetooth applications do, to help users with tests.

• Drivers

API definitions and descriptions on peripheral drivers.

• Graphic

An SDK library for the graphic processing unit (GPU) display driver module

2.3 Memory Mapping

The memory mapping of a GR5526 SoC is shown in Figure 2-3.

		*******	debugging (external)		ROM TABLE
KFFFF FFFF	Reserved	******	Private perinheral Rus		
E010 0000	(511 MB)	and the second se	(internal)		
E00F FFFF		***	RIF APR	*****	DAP
	ARM Private	**************	BLEAHB	144 A	SCB
×E000 0000	(1024 KB)		DSPI	*****	FPU
xDFFF FFFF	Reserved		OSPI	144 A	MPU
x4400 0000	(2496 MB)		QSPI2	****	NVIC
x43FF FFFF	Poriphoral RitPanding		QSPI1	· · · · ·	SYS_TICK
	(32 MB)		QSPI0	· · · · · · · · · · · · · · · · · · ·	FPB
x4200 0000	()		DMA2	**	DWT
x41FF FFFF	Reserved		DMA1		IIM
4010 0000 v	(31 MB)		DMA0		
x400F FFFF	Peripheral		TRNG		
4000 0000	(1024 KB)		KRAM		
x4000 0000	Deserved	ł	HMAC		
x3808.0000	(127 MB)		AFS		
v3807 FEEF	OSPL M1 VID Aliac2		PKC		
	(64 MB)		GPIO 2		
x3408 0000 x3407 FFFF			GPIO 1		
x3008 0000	(64 MB)	l l	GPIO_0		
x3007 FFFF	(····-/		12C5		
	SRAM Alias 2		I2C4		
x3000 0000	(512 KB)		12C3		
x2FFF FFFF	Reserved		I2C2		
x2300 0000	(206 MB)		PDM		
x22FF FFFF	SRAM Alias		ISO_7816		
	BitBanding		12S_M		
x2200 0000	(16 MB)		I2S_S		
x21FF FFFF	QSPI M1 XIP Alias1				
x2008 0000	(31.5 MB)[*]				
x2007 FFFF	SRAM		SEN ADC		
	(512 KB)		XQSPI		
x2000 0000			PWM1		
x1+++ ++++	OSPI XIP		PWM0		
x1C00 0000 x15FF FFFF			UART5		
x1800 0000	(64 MB)		UART4		
x17FF FFFF		l l	UART3		
x1400 0000	(64 MB)		HMA2		
x13FF FFFF	OSPI MO XIP		UART1		
x1000 0000	(64 MB)		UARTU		
x0FFF FFFF	Reserved		1201		
x0320 0000	(206 MB)		SPL S		
x031F FFFF			SPL M		
	(16 MB)	ļ	AON RF		
x0220 0000	(10 10)		AON_PMU		
xU21F FFFF	Reserved		AON_WDT		
kU120 0000	(16 MB)		RTC1		
x011F FFFF	ExFlash	ļ	RTCO		
x0020 0000	(16 MB)		SLP_TIMER		
x001F FFFF	Record		AON_MEM		
x0018 0000	(512 KB)		AON_PWR		
x0017 FFFF	(······/				
	SRAM Alias1				
x0010 0000	(512 KB)		USB		
x000F FFFF	Reserved		DUAL TIMER1		
x000A 0000	(384 KB)		DUAL TIMERO		
x0009 FFFF	DOM		TIMER1		
	(640 KB)		TIMERO		
x0000 0000	(2.2.6)				
loto:					
iole.					

Figure 2-3 GR5526 memory mapping

- RAM: 0x0010_0000 to 0x0017_FFFF, 0x2000_0000 to 0x2007_FFFF, or 0x3000_0000 to 0x3007_FFFF, 512 KB in total
 - 0x2000_0000 to 0x2007_FFFF: bit field operations supported, mapping to the region from 0x2200_0000 to 0x2207_FFFF, in which atomic operations are supported. Variables of the SDK including RW, ZI, HEAP, and STACK are in this range.
 - 0x0010_0000 to 0x0017_FFFF: Features higher access efficiency thanks to the Cortex-M4F architecture.
 Therefore, executable code RAM_CODE is in this region.

🛄 Note:

QSPI0, QSPI1, QSPI2, and OSPI support XIP mode, which allows mapping of address from Flash or PSRAM to memories, enabling direct operations on memory

- When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming contiguous SRAM space with the region from 0x2000 0000 to 0x2007 FFFF.
- When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming contiguous SRAM space with the region from 0x3000 0000 to 0x3007 FFF.
- Flash: 0x0020_0000 to 0x011F_FFFF or 0x0220_0000 to 0x031F_FFFF, 16 MB in total
 - 0x0020_0000 to 0x011F_FFFF: Stores code and unencrypted data.
 - 0x0220_0000 to 0x031F_FFFF: Stores encrypted data.

Dote:

Internal Flash of GR5526 SoCs is 1 MB, from 0x0020_0000 to 0x002F_FFFF.

2.4 Flash Memory Mapping

GR5526 packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes based on application scenarios.

The Flash memory layout of typical GR5526 application scenarios is as shown in Figure 2-4.

	End of Flash
Non-volatile Data Storage (NVDS)	
	NVDS_START_ADDR
Unused Space	
User App	
System Configuration Area (SCA)	0x0020_2000
	0x0020_0000

- System Configuration Area (SCA): an area to store system boot parameter configurations
- User App: an area to store application firmware
- Unused Space: a free area for developers. For example, developers can store new application firmware in the Unused Space temporarily during DFU.
- NVDS: Non-volatile Data Storage area

🛄 Note:

By default, NVDS occupies the last two sectors of Flash memory. You can configure the start address of NVDS and the number of occupied sectors according to Flash memory layout of products. For more information about the configuration, see "Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h".

It should be noted that the start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It stores flags and other system configuration parameters used during system boot. The SDK toolchain generates an SCA image file based on BUILD_IN_APP_INFO in the application firmware (path: Project_Folder\platform\soc\common\gr_pl atform.c), and programs the image info to SCA. Bootloader will then verify and jump to the entry address of the firmware based on the boot information in SCA. BUILD_IN_APP_INFO is defined and configured as follows:

🛄 Note:

Project_Folder is the root directory of a project.

```
const APP_INFO_t BUILD_IN_APP_INFO __attribute__((section(".app_info"))) =
#endif
{
    .app_pattern = APP_INFO_PATTERN_VALUE,
    .app_info_version = APP_INFO_VERSION,
    .chip_ver = CHIP_VER,
    .load_addr = APP_CODE_LOAD_ADDR,
    .run_addr = APP_CODE_RUN_ADDR,
    .app_info_sum = CHECK_SUM,
```

GODIX

```
.check_img = BOOT_CHECK_IMAGE,
.boot_delay = BOOT_LONG_TIME,
.sec_cfg = SECURITY_CFG_VAL,
#ifdef APP_INFO_COMMENTS
.comments = APP_INFO_COMMENTS,
#endif
};
```

- app_pattern: a fixed value: 0x47525858
- app_info_version: firmware version information, corresponding to APP_INFO_VERSION. The current version number is 1.
- chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h
- load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in *custom_config.h*
- run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h
- app_info_sum: checksum of firmware information, automatic calculation result by CHECK_SUM
- check_img: boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in *custom_config.h.* When check_img is set to 1, the firmware will be verified at booting.
- boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in *custom_config.h*. When the value is set to 1, cold boot will be launched after a one-second delay.
- sec_cfg: security configuration parameter, not in use at present
- reserved0: reserved bits
- comments: firmware information, up to 12 bytes
- reserved1: reserved bits

Figure 2-5 shows the SCA layout.

- Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.
 - In non-security mode, the Bootloader obtains boot information from Boot_Info by default.
 - In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info
 Backup and obtains boot information from it.
- The firmware boot information is stored in the Boot_Info (32 B) area. The Bootloader checks and jumps to the entry address of the firmware based on the boot information.
 - The Boot Config area stores the system boot configuration information.
 - The SPI Access Mode area stores the SPI access mode configuration. It is a fixed configuration of the system and cannot be modified.
 - Run Addr indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.
 - Load Addr indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.
 - The CheckSum area stores the firmware checksum which is computed automatically by the SDK toolchain after firmware is generated.
 - The APP Size area stores the firmware size which is computed automatically by the SDK toolchain after firmware is generated.
- Up to 10 pieces of firmware information are stored in Img_Info areas. Firmware information is stored in Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU mode.

- The Comments area stores the descriptive information about firmware and supports up to 12 characters.
 Every time a firmware file is generated, the file name will be saved in Comments by SDK toolchain.
- The Boot_Info (24 B) area stores the firmware boot information which is the same as the low 24-byte information in the Boot_Info (32 B) area mentioned above.
- The Version area stores the firmware version, corresponding to VERSION in *custom_config.h*.
- The Pattern area stores a fixed value: 0x4744.
- The DFU Config Info area stores configurations of DFU module in ROM.
 - The UART Info area stores UART configurations of DFU module, including status bit, baud rate, and GPIO configurations.
 - The ADV Name Info area stores advertising configurations of DFU module, including status bit, advertising name, and advertising length.
 - The NVDS Init Info area stores initialization configurations of NVDS system in DFU module, including status bit, NVDS area size, and start address.
 - The DFU Disable Cmd Info area stores DFU disable command configurations of DFU module, including status bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a DFU command.
- The HMAC area stores the HAMC check value. This area is valid only in security mode.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash Hardware Abstract Layer (Flash HAL). NVDS is located in the flash memory and data in it will not be lost in power-off status. By default, NVDS uses the last two sectors of the flash memory, in which the last sector is for defragmentation, and the other sector for data storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data, states, and user information. BLE Stack stores parameters such as device bonding parameters in NVDS. NVDS features:

- Each storage item (TAG) has a unique TAG ID for identification. User applications can read and change data according to TAG IDs, regardless of the physical addresses for storage.
- It is optimized based on medium characteristics of Flash memory and supports data check, word alignment, defragmentation, and erase balance.
- The size and start address of NVDS are configurable. Compared with Flash memory which is made up of 4 KB sectors, NVDS can be in several sectors as configured. Make sure the start address of NVDS is 4 KB aligned.

NVDS provides the following eight simple APIs to manipulate non-volatile data in Flash.

Table 2-1 NVDS APIs

Function Prototype	Description
uint8_t nvds_init(uint32_t start_addr, uint8_t sectors)	Initialize the Flash sectors used by NVDS.

Function Prototype	Description
uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf)	Read data according to TAG IDs from NVDS.
uint& tavds aut/NvdsTag ttag uint16 tlan constuint& t*a buf)	Write data to NVDS and mark the data with TAG IDs. If no TAG
	exists, create one.
uint8_t nvds_del(NvdsTag_t tag)	Remove the corresponding data of a TAG ID in NVDS.
uint16_t nvds_tag_length(NvdsTag_t tag)	Obtain the data length of a specified TAG.
uint8_t nvds_drv_func_replace(nvds_drv_func_t *p_nvds_drv_func)	Replace the APIs that can directly control Flash.
uint8_t nvds_func_replace(nvds_func_t *p_nvds_func)	Replace the APIs that controls NVDS.
void nyds retention size(uint& t hond day num)	Reserve space for device bonding. The space reserved
	depends on the number of devices to be bonded.

For details about NVDS APIs, see the NVDS header file (SDK_Folder\components\sdk\gr55xx_nvds.h). Data stored in NVDS is in the format below.

8 bytes	Up to 1024 bytes
Data Header	Data

Figure 2-6 Data format in NVDS

Details of data header are described below.

Table 2-2 Data header format

Byte	Name	Description
0–1	tag	Data tag
2–3	len	Data length
4–4	checksum	Checksum of data header
5–5	value_cs	Checksum of data
6–7	reserved	Reserved bits

🛄 Note:

BLE Stack also stores some parameters in NVDS. Therefore, it is required to allocate a flash storage area to NVDS. By default, the GR5526 SDK uses the last but one sector of flash memory for NVDS storage, and the last one for NVDS defragmentation. You can modify NVDS_START_ADDR and NVDS_NUM_SECTOR in *custom_config.h* to configure the start address and the size of NVDS. BLE Stack and applications share the same NVDS storage area. However, TAG ID namespace is divided into different categories. You can only use the TAG ID name category assigned to applications.

- Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as an NVDS API parameter.
- Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x4000 to 0x7FFF.

Before running an application for the first time, you can use GProgrammer to write the initial TAG value used by BLE Stack and the application to NVDS. If you specify an NVDS area start address, instead of using the default NVDS area in the GR5526 SDK, make sure the start address configured in GProgrammer is 4 KB aligned.

2.5 RAM Mapping

The RAM of a GR5526 SoC is 512 KB in size with the start address of 0x3000_0000. It consists of 11 RAM blocks. Each of the first two RAM blocks is 16 KB, followed by two 32-KB blocks, six 64-KB blocks, and a 32-KB block in sequence. Each RAM block can be powered on/off by software independently.

Dote:

GR5526 provides RAM (start address: 0x3000_0000) with an aliasing memory with the start address being 0x0010_0000 and 0x2000_0000. For more information, see Figure 2-3.

- The region (start address: 0x2000_0000) supports bit field operations, mapping to the region starting from 0x2200_0000.
- The region starting from 0x0010_0000 features higher access efficiency thanks to the Cortex[®]-M4F architecture. Therefore, executing code in this region promotes running speed.
- In GR5526 SDK, RW, ZI, HEAP, and STACK use the RAM region starting from 0x2000_0000; RAM_CODE uses the region starting from 0x0010_0000.

The 512 KB RAM layout is shown in Figure 2-7:

Figure 2-7 512 KB RAM layout

Running modes for applications include XIP and Mirror modes. For more information about configurations, see **APP_CODE_RUN_ADDR** in "Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h". RAM layouts of the two modes are different.

Table 2-3 Running	g modes fo	or appl	ications
-------------------	------------	---------	----------

Running Mode	Description	
	It refers to Execute in Place Mode. User applications are stored in on-chip flash, and	
XIP Mode	applications use the same space for running and loading. When the system is powered on,	
	it fetches and executes commands from flash directly through the Cache Controller.	
	In Mirror Mode, user applications are stored in on-chip flash, and the running space of	
Mirror Mode	applications is RAM. During application boot, applications are loaded into RAM from	
	external flash after check is completed, and the system jumps to RAM for operation.	

Note:

Continuous access to flash is required in XIP Mode. Therefore, power consumption in this mode is a little higher than that in Mirror Mode.

2.5.1 Typical RAM Layout in XIP Mode

The typical RAM layout under XIP mode is as shown in Figure 2-8. Developers are able to modify the layout based on product needs.

Figure 2-8 RAM layout in XIP Mode

RAM_CODE saves code executed in RAM. To boost the efficiency in execution, it is recommended to allocate this region to Aliasing memory aligned to 0x00100 mapped to the physical address.

The layout in XIP Mode allows application firmware to be run directly in the code loading area, so that more RAM space is available for applications. During update to contents in Flash memory, XIP Mode is disabled; during erase of Flash memory, interrupts with priority lower than FLASH_PROTECT_PRIORITY cannot be generated.

Note:

- QSPI0, QSPI1, QSPI2, and OSPI support XIP mode. In this mode, users can map the address of flash memory or PSRAM to memory, so that users can operate on memory directly.
 - When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming continuous SRAM space with the region from 0x2000 0000 to 0x2007 FFF.
 - When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming continuous SRAM space with the region from 0x3000 0000 to 0x3007 FFF.
- Users can add self-defined sections as needed. Avoid modifying the default scatter file of the SDK or delete part of the scatter file (such as deleting RAM_CODE from the scatter file). For details about the scatter file, see "Section 4.3.2.2 Configuring Memory Layout".

2.5.2 Typical RAM Layout in Mirror Mode

The typical RAM layout in Mirror Mode is as shown in Figure 2-9. Users can modify the layout based on product needs.

Figure 2-9 RAM layout in Mirror Mode

The layout in Mirror Mode allows application firmware to be run in RAM. The SoC enters cold boot process after power-on. The Bootloader copies application firmware from flash to the RAM segment **App Code Execution Region**. After wake-up from sleep mode, GR5526 SoC enters warm boot process. To shorten the warm boot time, the Bootloader does not redo copy of application firmware to the RAM segment **App Code Execution Region**.

The start address of the **App Code Execution Region** segment depends on APP_CODE_RUN_ADDR in *custom_config.h*. Users need to decide the value of APP_CODE_RUN_ADDR based on the use of .data and .bss segments, to avoid address overlap between the Call Stack segment (higher address segment) and .bss segments (lower address segment). Users can view the layout of RAM segments from the *.map* file.

It is recommended to set APP_CODE_RUN_ADDR with RAM Aliasing Memory address (from 0x0010_0000 to 0x0017_FFFF). Once an overlap between RAM segments happens, when a project is to be built, an error will occur and the overlap part will be indicated, to help users quickly check and locate the overlap part in the RAM.

2.5.3 RAM Power Management

Each RAM Block has three power modes: POWER OFF, RETENTION, and FULL.

- The FULL Mode corresponds to the Active Mode of the system; MCU is permitted to read from and write to RAM Blocks.
- RETENTION Mode is mainly used in Sleep Mode of the system. Data in RAM Blocks in this power mode does not get lost and is ready for use by the system when it switches from Sleep Mode to Active Mode.

• RAM Blocks in POWER OFF Mode are powered off, and data stored in these blocks gets lost. Users shall store the data in advance.

By default, the PMU in the GR5526 enables all RAM power sources when the system starts. The GR5526 SDK also provides a complete set of RAM power management APIs. You can configure the power of RAM Blocks based on application needs.

By default, the system enables automatic RAM power management mode during boot, and automatically implements power control of RAM Blocks according to RAM usage of applications. The configuration rules are provided as follows:

- When the system is in Active Mode, unused RAM Blocks are set to POWER OFF Mode, and RAM Blocks to be used are set to FULL Mode.
- When the system enters Sleep Mode, unused RAM Blocks remain in POWER OFF Mode, and RAM Blocks to be used are set to RETENTION Mode.

Configurations in practice are described below:

- In Bluetooth LE applications, the first 8 KB of RAM_16K_0 and RAM_16K_1 are reserved for Bootloader and BLE Stack only, not available for applications. When the system is in Active Mode, RAM_16K_0 and RAM_16K_1 shal I be in FULL Mode; when the system is in Sleep Mode, the two RAM Blocks shall be in RETENTION Mode. Non-Blu etooth LE applications can use these two RAM Blocks.
- Purposes of RAM_32K_0 and subsequent RAM Blocks are defined by applications. Generally, user data and the code segments to be executed in RAM are defined in continuous segments starting from RAM_32K_0; top of function call stacks are defined in upper address part of RAM. The power mode of these RAM Blocks can be enabled, or be controlled by applications.

Note:

GODIX

- Only if a RAM Block is in FULL Mode, an MCU access is permitted.
- Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h. SDK_Folder is the root directory of GR5526 SDK.

2.6 PSRAM

GR5526VGBIP SoC and GR5526RGNIP SoC have an 8-MB PSRAM with OSPI for data access. The PSRAM address is mapped to 0x30080000, forming a contiguous SRAM space together with the area from 0x3000 0000 to 0x3007 FFFF, providing larger SRAM space for users. The PSRAM features:

- Low power consumption
 - Partial array self-refresh (PASR)
 - Auto Temperature Compensated Self-Refresh (ATCSR) of built-in temperature sensor
 - User-configurable refresh rate
 - Ultra-low power consumption (ULP) in half sleep mode with data retained
- Software reset

G@DiX

- Output driver low voltage complementary metal oxide semiconductor (LVCMOS) with programmable drive strength
- Data mask for data write
- Data strobe enabled high-speed data read
- Register-configurable write and read initial latencies
- Write burst length: 2 bytes to 1024 bytes
- Wrap burst and hybrid burst at 16 B, 32 B, 64 B, and 1 KB
- Linear burst command
- Row boundary crossing (RBX)
 - Read can be enabled by mode register.
 - RBX write is not supported.

🛄 Note:

- GR5526 SoCs are embedded with PSRAM. By default, PSRAM is disabled. Users can enable PSRAM with OSPI controller before use.
- To improve power consumption performance, users can modify the impedance matching between the OSPI controller and PSRAM by adjusting PSRAM drive strength.
 - Lower drive strength means lower power consumption, and the waveform tends to be triangle wave, which is of lower quality.
 - Greater drive strength means higher power consumption, and the waveform tends to be square wave, which features higher quality.
 - Set the drive strength appropriate to the application scenario to avoid system crash caused by excessively high drive strength.
- The efficiency of MCU reading through OSPI is low. Therefore, it is recommended to access OSPI based on DMA alignment.

2.7 GR5526 SDK Directory Structure

The folder directory structure of GR5526 SDK is as shown in Figure 2-10.

Figure 2-10 GR5526 SDK directory structure

Detailed description of folders in GR5526 SDK is as shown in Table 2-4.

Table 2-4 GR5526 SDK folders

Folder	Description
	It is the project configuration directory that stores the <i>custom_config.h</i> template
build\config	file. Contents in this file are used to configure projects, and to provide related input
	parameters for the SDK toolchain.
build\gcc	It contains tools used for GCC-based development environment.
build\iar	It contains tools used for IAR-based development environment.
build\keil	It contains tools used for Keil MDK.
components\drivers_ext	It contains drivers of third-party components on the development board.
components\graphics	It contains contents about GPU display.
components\libraries	It contains libraries provided in the GR5526 SDK.
components\profiles	It contains source files of GATT Services/Service Clients implementation examples provided
	in the GR5526 SDK.

Folder	Description		
components\sdk	It contains API header files provided in the GR5526 SDK.		
documentation	GR5526 API Reference Manual		
drivers\inc\hal	t contains HAL and LL header files of the GR5526 peripheral drivers.		
drivers\inc	It contains driver API header files, which are easy to use for application developers.		
drivers\src	It contains driver API source code, which is easy to use for application developers.		
external\fat_fs	It contains source code from FatFs, a third-party program.		
external\freertos	It contains source code from FreeRTOS, a third-party program.		
external\lvgl	It contains source code from LVGL, a third-party program.		
external\mbedtls	It contains source code from mbed TLS, a third-party program.		
external\segger_rtt	It contains source code from SEGGER RTT, a third-party program.		
external\TinyUSB	It contains source code from TinyUSB, a third-party program.		
external\unity2.5	It contains source code from Unity 2.5, a third-party program.		
platform\arch	It contains toolchain files of CMSIS.		
nlatform\boards	It stores source files for initialing GR5526 Starter Kit Board (GR5526 SK Board). The files are		
plationin(boards	used for initializing basic peripherals at board level.		
platform\include	It stores common header files related to platform.		
nlatform\soc\common	It stores public source files compatible to GR5526 SoCs. The files include gr_interrupt.c,		
	gr_platform.c, and gr_system.c.		
platform\soc\linker	It contains symbol table files and library files provided in the GR5526 SDK for the linker.		
nlatform\soc\include	It stores common header files closely related to driver underlying configurations such as		
plationinisocylincidde	registers and clock configurations.		
	It stores <i>gr_soc.c</i> , which is about initialization processes closely related to SoC		
platform\soc\src	implementation. The processes include initializing flash and NVDS, configuring crystal, and		
	calibrating PMU.		
projects\ble	It contains Bluetooth LE application project examples, such as Heart Rate Sensor and		
	Proximity Reporter.		
projects\peripheral	It contains project examples of peripheral applications of a GR5526 SoC.		

GODiX

3 Bootloader

The GR5526 supports two firmware running modes: XIP and Mirror. When the system is powered on, the Bootloader first reads the system boot configuration information from SCA, then performs application firmware integrity check and system initialization configuration accordingly, and finally jumps to the code running space to run firmware. The boot procedures may vary in different running modes.

- In XIP Mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check, and then jumps to the code run address in flash to run code.
- In Mirror Mode, after finishing application firmware check, the Bootloader loads the firmware in flash to corresponding RAM running space based on system configurations, and jumps to and runs the firmware in RAM.

The application boot procedures of the GR5526 SDK are shown in Figure 3-1.

Figure 3-1 Application boot procedures of the GR5526 SDK

- When the device is powered on, CPU jumps to 0x0000_0000, from which extracts the extended stack pointer (ESP) of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to 0x0000_004, and executes reset_handler in ROM to enter the Bootloader.
- 2. Bootloader initializes flash.

3. Bootloader reads boot information from SCA in flash and checks application firmware integrity.

🛄 Note:

GR5526 enhances security by encrypting and signing application firmware.

- Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
 HMAC check; after the check succeeds, the Bootloader decrypts SCA boot information and then implements the
 signature verification process in the secure boot process, to guarantee firmware integrity and prevent tampering
 or disguise; if signature verification succeeds, the automatic decryption functionality is enabled.
- Non-security mode: If the security mode is not enabled, the Bootloader performs cyclic redundancy check (CRC) on application firmware based on SCA boot information.
- 4. If CRC fails, the Bootloader enters J-Link DFU mode. You can update application firmware in flash with GProgrammer and J-Link.
- 5. If CRC passes, Bootloader checks the running mode.
 - In XIP Mode, the Bootloader jumps to the application firmware in flash to start implementation after XIP configuration is completed.
 - In Mirror Mode, the Bootloader copies the application firmware in flash to a specified segment in RAM, and then runs the application firmware in RAM.

4 Development and Debugging with GR5526 SDK in Keil

This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the GR5526 SDK in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM[®] for Cortex[®] and ARM devices. You can download and install the Keil installation package from the <u>Keil official website</u>. For the GR5526 SDK, Keil V5.20 or a later version shall be installed.

Note:

For more information about how to use Keil MDK-ARM IDE, see ARM online manuals.

The main interface of Keil is as shown in Figure 4-1.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are as shown in Table 4-1.

Table 4-1 Frequently used function buttons of Keil

Keil Icon	Description
<i>K</i>	Options for target
Q	Start/Stop Debug Session
L000 74	Download
<u>الله</u>	Build

G@DiX

4.2 Installing GR5526 SDK

The GR5526 SDK is ready for use after the GR5526 SDK software package is extracted. No manual installation is required.

Note:

- SDK_Folder is the root directory of GR5526 SDK.
- Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to build a Bluetooth LE application.

4.3.1 Preparing ble_app_example

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory, and rename it as ble_app_example. Rename the base name of *.uvoptx* and *.uvprojx* files in ble_app_example\Keil_ 5 as ble_app_example.

> ble_app_example > Keil_5
Name
 ble_app_example.uvoptx ble_app_example.uvprojx

Figure 4-2 ble_app_example folder

Double-click *ble_app_example.uvprojx* to open the project example in Keil. Click <u>s</u>, and select **Output** in **Options for Target 'GRxx_Soc'**; enter **ble_app_example** in **Name of Executable**.

	_
W Options for Target 'GRxx_Soc'	\times
Device Target Output Listing User C/C++ Asm Linker Debug Utilities	
Select Folder for Objects Name of Executable: ble_app_example	
Create Batch File	
☑ Create HEX File	
✓ Browse Information	
C Create Library: .\Objects\ble_app_example.lib	
OK Cancel Defaults Help	

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the **Project** window of Keil.

🖃 🍄 Project: ble_app_example
🖨 🚂 GRxx_Soc
🕀 🧰 gr_startup
🖶 들 gr_arch
🕀 🧰 gr_soc
🖶 🧰 gr_board
🕀 🧰 gr_stack_lib
🗉 🧰 gr_app_drivers
👳 🧰 gr_libraries
🖶 🧰 gr_profiles
🖭 🧰 external
🗉 🧰 user_platform
🗄 💼 user_app

Figure 4-4 ble_app_example in Keil

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries, gr_profiles, and external.

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Table 4-2 SDK groups

SDK Group Name	Description		
gr_startup	It contains a system boot file.		
gr_arch	It contains configuration files for initializing System Core and PMU, and implementing system interrupt APIs.		
gr_soc	It contains the file gr_soc.c.		
gr_board	It contains a board-level description file.		

GODIX

SDK Group Name	Description
gr_stack_lib	It contains the GR5526 SDK . <i>lib</i> file.
gr_app_drivers	It contains driver API source files, which are easy to use for application developers. You can add related application drivers on demand.
gr_libraries	It contains open source files of common assistant software modules and peripheral drivers provided in the SDK.
gr_profiles	It contains source files of GATT Services/Service Clients. You can add necessary GATT source files for projects.
external	It contains source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third- party programs on demand.

• User groups

User groups include user_platform and user_app.

Figure 4-6 user_groups

Functionalities for source files in User groups need to be implemented by developers. Group descriptions are provided below:

Table 4	4-3	User	groups
---------	-----	------	--------

User Group Name	Description
user_platform	It contains the configuration file for setting software and hardware resources, and initializing
	applications.

User Group Name	Description	
user_app	It contains main() function entries, and other source files created by developers, which are used to	
	configure runtime parameters of BLE Stack and execute event handlers of GATT Services/Service	
	Clients.	

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code running mode, memory layout, After Build, and other configuration items.

4.3.2.1 Configuring custom_config.h and ble_basic_config.h

custom_config.h is used to configure parameters of application projects. A template for *custom_config.h* is provided in SDK_Folder\build\config\. The *custom_config.h* of each application example project is in Src\config under project directory.

Macro	Description
SOC_GR5526	It indicates the version number of SoC.
	It is used to enable/disable Callstack Trace Info printing. If printing is enabled, the Callstack Trace
	Info is printed when a HardFault occurs.
	0: Disable
	1: Enable
	It is used to enable/disable the App Drivers module.
APP_DRIVER_USE_ENABLE	0: Disable
	1: Enable
	It is used to enable/disable the APP LOG module.
APP_LOG_ENABLE	0: Disable
	1: Enable
	It is used to enable/disable the APP LOG STORE module.
APP_LOG_STORE_ENABLE	0: Disable
	0: Enable
	Set the output mode of APP LOG module.
APP LOG PORT	0: UART
	1: J-Link RTT
	2: ARM ITM
	It is used to enable/disable the GUI module on GR5526 SK Board.
SK_GUI_ENABLE	0: Disable
	1: Enable

Table 4-4 Parameters in custom_config.h

Macro	Description
	It is used to enable/disable DTM Test.
DTM_TEST_ENABLE	0: Disable
	1: Enable
	It is used to enable/disable DFU.
DFU_ENABLE	0: Disable
	1: Enable
	It is used to enable/disable PMU CALIBRATION. When PMU CALIBRATION is enabled, the system
	monitors temperatures and voltages automatically with adaptive adjustment. It shall be enabled in
PMU_CALIBRATION_ENABLE	high/low temperature scenarios. It is recommended to enable this parameter by default.
	0: Disable
	1: Enable
	During flash write or erase, applications can block the interrupts with the priority level lower than or
	equal to a set value.
	When FLASH_PROTECT_PRIORITY is set to N, interrupt requests with a priority level not higher than
	N are suspended. After erase is completed, flash responds to the suspended interrupt requests. By
	default, flash does not respond to any interrupt request during erase. Developers can set a value on
	demand.
	It indicates the start address of NVDS. By default, the macro is commented out in <i>cutom_config.h</i> . If
	you need to reconfigure the NVDS address, enable the macro and set the address as needed (4-KB
NVDS_SIARI_ADDR	alignment is compulsory). The start address cannot be set in used areas in the memory (such as SCA
	and user App).
NVDS_NUM_SECTOR	It represents the number of flash sectors for NVDS.
	It indicates the size of Call Stack required by applications. You can set the value as needed. Please
	note that the value shall not be less than 6 KB. The default value is 12 KB.
SYSTEM_STACK_SIZE	After compilation of ble_app_example, Maximum Stack Usage is provided in Keil_5\Objects\
	ble_app_example.htm for reference.
	It indicates the size of Heap required by applications. You can set the value as needed. The default
SYSTEM_HEAP_SIZE	value is 16 KB.
	It represents the start address of the application storage area. This address shall be within the flash
APP_CODE_LOAD_ADDR*	address range.
	It represents the start address of the application running space.
APP_CODE_RUN_ADDR*	If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP Mode.
	If the value is within the RAM address range, applications run in Mirror Mode.
	It represents the system clock frequency. Optional values are provided as follows:
SYSTEM_CLOCK*	0: 96 MHz

Macro	Description
	1: 64 MHz
	2: 16 MHz (XO)
	3: 48 MHz
	4: 24 MHz
	5: 16 MHz
	6: 32 MHz (PLL)
	It is used to enable/disable the OSC clock inside an SoC as the Bluetooth LE low-frequency sleep
	clock. If the OSC clock is enabled, CFG_LF_ACCURARY_PPM will be set to 500 PPM by force.
CFG_LPCLK_INTERNAL_EN	0: Disable
	1: Enable
	It represents the Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to
CFG_LF_ACCORART_PPM	500 (unit: ppm).
	It is used to set necessary 1-second delay (during SoC boot before implementing the second half
DOOT LONG TIME*	Bootloader).
BOO1_LONG_TIME*	0: No delay
	1: Delay for 1 second.
	It determines whether to check the image during cold boot in XIP mode.
BOOT_CHECK_IMAGE	0: Do not check.
	1: Check.
	It represents the version number of application firmware; length: 2 bytes; it is stored in hexadecimal
VERSION	format.
CHIP_VER	It indicates the version of the SoC that the firmware runs on, currently set to 0x5526.

*: BUILD_IN_APP_INFO is defined at 0x200 in the firmware, and is initialized with macros in *custom_config.h*. When system boots, the Bootloader reads value from 0x200 and uses it as a boot parameter.

ble_basic_config.h is used to configure Bluetooth LE parameters of application projects. The *ble_basic_config.h* of each application example project is in Src\config under the project directory. Applications allocate Bluetooth LE resources as defined by the macros in *ble_basic_config.h*, as detailed below.

Table 4-5	Macros in	ble	basic	config.h
		_		

Macro	Description
	Use BLE Controller only or not.
CFG_CONTROLLER_ONLY	• 0: Use BLE Controller and Host
	• 1: Use BLE Controller only.
CEC MAY DES	It represents the maximum number of GATT Profiles/Services supported by applications.
	Set the value on demand: A larger value means occupying more RAM space.

Macro	Description
CFG_MAX_BOND_DEVS	It represents the maximum number of devices that can be bonded to applications. Max: 4.
	It represents the maximum number of devices that can be connected to applications, and
	the number shall be no greater than 10. You can set the value based on needs. A larger
	value means more RAM space to be occupied by BLE Stack Heaps. The size of BLE Stack
	Heaps is defined by the following four macros in <i>flash_scatter_config.h</i> , which cannot be
CFG_MAX_CONNECTIONS	changed by developers:
	• ENV_HEAP_SIZE
	ATT_DB_HEAP_SIZE
	• KE_MSG_HEAP_SIZE
	NON_RET_HEAP_SIZE
CEG MAX ADVS	It indicates the maximum number of Bluetooth LE legacy advertising and extended
	advertising supported by applications.
	It indicates the maximum number of Bluetooth LE periodic advertising supported by
	applications.
CEG MAX PER ADVS	Note:
	The total number of legacy advertising and extended advertising
	(CFG_MAX_LEG_EXT_ADVS) plus the number of periodic advertising
	(CFG_MAX_PER_ADVS) shall be no greater than 5.
	It indicates the number of synchronized periodic advertising; used for reserving RAM
CFG_MAX_SYNCS	for BLE Stack. You can set the value according to the number of synchronized periodic
	advertising in use. Max: 5.
CEG MAX SCAN	It represents the maximum number of Bluetooth LE device used for scanning in
	applications. Max: 1.
CEG MAY FATT CHANNELS	It represents the maximum number of Bluetooth LE EATT channels supported in
	Application. Max: 10.
	It indicates whether the ISO module is supported.
CFG_ISO_SUPPORT	• 0: No
	• 1: Yes

Comments in *custom_config.h* and *ble_basic_config.h* are compliant with <u>Configuration Wizard Annotations</u> of Keil, making it possible for users to configure application projects with Configuration Wizard of Keil. Configuration Wizard helps avoid invalid parameters, and is therefore strongly recommended.

custom_config.h	
Expand All Collapse All Help Show Grid	
Option	Value
□-Basic configuration	
Chip version	1
Enable system fault trace module	ENABLE
Enable app driver module	ENABLE
Eanble APP log module	ENABLE
APP log port type	UART
Eanble APP log store module	DISABLE
Enable SK GUI module	DISABLE
Enable DTM test support	DISABLE
Enable BLE DFU support	ENABLE
Enable PMU Calibration	ENABLE
Protection priority level	0
NVDS Start Address	1
The Number of sectors for NVDS	1
Call Stack Size	0x0000 3000
Call Heap Size	0x0000 4000
Boot info configuration	
Code load address	Flash address
Code run address	Flash address
System clock	96MHZ
	500
Enable internal osc as low power clock	Default: Disable internal osc as low power clock
Delay time for Boot startup	Delay 500ms
-In xip mode, check image during cold boot startup	Check image
Code version.16bits	1
algorithm security level	Enable algorithm level one

Figure 4-7 custom_config.h in Configuration Wizard

ble_basic_config.h		
Expand All Collapse All Help Show Grid		
Option	Value	
BLE resource configuration		
BLE controller only(use for extern host or HCl uart transport)	Support BLE controller and host	
Support maximum number of BLE profiles	10	
Support maximum number of bonded devices	4	
Support maximum number of BLE Links	10	
Support maximum number of BLE Legacy/Extended Advertisings	1	
Support maximum number of BLE Periodic Advertisings	0	
Support maximum number of BLE Periodic Advertising Synchronizations	0	
Support maximum number of BLE Scan	0	
ISO support	SUPPORT	

Figure 4-8 ble_basic_config.h in Configuration Wizard

4.3.2.2 Configuring Memory Layout

Keil defines memory segments for the linker in *.sct* files. The GR5526 SDK provides an example *flash_scatter_common.sct* for application developers. The macros used by this *.sct* file are defined in *flash_scatter_config.h*.

GODIX

Note:

In Keil, __attribute__((section("name"))) can be used to place a function or a variable at a separate
memory segment, in which name depends on your choice. A scatter (.sct) file specifies the location for a named
segment. For example, place Zero-Initialized (ZI) data of applications at the segment named __attribute__((sec
tion(".bss.app"))).

You can follow the steps below to configure the memory layout:

- 1. Click (Options for Target) on the Keil toolbar and open the Options for Target 'GRxx_Soc' dialog box. Select the Linker tab.
- 2. On the Scatter File bar, click ... to browse and select the *flash_scatter_common.sct* file in SDK_Folder\platf orm\soc\linker\keil; or copy the scatter (*.sct*) file and its *.h* file to the ble_app_example project directory and then select the scatter file.

Dote:

#! armcc -E -I ...\Src\config\ --cpu Cortex-M4 in *flash_scatter_common.sct* specifies two include paths: one being the user path of application projects, and the other being the path where the *custom_config.h* file of an application project locates. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on product memory layout.

W Options for Target 'GRxx_Soc'	×
Device Target Output Listing User C/C++ Asm Linker Debug Utilities	
□ Use Memory Layout from Target Dialog X/O Base: □ Make RW Sections Position Independent R/O Base: □ Make RO Sections Position Independent R/W Base □ Don't Search Standard Libraries Iwx000060000 Iversity Iwx000060000 Iversity Iwx000060000	
Scatter	Edit
Misc\\\platform\soc\linker\keil\rom_symbol.txt	\sim
Linker control string	mon.sct"
OK Cancel Defaults	Help

Figure 4-9 Configuration of scatter file

4. Click **OK** to save the settings.

4.3.2.3 Configuring After Build

GODIX

After Build in Keil can specify the command to be executed after a project is built. By default, the after build command will be executed for ble_app_template. ble_app_example, which is based on ble_app_template, does not require manual configuration of After Build.

If you build a project, follow the steps below to configure After Build:

- 1. Click ▲ (Options for Target) on the Keil toolbar and open the Options for Target 'GRxx_Soc' dialog box. Select the User tab.
- From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to generate a compiling file based on the selected .axf file.
- From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
 \@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to
 generate a .bin file based on the selected .axf file.
- 4. Click **OK** to save the settings.

Command Items	User Command		Stop on Exi	S
Before Compile C/C++ File				
		2	Not Specified	\Box
🗌 Run #2		2	Not Specified	\Box
Before Build/Rebuild				
		2	Not Specified	\square
🗌 Run #2		2	Not Specified	\Box
After Build/Rebuild				
🔽 Run #1	fromelf.exetext -coutput Listings\@L.s Ob	2	Not Specified	\Box
🔽 Run #2	fromelf.exebinoutput Listings\@L.bin Obje	2	Not Specified	\Box
Run 'After-Build' Conditionally				

Figure 4-10 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical *main.c* file is provided as follows:

```
/**@brief Stack global variables for Bluetooth protocol stack. */
STACK_HEAP_INIT(heaps_table);
...
int main (void)
```

G@DiX

```
/** Initialize user peripherals. */
app_periph_init();
/** Initialize BLE Stack. */
ble_stack_init(&&m_app_ble_callback, &heaps_table);
// Main Loop
while (1)
{
    /*
        * Add Application code here, e.g. GUI Update.
        */
        app_log_flush();
        pwr_mgmt_schedule();
}
```

- STACK_HEAP_INIT(heaps_table) defines four global arrays as Heaps for BLE Stack. Do not modify the definition; otherwise, BLE Stack cannot work. For more information about Heap size, see CFG_MAX_CONNECTIONS in "Section 4.3.2.1 Configuring custom_config.h and ble_basic_config.h".
- You can initialize peripherals in app_periph_init(). In development and debugging phases, the SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address. *user_periph_setup.c* in which this function is contained includes the following main code:

```
/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11, 0x11, 0x11;
...
void app_periph_init(void)
{
    SYS_SET_BD_ADDR(s_bd_addr);
    bsp_log_init();
    pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}
```

- You should add main loop code of applications to while(1) { }, for example, code to handle external input and update GUI.
- When using the APP LOG module, call the app_log_flush() in the main loop. This is to ensure logs are output completely before the SoC enters Sleep Mode. For more information about the APP LOG module, see "Section 4.6.3 Outputting Debug Logs".
- Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power consumption.

4.3.3.2 Implementing Bluetooth LE Business Logic

Related Bluetooth LE business logic of applications are driven by a number of Bluetooth LE events which are defined in the GR5526 SDK. Applications need to implement the corresponding Bluetooth LE event handlers in GR5526 SDK to obtain operation results or state change notifications of BLE Stack. Bluetooth LE event handlers are called in the interrupt context of Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking function call and infinite loop; otherwise, the system is blocked, causing BLE Stack and the SDK Bluetooth LE module unable to run in a normal timing. GODiX

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security Manager, L2CAP, GATT Common, GATT Server, and GATT Client. All Bluetooth LE events supported by GR5526 SDK are listed below.

Event Type	Event	Description
Common	BLE_COMMON_EVT_STACK_INIT	BLE Stack init complete event
	BLE_GAPM_EVT_CH_MAP_SET	Channel Map Set complete event
	BLE_GAPM_EVT_WHITELIST_SET	Whitelist Set complete event
	BLE_GAPM_EVT_PER_ADV_LIST_SET	Periodic Advertising List Set complete event
	BLE_GAPM_EVT_PRIVACY_MODE_SET	Privacy Mode for Peer Device Set complete event
	BLE_GAPM_EVT_LEPSM_REGISTER	LEPSM Register complete event
	BLE_GAPM_EVT_LEPSM_UNREGISTER	LEPSM Unregister complete event
	BLE_GAPM_EVT_DEV_INFO_GOT	Device Info Get event
	BLE_GAPM_EVT_ADV_START	Advertising Start complete event
	BLE_GAPM_EVT_ADV_STOP	Advertising Stop complete event
GAP Management	BLE_GAPM_EVT_SCAN_REQUEST	Scan Request event
	BLE_GAPM_EVT_ADV_DATA_UPDATE	Advertising Data update event
	BLE_GAPM_EVT_SCAN_START	Scan Start complete event
	BLE_GAPM_EVT_SCAN_STOP	Scan Stop complete event
	BLE_GAPM_EVT_ADV_REPORT	Advertising Report event
		Periodic Advertising Synchronization Establish
		event
	BLE_GAPM_EVT_SYNC_STOP	Periodic Advertising Synchronization Stop event
	BLE_GAPM_EVT_SYNC_LOST	Periodic Advertising Synchronization Lost event
	BLE_GAPM_EVT_READ_RSLV_ADDR	Read Resolvable Address event
	BLE_GAPC_EVT_PHY_UPDATED	PHY Update event
	BLE_GAPC_EVT_CONNECTED	Connected event
	BLE_GAPC_EVT_DISCONNECTED	Disconnected event
GAP Connection	BLE_GAPC_EVT_CONNECT_CANCEL	Connect Cancel event
	BLE_GAPC_EVT_AUTO_CONN_TIMEOUT	Auto Connect Timeout event
Control	BLE_GAPC_EVT_CONN_PARAM_UPDATED	Connect Parameter Updated event
	BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ	Connect Parameter Request event
	BLE_GAPC_EVT_PEER_NAME_GOT	Peer Name Get event
	BLE_GAPC_EVT_CONN_INFO_GOT	Connect Info Get event
	BLE_GAPC_EVT_PEER_INFO_GOT	Peer Info Get event

G@DiX

Event Type	Event	Description
	BLE_GAPC_EVT_DATA_LENGTH_UPDATED	Data Length Updated event
	BLE_GAPC_EVT_DEV_INFO_SET	Device Info Set event
	BLE_GAPC_EVT_CONNECT_IQ_REPORT	Connection IQ Report info event
	BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT	Connectionless IQ Report info event
	BLE_GAPC_EVT_LOCAL_TX_POWER_READ	Local transmit power read indication info event
	BLE_GAPC_EVT_REMOTE_TX_POWER_READ	Remote transmit power read indication info event
	BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT	Transmit power change reporting info event
	BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT	Path loss threshold reporting info event
	BLE_GAPC_EVT_RANGING_IND	Ranging indication event
	BLE_GAPC_EVT_RANGING_SAMPLE_REPORT	Ranging sample report event
	BLE_GAPC_EVT_RANGING_CMP_IND	Ranging complete indication event
	BLE_GAPC_EVT_DFT_SUBRATE_SET	Default subrate param set complete event
	BLE_GAPC_EVT_SUBRATE_CHANGE_IND	Subrate change indication event
0.77.0	BLE_GATT_COMMON_EVT_MTU_EXCHANGE	MTU Exchange event
GATTCOMMON	BLE_GATT_COMMON_EVT_PRF_REGISTER	Service Register event
	BLE_GATTS_EVT_READ_REQUEST	GATTS Read Request event
	BLE_GATTS_EVT_WRITE_REQUEST	GATTS Write Request event
	BLE_GATTS_EVT_PREP_WRITE_REQUEST	GATTS Prepare Write Request event
	BLE_GATTS_EVT_NTF_IND	GATTS Notify or Indicate Complete event
	BLE_GATTS_EVT_CCCD_RECOVERY	GATTS CCCD Recovery event
	BLE_GATTS_EVT_MULT_NTF	GATTS Multiple Notifications event
GATT Server	BLE_GATTS_EVT_ENH_READ_REQUEST	GATTS Enhanced Read Request event
	BLE_GATTS_EVT_ENH_WRITE_REQUEST	GATTS Enhanced Write Request event
	BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST	GATTS Enhanced Prepare Write Request event
	BLE_GATTS_EVT_ENH_NTF_IND	GATTS Enhanced Notify or Indicate Complete event
	BLE_GATTS_EVT_ENH_CCCD_RECOVERY	GATTS Enhanced CCCD Recovery event
	BLE_GATTS_EVT_ENH_MULT_NTF	GATTS Enhanced Multiple Notifications event
	BLE_GATTC_EVT_SRVC_BROWSE	GATTC Service Browse event
	BLE_GATTC_EVT_PRIMARY_SRVC_DISC	GATTC Primary Service Discovery event
GATT Client	BLE_GATTC_EVT_INCLUDE_SRVC_DISC	GATTC Include Service Discovery event
	BLE_GATTC_EVT_CHAR_DISC	GATTC Characteristic Discovery event
	BLE_GATTC_EVT_CHAR_DESC_DISC	GATTC Characteristic Descriptor Discovery event

GODIX

Event Type	Event	Description	
	BLE_GATTC_EVT_READ_RSP	GATTC Read Response event	
	BLE_GATTC_EVT_WRITE_RSP	GATTC Write Response event	
	BLE_GATTC_EVT_NTF_IND	GATTC Notify or Indicate Receive event	
	BLE_GATTC_EVT_CACHE_UPDATE	GATTC Cache Update event	
	BLE_GATTC_EVT_ENH_SRVC_BROWSE	GATTC Enhanced Service Browse event	
	BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC	GATTC Enhanced Primary Service Discovery event	
	BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC	GATTC Enhanced Include Service Discovery event	
	BLE_GATTC_EVT_ENH_CHAR_DISC	GATTC Enhanced Characteristic Discovery event	
	RIE GATTO EVIT ENH CHAR DESC DISC	GATTC Enhanced Characteristic Descriptor	
		Discovery event	
	BLE_GATTC_EVT_ENH_READ_RSP	GATTC Enhanced Read Response event	
	BLE_GATTC_EVT_ENH_WRITE_RSP	GATTC Enhanced Write Response event	
	BLE_GATTC_EVT_ENH_NTF_IND	GATTC Enhanced Notify or Indicate Receive event	
	BLE_SEC_EVT_LINK_ENC_REQUEST	Link Encrypted Request event	
Security Manager	BLE_SEC_EVT_LINK_ENCRYPTED	Link Encrypted event	
Security Manager	BLE_SEC_EVT_KEY_PRESS_NTF	Key Press event	
	BLE_SEC_EVT_KEY_MISSING	Key Missing event	
	BLE_L2CAP_EVT_CONN_REQ	L2cap Connect Request event	
	BLE_L2CAP_EVT_CONN_IND	L2cap Connected Indicate event	
	BLE_L2CAP_EVT_ADD_CREDITS_IND	L2cap Credits Add Indicate event	
	BLE_L2CAP_EVT_DISCONNECTED	L2cap Disconnected event	
	BLE_L2CAP_EVT_SDU_RECV	L2cap SDU Receive event	
L2CAP	BLE_L2CAP_EVT_SDU_SEND	L2cap SDU Send event	
	BLE_L2CAP_EVT_ADD_CREDITS_CPLT	L2cap Credits Add Completed event	
	BLE_L2CAP_EVT_ENH_CONN_REQ	L2cap Enhanced Connect Request event	
	BLE_L2CAP_EVT_ENH_CONN_IND	L2cap Enhanced Connected Indicate event	
	BLE_L2CAP_EVT_ENH_RECONFIG_CPLT	L2cap Enhanced Reconfig Completed event	
	BLE_L2CAP_EVT_ENH_RECONFIG_IND	L2cap Enhanced Reconfig Indicate event	

You need to implement necessary Bluetooth LE event handlers according to functional requirements of your products. For example, if a product does not support Security Manager, you do not need to implement corresponding events; if the product supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only those event handlers required for products are to be implemented. For more information about the usage of Bluetooth LE APIs and event APIs, see the source code of Bluetooth LE examples in SDK_Folder\documentation\GR5526_API_Reference and SDK_Folder\projects\bl e.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

BLE Stack is the implementation core of BLE protocol stacks. It directly operates the hardware mentioned in the Bluetooth 5.3 Core (see "Section 2.2 Software Architecture"). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall IRQ, ensuring that BLE Stack runs strictly in a time sequence specified in *Bluetooth Core Spec*. A state change of BLE Stack triggers BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler, the Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of BLE Stack and related business data to applications. Avoid time-consuming operations when using these event handlers. Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK_Folder\compone nts\libraries\app_queue, or your own application framework, to transfer events from Bluetooth LE event handlers to the main loop.

Figure 4-11 System schedule (without OS)

4.4 Generating Firmware

After building a Bluetooth LE application, you can directly click **Build** on the Keil toolbar to build a project. After the project is built, two firmware files are created in Keil_5\Listings and Keil_5\Objects respectively in the project directory. Both the two types of firmware can be downloaded to and run on GR5526 SoCs through GProgrammer. See *GProgrammer User Manual* for details.

Table 4-7	Firmware	files	generated
-----------	----------	-------	-----------

Name	Description
ble_app_example.bin	Binary application firmware, can be downloaded to and run on GR5526 SoCs through GProgrammer.
ble_app_example.hex	Binary application firmware, can be downloaded to and run on GR5526 SoCs through Keil or GProgrammer.

4.5 Downloading .hex Files to Flash

After .hex files are generated, you need to download these files to flash. Specific steps are provided below:

- 1. Configure Keil flash programming algorithm.
 - (1). Copy SDK_Folder\build\Keil\GR5xxx_16MB_Flash.FLM to Keil_Folder\ARM\Flash.
 - (2). Click (Options for Target) on the Keil toolbar, open the Options for Target 'GRxx_Soc' dialog box, and select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Options for Target 'GRxx_Soc'	×
Device Target Output Listing User C/C++ Asm C Use Simulator with restrictions User Speed to Real-Time	Linker Debug Utilities Image: Use: J-LINK / J-TRACE Cortex
Image: Construction at Startup Image: Run to main() Initialization File: Image: Construction of the start in the start	□ Load Application at Startup ☑ Run to main() Initialization File:
CPU DLL: Parameter: SARMCM3.DLL -MPU	Driver DLL: Parameter: SARMCM3.DLL -MPU
Dialog DLL: Parameter: DCM.DLL pCM4	Dialog DLL: Parameter: TCM.DLL pCM4
Wam if outdated Executable is loaded Manage Component Vi	Wam if outdated Executable is loaded
OK Ca	ncel Defaults Help

Figure 4-12 Debug tab

(3). In the **Cortex JLink/JTrace Target Driver Setup** window, select **Flash Download**. In the **Download Function** pane, you can set the erase type and check optional items: **Program, Verify**, and **Reset and Run**. Default configurations of Keil are shown below:

ntex schik/shace larger briver.	setup			
ebug Trace Flash Download				
Download Function C Erase Full Chip C Erase Sectors C Do not Erase	 ✓ Program ✓ Verify ✓ Reset and F 	RAM for Start:	Algorithm 0x20000000 Size: 0xF000	
Programming Algorithm				
Description	Device Size	Device Type	Address Range	
1		Start:	Size:	
	Add	Remove		

Figure 4-13 Default configurations in the Download Function pane

(4). Click Add to add *GR5xxx_16MB_Flash.FLM* to the Programming Algorithm.

Cortex JLink/J	Trace Target Driver S	Setup			×
Debug Trace	Flash Download				
Download F	O Erase Full Chip ○ Erase Full Chip ○ Erase Sectors ○ Do not Erase	 ✓ Program ✓ Verify ✓ Reset and F 	RAM for / Start: 0	Algorithm Dx20000000 Size: DxF000	
Programmin	g Algorithm	Dovice Size	Dourioo Turpo	Address Banga	
GR5ixx_1	16MB_Flash	1G	Ext. Flash SPI	00200000H - 401FFFFFH	
			Start:	Size:	
		Add	Remove		

Figure 4-14 Adding GR55xx_16MB_Flash to Programming Algorithm

(5). Configure **RAM for Algorithm**, which defines address space to load and implement the programming algorithm. Enter the start address of RAM in GR5526 in the **Start** input field: **0x30000000**. Enter **0xF000** in the **Size** input field.

RAM for Algorithm	
Start: 0x20000000	Size: 0xF000

Figure 4-15 Settings of RAM for Algorithm

- (6). Click **OK** to save the settings.
- 2. Download firmware.

After completing configuration, click 🕮 (**Download**) on the Keil toolbar to download *ble_app_example.axf* to flash. After download is completed, the following results are displayed in the **Build Output** window of Keil.

🛄 Note:

During file download, if "No Cortex-M SW Device Found" pops up, it indicates the SoC may be in sleep state currently (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to flash. In this case, developers need to press **RESET** on the GR5526 SK Board and wait for about 1 second; then click **(Download)** to download the file again.

Build Output
Load " projects\\ble\\ble_peripheral\\ble_app_template\\Keil_\$\\Objects\\ble_app_example.axf" Set JLink Project File to " projects\ble\ble_peripheral\ble_app_template\Keil_\$\JLinkSettings.ini" * JLink Info: Device "CORTEX-M4" selected.
JLink info:
DL: V5.12e, compiled Apr 29 2016 15:03:58 Firmware: J-Link OR-SAM3U128 V3 compiled Apr 16 2020 17:20:41 Hardware: V3.00 S/N : 483113122
 JLink Info: Found SWD-DP with ID 0x2BA01477 JLink Info: Found Cortex-M4 top1, Little endian. JLink Info: FFUnit: 18 code (BF) slocts and 2 literal slots JLink Info: CoreSight components: JLink Info: ROMTD1 0 [0]: FFT07000, CID: BloSE00D, PID: 000BB00C SCS JLink Info: ROMTD1 0 [1]: FFT03000, CID: BloSE00D, PID: 000BB002 DWT JLink Info: ROMTD1 0 [2]: FFT03000, CID: BloSE00D, PID: 000BB001 IMT JLink Info: ROMTD1 0 [1]: FFF0100, CID: BloSE00D, PID: 000BB001 IMT JLink Info: ROMTD1 0 [1]: FFF0100, CID: BloSE00D, PID: 000BB01 IMT JLink Info: ROMTD1 0 [1]: FFF01000, CID: BloSE00D, PID: 000BB01 IMT
Target info:
Erase Done. Programming Done. Verify OK. Application running Flash Load finished at 17:04:35

Figure 4-16 Download results

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and multiple software breakpoints. It also provides developers with diverse debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click (Options for Target) on the Keil toolbar, open the Options for Target 'GRxx_Soc' dialog box, and select Debug tab. In the window, software simulation debugging displays on the

left, and online hardware debugging displays on the right. Bluetooth LE example projects adopt the online hardware debugging. Related default configurations of the debugger are shown as follows:

🔣 Options for Target 'GRxx_Soc'	×			
Device Target Output Listing User C/C++ Asm Linker Debug Utilities				
C Use Simulator <u>with restrictions</u> Settings	Use: J-LINK / J-TRACE Cortex Settings			
Load Application at Startup Run to main() Initialization File:	Load Application at Startup Kun to main() Initialization File:			
Restore Debug Session Settings	Restore Debug Session Settings			
Breakpoints Iv Toolbox Watch Windows & Performance Analyzer	I Breakpoints I Toolbox Watch Windows			
Memory Display Viswer Viewer	Memory Display I System Viewer			
CPU DLL: Parameter:	Driver DLL: Parameter:			
SARMCM3.DLL -MPU	SARMCM3.DLL -MPU			
Dialog DLL: Parameter:	Dialog DLL: Parameter:			
DCM.DLL -pCM4	TCM.DLL pCM4			
Wam if outdated Executable is loaded	Warn if outdated Executable is loaded			
Manage Component Viewer Description Files				
OK Cancel Defaults Help				

Figure 4-17 Configuring the Debugger

The default initialization file *sram.ini* is in SDK_Folder\build\keil. You can use this file directly, or copy it to the project directory.

sram.ini contains a set of debug commands, which are executed during debugging. On the **Initialization File** bar, click **Edit...** on the right side, to open the *sram.ini* file. Example code of *sram.ini* is provided as follows:

```
/**
* * * * * * * * * * * *
                                                       ++++++
* GR55xx object loading script through debugger interface
* (e.g.Jlink# *etc).
* The goal of this script is to load the Keils's object file to the
* GR55xx RAM
* assuring that the GR55xx has been previously cleaned up.
*/
// Debugger reset(check Keil debugger settings)
// Preselected reset type(found in Options->Debug->Settings)is
// Normal(0);
// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
// RESET
// Load object file
LOAD %L
// Load stack pointer
SP = RDWORD(0x0000000)
// Load program counter
= RDWORD(0x0000004)
// Write 0 to vector table register# remap vector
WDWORD(0xE000ED08# 0x0000000)
```

GODIX

Dote:

Keil supports executing debugger commands set by developers in the following order:

- When Load Application at Startup (Options for Target 'GRxx_Soc' > Debug > Load Application at Startup) is enabled, the debugger first loads the file under Name of Executable (Options for Target 'GRxx_Soc' > Output > Name of Executable).
- 2. Execute the command in the file specified in **Options for Target 'GRxx_Soc' > Debug > Initialization File**.
- 3. When options under **Options for Target 'GRxx_Soc' > Debug > Restore Debug Session Settings** are checked, restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.
- 4. When Options for Target 'GRxx_Soc' > Debug > Run to main() is checked, or the command g, main is discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click a (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

Dote:

Make sure that both options under **Connect & Reset Options** are set to **Normal**, as shown in Figure 4-18. This is to ensure when you click **Reset** on the Keil toolbar after enabling **Start Debug Session**, the program can run normally.

J-Link / J-Trace Adapter	-SW Device	
SN: 483114462 ▼ Device: J-Link OB-SAM3U128 HW : V3.00 dll : V6.51a	SWD Ox2BA01477 ARM CoreSight SW	-DP Move
Port: Max Clock: SW V SMHz Auto Clk	Image: Construction ID CODE: Image: Construction Device Name: Add Delete Update IR Ien:	
Connect & Reset Options Connect: Normal Reset: Normal Reset after Connect	mal ▼ Cache Options Dov Cache Code Cache Kemory □	wnload Options Verify Code Download Download to Flash
© USB © TCP/IP Scan TCP/IP Network S IP-Addres 127	Settings Port (Auto: 0) Autodetex 0 0 1 : 0	t JLink Info

Figure 4-18 Setting Connect and Reset to Normal in Connect & Reset Options

4.6.3 Outputting Debug Logs

GR5526 SDK supports outputting debug logs of applications from hardware ports based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM ITM). GR5526 SDK provides an APP

LOG module to facilitate log output. To use the APP LOG module, enable APP_LOG_ENABLE in *custom_config.h*, and configure APP_LOG_PORT based on the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to set log parameters by calling app_log_init() during peripheral initialization and to initialize the APP LOG module by registering log output APIs and Flush APIs. The APP LOG module supports using the printf() (a C standard library function) and APP LOG APIs to output debug logs. If you choose APP LOG APIs, you can optimize logs by setting log level, log format, filter type, or other parameters; if you choose printf(), set log parameters as NULL.

Call the initialization function of corresponding module (see SDK_Folder\components\libraries\bsp\bs p.h for details) and register corresponding transmission and flush functions (see user_log_debug_init() for reference) according to the configured output port. If UART is the output port, related APIs are provided below.

```
static void user log debug init(void)
    app log init t log init;
    log init.filter.level = APP_LOG_LVL_DEBUG;
    log init.fmt set[APP LOG LVL ERROR] = APP LOG FMT ALL & (~APP LOG FMT TAG);
    log init.fmt set[APP LOG LVL WARNING] = APP LOG FMT LVL;
    log init.fmt set[APP LOG LVL INFO] = APP LOG FMT LVL;
    log init.fmt set[APP LOG LVL DEBUG] = APP LOG FMT LVL;
    app log init(&log init, bsp uart send, bsp uart flush);
#if APP LOG STORE ENABLE
    app log store info t store info;
    app_log_store_op_t op_func;
    store_info.nv_tag = APP_LOG_NVDS_TAG;
    store info.db addr = APP LOG DB START ADDR;
    store info.db size = APP LOG DB SIZE;
    store info.blk size = APP LOG ERASE BLK SIZE;
   op func.flash init = hal flash init;
    op func.flash erase = hal flash erase;
    op func.flash write = hal flash write;
    op func.flash read = hal flash read;
    op func.time get
                       = NULL;
    app log store init(&store info, &op func);
#endif
}
```

GODIX

Dote:

- The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API (optional for registration).
- GR5526 SDK provides an APP LOG STORE module, which supports storing the debug logs in flash and outputting the logs from flash. To use the APP LOG STORE module, users need to enable APP_LOG_STORE_ENABLE in *custom_config.h.* This module is configured in the ble_app_rscs project (in SDK_Folder\projects\ble\bl e_peripheral\ble_app_rscs). This configuration can be a reference when the APP LOG STORE module is used.
- Application logs output by using printf() cannot be stored by the APP LOG STORE module.

When debug logs are output through UART, the implemented log output API and flush API are bsp_uart_send and bsp_uart_flush respectively. The former API is the basis for two log output APIs: app_uart asynchronization (app_transmit_async) and hal_uart synchronization (hal_uart_transmit). Users can choose the output methods as needed. The latter API is used to output the remaining data that is cached in memory in interrupt mode. You can rewrite the above two APIs.

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is bsp_segger_rtt_send() or bsp_itm_send(). No flush API is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug logs:

- APP_LOG_ERROR()
- APP_LOG_WARNING()
- APP_LOG_INFO()
- APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() function to output all the debug logs cached, to ensure that all debug logs are output before the SoC is reset or the system enters the Sleep Mode.

If you choose armcc for compilation and output logs through J-Link RTT, it is recommended to make the following modifications in *SEGGER_RTT.c*:

SEGG	ER_RTT.c
238	ж
239	* Static data
240	*
241	******************************
242	-*/
243	//
244	<pre>// RTT Control Block and allocate buffers for channel 0</pre>
245	//
246	attribute((section (".ARMat_0x20005000"))) SEGGER_RTT_CB _SEGGER_RTT;
247	<pre>//SEGGER_RTT_PUT_CB_SECTION(SEGGER_RTT_CB_ALIGN(SEGGER_RTT_CB _SEGGER_RTT));</pre>
247	<pre>//segger_rtt_put_cb_section(segger_rtt_cb_align(segger_rtt_cb_segger_rtt))</pre>

Figure 4-19 Creating RTT Control Block and placing it at 0x20005000

In addition, make configurations in J-Link RTT Viewer as follows:

🔝 J-Link RTT Viewer V6.8	8a Configuration	?	×
Connection to J-Link			
USB	Serial No		
○ TCP/IP			
O Existing Session			
Specify Target Device			
CORTEX-M4		~	
Script file (optional)			
Target Interface & Speed			
SWD	-	4000 kł	Hz ▼
RTT Control Block			
Address	🔘 Search Rang	je	
Enter the address of the RTT Example: 0x20000000	Control block.		
0x20005000			
	ОК	Ca	incel

Figure 4-20 Configurations in J-Link RTT Viewer

You can also obtain the address by searching from the **_SEGGER_RTT** structure in the .map file generated by the project, and then select **Address** in the configuration interface to specify the **RTT Control Block** address. If you have created RTT Control Block and placed it at 0x20005000 as recommended in Figure 4-19, enter **0x20005000** in the field shown in the figure above.

ultra_wfi_or_wfe	0x200037ec	Data	0	rom_symbol.txt ABSOLUTE
sdk_gap_env	0x200038ec	Data	0	rom_symbol.txt ABSOLUTE
_SEGGER_RTT	0x20005000	Data	120	<pre>segger_rtt.o(.ARMat_0x20005000)</pre>
jlink_opt_info	0x20006000	Data	0	rom_symbol.txt ABSOLUTE
SystemCoreClock	0x2000b000	Data	4	system_gr55xx.o(.data)
stdout	0x2000b044	Data	4	app_log.o(.data)

Figure 4-21 Obtaining RTT Control Block address

🛄 Note:

If you choose GCC for compilation, modifications shown in Figure 4-19 are not required. The address to be entered for RTT Control Block in J-Link RTT Viewer should be the address of **_SEGGER_RTT** in the .map file generated by the compilation project.

4.6.4 Debugging with GRToolbox

GR5526 SDK provides an Android App, GRToolbox, to debug GR5526 Bluetooth LE applications, which is in SDK_fold er\tools\GRToolbox\GRToolbox-Version.apk. GRToolbox features the following:

- General Bluetooth LE scanning and connecting; characteristics read/write
- Demos for standard profiles, including Heart Rate and Blood Pressure
- Goodix-customized applications

5 Glossary

Table 5-1 Glossary

Acronym	Description
AoA/AoD	Angle of Arrival/Angle of Departure
ATT	Attribute Protocol
BLE	Bluetooth Low Energy
DFU	Device Firmware Update
GAP	Generic Access Profile
GATT	Generic Attribute Profile
GFSK	Gaussian Frequency Shift Keying
HAL	Hardware Abstract Layer
НСІ	Host Controller Interface
ют	Internet of Things
ISOAL	Isochronous Adoption Layer
L2CAP	Logical Link Control and Adaption Protocol
LL	Link Layer
NVDS	Non-volatile Data Storage
ΟΤΑ	Over The Air
PMU	Power Management Unit
РНҮ	Physical Layer
RF	Radio Frequency
SCA	System Configuration Area
SDK	Software Development Kit
SM	Security Manager
SoC	System-on-Chip
UART	Universal Asynchronous Receiver/Transmitter
XIP	Execute in Place