GOODIiX

GR5526 Developer Guide

Version: 1.1

Release Date: 2025-06-06

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

GOODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 26F, Goodix Headquarters, No.1 Meikang Road, Futian District, Shenzhen, China

TEL: +86-755-33338828 Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

GOODiX Preface

Preface
Purpose

This document introduces the software development kit (SDK) of the Goodix GR5526 Bluetooth Low Energy (Bluetooth
LE) System-on-Chip (SoC) and Keil for program development and debugging, to help you quickly get started with
secondary development of Bluetooth LE applications.

Audience

This document is intended for:
. Device user

. Developer

o Test engineer

. Technical writer

Release Notes

This document is the second release of GR5526 Developer Guide, corresponding to GR5526 SoC series.

Revision History
Version Date Description
1.0 2023-01-10 Initial release

Updated the sections "GR5526 SDK Directory Structure", "Configuring custom_config.h", and
1.1 2025-06-06
"Debugging with GRToolbox".

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. |

GOODiX Contents

Contents
=Y - ol |
L INErOAUCEHION.eeeeeiiieenieeniierrerre s s ss s s s s s ssssssssssss s e st e s s e s s assssssssasssssssssssssssssssssssssssssnnnnnnnnannassans 1
1.1 GR5526 SDK..uuutieeiieeeiie ettt e et e ettt e st e sttt e rtt e e s bt e e bt e e subeesa b e e e bt e e st e e s bt e e ate e e be e e beeeeabe e e bt e e ahteeebeeenteenateeebaeesareenane 1
1.2 BIUETOOTN LE STACK. ... ttiitiiiiiie ittt ettt ettt ettt ettt st e st e e st e st e e bt e e sabe e s bt e e sabeesabeeenbteesateesnbaeesneesabeesnneas 1
2 GR5526 Bluetooth LE Software Platform.............mmemmieeiiiiiiiiccncn e 4
2.0 HardWare ArCRITECTUIE.ii ittt ettt ettt e b ettt e s bt e e bt e e st e e s bt e e aabee e beeesbeeesabeesbeeesaseesaseesneeanns 4
2.2 SOFEWAIE ArCRITECIUIE. .. ettt ettt e s e e bt e e s b bt e sabe e e bt e e sabeesabeeeneeesabeeebeeesnneenane 5
P I\ =10 0 To] VY - T o] o 11 - OO PPPPSPPPPN 6
D A T T\, =Y o VoYV Y P o o] =SS 8
2041 SCA ettt ettt bttt e e e bt e e eh bt e e be e e bt e e ettt e heeeaateeebeeeaheee e beeeabeeeeabeeebeeeaateeebeeenareas 9
28,2 NVDS. .ttt ettt ettt ettt e h e et e ettt e h et e ettt e bt e e ea bt e e bt e e aae e e et et e bee e aaEe e e beeeahbeesubee e beeeeabeeebeeeaneeeanbeeaas 12
2.5 RAM VAP PiN . cciiiieiiiiiitiieee e s seecitittee e e e e e sssatb ittt eeeeessesasbaaeeaeeesssaasssaeeaaaeeeeessassbaaaaeeeessasassssseaaeeeeesssssssssaanaeesssnnnas 14
2.5.1 Typical RAM Layout in XIP IMOGE.........oeiiiiiiiieeiiiii e eeiiee ettt e e estee e e etee e e sete e e e snte e e e sneneesennsaeeeenneeeeennsnns 15
2.5.2 Typical RAM Layout in Mirror IMOGE..........ueiiieiieiecciiee s ceeee st e e estee et e e e satae e e s asae e e esnnraesenneneeennnnnees 16
2.5.3 RAM POWEIr MaANAZEMENT...ciiiiiiiiiiiiiiiiitiiiii s s s s s s s s s e e s s e e e e e e e e e e eeaaaaaaaaaaeaaaaaaaaaaaaaaaannes 17
2.6 PSRAIVLL ...ttt ettt ettt a e e sttt e bt e e ea bt e e bt e e eate e et et e ehbe e e be e e bt e e eabee e bt e e nte e e beeaanbeeeabeeebeeenabeesbeeeans 18
2.7 GR5526 SDK DirCLONY STrUCTUIE. . uuiieiiiiiiiiiiiiiteteee e s eeeiirteeee e e e s s ssabrreeeeeesssssaabbeateeeessssssssteraeeeesssssssssssnnaeeesssnnas 19
2 5T T [T- o =T N 22
4 Development and Debugging with GR5526 SDK in Keil.........cccoerririeenmmmnmnnennenietiiniiiiiiiiss e 24
4.1 INSEAIlING KEIl IMIDK ...eiiiiiee ittt ettt ettt st st e st e st e e b te e s abe e e bt e e sabeesabeeenaeeesasaessseeesabeesnbeeesaseesaneesnns 24
4.2 INSLAIlING GR5526 SDK....eeiiuiiiiiieeiitieeite ettt ettt e sttt e s bt e sttt e sttt e sabeessaeeesabeesasbeasaseeebeeesabeesabeeenseeesaseesaseaanns 25
4.3 Building @ BlUetooth LE APPICAtioN.......oiiiiiiiiieiiie ettt ettt ettt st esbe e e sareesarae s 25
4.3.1 Preparing ble_app_@XamMPle... .. oottt ettt st sbe e e ate e s teeebae e naneesane 25
4.3.2 CONFIGUIING @ PrOJECE...eiiiiiiiiie ettt sttt ettt e st e e bt e e sabe e s bt e e aeeesabaesbeeesabeesabaeessseesabeesane 29
4.3.2.1 Configuring cuStomM_CONFIZ.N....ueiiiiiiiiiie ettt et 29
4.3.2.2 Configuring MeEMOTY LAYOUL.....cc.uiiiiiiiiiieiiee ettt ettt ste e s bee e sabe e ste e sbae e sabeesbeeeaees 34
4.3.2.3 ConfigUriNg AFLEr BUIld........eiiiiiiiiieeiie ettt ettt et s ae e s aee e s te e s beeesaneesane 35
4.3.3 AJAING USEI COUC. .. uuiiiiiieiit ettt ettt ettt ettt e s e ettt e st be e s be e e beeesabeesasee e abeesabaeesbeesabeeeseeesaseesaseeenseesnses 36
4.3.3.1 Modifying the Main() FUNCLION......ooiiiiie ettt e e e 36
4.3.3.2 Implementing Bluetooth LE SErviCe LOGIC......ciuruiiriuiiiiiieiiie ettt sttt ettt 37
4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications.......cccceeruerriiirinieenieeeiie e 40
4.4 GeNerating FirMWaIE.u ittt e e e e e s bbb et e e e e e s s s s bbbttt e e e e seaaasnneaaeeeeseesannnnbaneeeaesssnans 41
4.5 Downloading .hex FIles t0 FIash.....ccouiiiiiiiiiieeeee ettt et ettt sbe e s see e s ateesaees 42
R DY o TUT =44 - TP RUPRPS PP 44
4.6.1 CoNfiUIING the DEDUGEETii ettt ettt ettt et e st e et e e sabe e s bt e e st e e sbaessabeesabeeens 44
4.6.2 STArting DEDUGEING. ..coeii ettt e st e et e e st e e s bt e e sate e sabe e et e e nabeesbaeennreenas 46
4.6.3 OULPULEING DEDUG LOGS. .. uuiiiiiiiiiiiiiiie sttt ettt ettt e ste e st sat e st e st e e s at e e sbee e bteesabeesabeeesabeesaseesneeanns 46

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1]

GOODiX Contents

o 70 A T Yo [LR Y = 2 Lo T o SRS 47

0 T0 2 Y oo o= oY USRS 48

4.6.4 Debugging With GRTOOIDOX.......cciiiiiieieiiie e e s e e e st e e e e be e e e ssnsaeeessnnteeeesnreeeesnneneenans 50

LI C] (o T T o 7 TPRTRR 51

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.]

GOODiX introduction

1 Introduction

The Goodix GR5526 family is a low-power System-on-Chip (SoC) that supports Bluetooth 5.3. It supports Bluetooth
Low Energy (Bluetooth LE) direction finding: angle of arrival (AoA) and angle of departure (AoD), as well as LE
isochronous channels (LE Audio), making it an ideal choice for Internet of Things (IoT), LE Audio, and smart wearable
devices.

Based on ARM’ Cortex -M4F CPU core, the GR5526 series integrates Bluetooth 5.3 Protocol Stack, a 2.4 GHz RF
transceiver, on-chip programmable Flash memory, RAM, multiple peripherals, enhanced 12C/UART port number for
sensor applications, as well as expanded 1/O functionality. GR5526 delivers a feature-rich display and graphics solution
by providing the option of graphics acceleration (GPU + DC) and system-in-package (SiP) pseudostatic RAM (PSRAM) to
accommodate display while still leaving plenty of resource for wearable schemes.

GR5526 series supports connection between multiple centrals and multiple peripherals. It can be configured as a

Broadcaster, an Observer, a Peripheral, or a Central, and supports the combination of all the above roles.

GR5526 series comes in two package choices: BGA83 and QFN68. The detailed configurations are listed below

Table 1-1 GR5526 series

GR5526 Series GR5526VGBIP GR5526VGBI GR5526RGNIP GR5526RGNI

CPU Cortex -M4F Cortex -M4F Cortex -M4F Cortex -M4F

RAM 512 KB 512 KB 512 KB 512 KB

SiP Flash 1MB 1 MB 1 MB 1 MB

SiP PSRAM 8 MB N/A 8 MB N/A

GPU + DC Yes N/A Yes N/A

I/0 Number 50 50 48 48

Package (mm) BGA83 (4.3x4.3x0.96) |BGA83(4.3x4.3x0.96) K QFN68(7.0x7.0x0.85) ' QFN68(7.0x7.0x0.85)
1.1 GR5526 SDK

The GR5526 Software Development Kit (SDK) provides comprehensive software development support for GR5526
SoCs. The SDK contains Bluetooth LE APIs, System APIs, Real Time Location Service (RTLS) APIs, peripheral drivers, a

tool for debugging and download, project example code, and related user documents.

The GR5526 SDK version mentioned in this document is applicable to all GR5526 SoCs.

1.2 Bluetooth LE Stack

The architecture of Bluetooth LE Stack is shown in Figure 1-1.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 1

GOODiX Introduction

Bluetooth LE Protocol Stack

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Controller

Link Layer (LL)

Physical Layer (PHY)

Figure 1-1 Bluetooth LE Stack architecture

The Bluetooth LE Stack consists of the Controller, the Isochronous Adaptation Layer (ISOAL), the Host Controller
Interface (HCl), and the Host.

Controller

o Physical Layer (PHY): Supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

o Link Layer (LL): Controls the RF state of devices. Devices are in one of the following five modes, and can be

switched between the modes on demand: Standby, Advertising, Scanning, Initiating, or Connection.
ISOAL

o ISOAL: Enables adaptation of isochronous data between the Host and the Controller by assembling segmented
data frames into data streams for the Application layer, or by segmenting data streams from the Application layer
into data frames and transmitting the data frames through air interfaces.

HCI

. HCI: Enables communication between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 2

GOODiX introduction

. Logical Link Control and Adaptation Protocol (L2CAP): Provides channel multiplexing, data segmentation, and
reassembly services for upper layers. It also supports logic end-to-end data communication.

o Security Manager (SM): Defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functionalities.

. Generic Access Profile (GAP): Provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, which fulfills functionalities such as advertising, scanning, connection initiation,

service discovery, connection parameter update, secure process initiation, and response.
o Attribute Protocol (ATT): Defines service data interaction protocols between a server and a client.

. Generic Attribute Profile (GATT): Based on the top of ATT. It defines a series of communication procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

A\ Tip:

. For more information about Bluetooth LE technologies and protocols, visit Bluetooth SIG official website.

o Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and

code which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 3

http://www.bluetooth.com

GOODiX GR5526 Bluetooth LE Software Platform

2 GR5526 Bluetooth LE Software Platform

The GR5526 SDK is designed for GR5526 SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
5.3 APIs, System APIs, and peripheral driver APls, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR5526 SDK.

2.1 Hardware Architecture

The GR5526 hardware architecture is shown as follows.

Bluetooth Subsystem

Communication Core

HEXO_32M ———» S —p

Digital Front End Bluetooth LE Modem Bluetooth LE MAC Packet Buffer

Comm Display

DC-DC BOD

LP_LDO POR
UART

DIG_CORE_LDO 10_LDO

HFRC_192M CPLL_192M
SPI Master

RNG_0OSC HFXO_32M

- Temperature Voltage

Coi t

Cache e Senve ADE sensor e sensor

LFRC_32K LFXO_32K
PMU Subsystem MCU Subsystem

I Radio Power Domain [system Power Domain Always-on Domain

Figure 2-1 GR5526 hardware architecture

* ARM" Cortex -M4F: GR5526 CPU. Bluetooth LE Stack and application code run on the CPU.
. SRAM: static random access memory that provides memory space for program execution

o ROM: read-only memory, containing the software code (cannot be modified after being programmed) for
Bootloader and Bluetooth LE Stack

o Flash: Flash memory unit embedded in the SoC. It stores user code and data, and supports the Execute in Place
(XIP) mode for user code.

. Security Cores: the secure computing engine unit, mainly including TRNG, AES, SHA, and PKC modules, which
allows checking encrypted user application firmware. Check on encrypted firmware relies on the secure boot
process launched in ROM. (In Bluetooth Core Spec, the secure computing unit is an independent module in

Communication Core, and is irrelevant to Security Cores.)
. Peripherals: including GPIO, DMA, 12C, 12S, SPI, QSPI, DSPI, OSPI, UART, PWM, Timer, GPU, and DC

o RF Transceiver: 2.4 GHz RF signal transceiver

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 4

GOODiX GR5526 Bluetooth LE Software Platform

. Communication Core: PHY of Bluetooth 5.3 Protocol Stack Controller, enabling communication between the

software protocol stack and 2.4 GHz RF hardware

o Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC/DC, 10-LDO, Dig-LDO, and RF Subsystem, based on configuration parameters and the
current operating state of the system, so that the power can be managed automatically.

A\ Tip:
For more information about the modules in a GR5526 SoC, see GR5526 Datasheet.

2.2 Software Architecture

The software architecture of the GR5526 SDK is shown as follows.

Software
Application
¢ A A A A
GATT
SDK
RTLS API
v ¢ 4 v 4
Bluetooth LE API System API Graphic APP Driver
A A I
HAL Driver
Bluetooth LE Stack Bootloader LL Driver
Hardware
v v
Bluetooth 5.3 Core ARMe® Cortex®- M4F Peripheral

Figure 2-2 GR5526 software architecture

. Bootloader
A boot program built in GR5526 SoCs, used for GR5526 software and hardware environment initialization, and to
check and start applications

. Bluetooth LE Stack

The core to implement Bluetooth LE protocols. It consists of Controller, ISOAL, HCI, and Host protocols (including
ATT, L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 5

GOODiX GR5526 Bluetooth LE Software Platform

. HAL Driver

Hardware Abstraction Layer (HAL) drivers; the HAL Driver layer is between the APP Driver layer and the LL Driver

layer. HAL drivers offer a set of standard APls, to allow the APP driver layer to access the LL peripheral resources
by calling HAL APls.

[l Note:

Generally, HAL APIs are used for developing LL drivers and system services, not for developing common applications.

Therefore, it is not recommended for developers to directly call HAL APIs.

. LL Driver

Low Layer (LL) drivers which control and manage peripherals by registers

o Bluetooth LE SDK

SDK that provides easy-to-use Bluetooth LE APIs, System APIs, and RTLS APIs

o

Bluetooth LE APIs: Include L2CAP, GAP, SM, GATT APIs, and LE Audio APlIs.

System APIs: Provide Non-volatile Data Storage (NVDS), Device Firmware Update (DFU), system power
management, and generic system-level access interfaces.

APP Driver APIs: Provide definitions for APIs of common peripherals such as UART, I12C, and ADC. APP Driver
APIs call HAL/LL APIs to enable the corresponding functionalities.

RTLS APIs: The APIs are used for AoA and AoD functionalities. They are at the intermediate layer between
the application layer and Bluetooth LE APIs. In their upward communication with the application layer,
accepting configurations on locating parameters, receiving commands on locating, reporting raw data about
locating, and reporting calculated results of locating are made possible. In the downward communication
with Bluetooth LE APIs, the APIs obtain Iq data report events. In addition, the RTLS APIs are related to

other algorithms including music algorithms and density-based spatial clustering of applications with noise
(DBSCAN).

. Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; you can download these files to GR5526 SoCs for operation and test. GRToolbox (Android) in the SDK
provides rich functionalities to allow users to test most Bluetooth applications with ease.

. Graphic

An SDK library for the graphic processing unit (GPU) display driver module

2.3 Memory Mapping

The memory mapping of a GR5526 SoC is shown as follows.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 6

GOODiX

GR5526 Bluetooth LE Software Platform

debugging (external)
OxFFFF FFFF Reserved T Private peripheral Bus
0xE010 0000 (511 MB) (internal)
Ove00F vt : e
ARM Private o
(1024 KB)
0xE000 0000
OxDFFF FFFF Reserved
0x4400 0000 (2496 MB)
o -
0x4200 0000 yd
Ox41FF FFFF Reserved p
0x4010 0000 (31MB)
0x400F FFFF
0x4000 0000 .
OX3FFF FFFF

Reserved
0x3808 0000

(127 v} oA
013408 0000 ooz
013407 FFFF oo
0x3008 0000 ‘ oo
0x3007 FFFF oo
e O
(512 KB)
0x3000 0000 ' _
OX2FFF FFFF Reserved op
0x2300 0000 (206 M) oM
OX22FF FFFF SRAM Alias iso7st6
BitBanding oM
0x2200 0000 (16 MB) _
OX2LFF FFFF . McuRET
0x2008 0000 oKk
e SRAM ©senadC
12 o
0x2000 0000 4
oacooan _ :.‘
0x1C00 0000 _
OXISEF FFFF o oums
0x1800 0000 _ v
OX17FF FFFF umm
0x1400 0000 o oAwe
Ox13FF FFFF . UARTZ
0x1000 0000 _
OXOFFF FFFF Reserved __
0x0320 0000 (206 MB) EESTEE
- - |
0x0220 0000
0x021F FFFF] __
0x0120 0000 (16 MB)
OxO11F FFFF } = T
040020 0000 -
0x001F FFFF e __
0x0018 0000 (512 KB) _
0x0017 FFFF 4
X SRAM Alias1 _
0x0010 0000 (512k8) ' _ AONCTL
0x000F FFFF Reserved __
ocooaooco - (EAKE) DUAL TIVERO
0x0009 FFFF
ROM _
(640 B) . TMER0
0x0000 0000
Note:

[*] Only a part of XIP range can be accessed.

Private peripheral Bus

ROM TABLE
TPIU

DAP
SCB
FPU

MPU
NVIC
SYS_TICK
FPB
DWT
Im™

Figure 2-3 GR5526 memory mapping

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

GOODiX GR5526 Bluetooth LE Software Platform

. RAM: 0x0010_0000 to 0x0017_FFFF, 0x2000_0000 to 0x2007_FFFF, or 0x3000_0000 to 0x3007_FFFF, 512 KB in
total

° 0x2000_0000 to 0x2007_FFFF: bit field operations supported, mapping to the region from 0x2200_0000 to
0x2207_FFFF, in which atomic operations are supported. Variables of the SDK including RW, ZI, HEAP, and
STACK are in this range.

° 0x0010_0000 to 0x0017_FFFF: Features higher access efficiency thanks to the Cortex-MA4F architecture.
Therefore, executable code RAM_CODE is in this region.

" Note:

QSPI0, QSPI1, QSPI2, and OSPI support XIP mode, which allows mapping of address from Flash or PSRAM to
memories, enabling direct operations on memory.

° When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming contiguous SRAM space with the
region from 0x2000 0000 to 0x2007 FFFF.

° When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming contiguous SRAM space with the
region from 0x3000 0000 to 0x3007 FFFF.

o Flash: 0x0020_0000 to 0x011F_FFFF or 0x0220_0000 to 0x031F_FFFF, 16 MB in total
° 0x0020_0000 to Ox011F_FFFF: Stores code and unencrypted data.

° 0x0220_0000 to 0x031F_FFFF: Stores encrypted data.

" Note:
Internal Flash of GR5526 SoCs is 1 MB, from 0x0020_0000 to 0x002F FFFF.

2.4 Flash Memory Mapping

GR5526 packages an on-chip erasable Flash memory, which supports XQSPI bus interface. This Flash memory
physically consists of several 4 KB Flash sectors; it can be logically divided into storage areas for different purposes
based on application scenarios.

The Flash memory layout of typical GR5526 application scenarios is as shown in Figure 2-4.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 8

GOODiX GR5526 Bluetooth LE Software Platform

End of Flash
Non-volatile Data Storage (NVDS)
NVDS_START_ADDR

Unused Space

User App

0x0020_2000

System Configuration Area (SCA)
0x0020_0000

Figure 2-4 Flash memory layout

. System Configuration Area (SCA): an area to store information including system boot parameter configurations
. User App: an area to store application firmware

. Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

. NVDS: Non-volatile Data Storage area

" Note:

By default, NVDS occupies the last two sectors of Flash memory. You can configure the start address of NVDS and
the number of occupied sectors according to Flash memory layout of products. For more information about the

configuration, see “Section 4.3.2.1 Configuring custom_config.h”.

The start address of NVDS shall be aligned with that of the Flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0020_0000 to 0x0020_2000) of Flash memory. It mainly stores flags and
other system configuration parameters used during system boot.

During firmware download, the download algorithm or GProgrammer will generate an SCA image file based on
BUILD_IN_APP_INFO in the application firmware, and program the image info (stored in SCA) to Flash along with
application firmware. During system boot, Bootloader will check the boot information in SCA, and then jump to the
entry address of the firmware if the check passes.

The BUILD_IN_APP_INFO structure is defined and configured as follows:

I Note:
The BUILD_IN_APP_INFO structure is in SDK_Fol der\ pl at f or Ml soc\ common\ gr _pl atform c, and
SDK_Folder is the root directory of GR5526 SDK.

const APP INFO t BUILD IN APP INFO attribute ((section(".app info"))) =
#endif

{
.app_pattern = APP_INFO_PATTERN_VALUE o

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 9

GOODiX GR5526 Bluetooth LE Software Platform

.app_info version = APP INFO VERSION,

.chip ver = CHIP VER,

.load addr = APP CODE LOAD ADDR,

.run_addr = APP CODE RUN ADDR,

.app_info sum = CHECK_ SUM,

. check_img = BOOT_ CHECK IMAGE,

.boot delay = BOOT LONG TIME,

- BRE_CIEG = SECURITY CFG VAL,
#ifdef APP INFO COMMENTS

.comments = APP INFO COMMENTS,
#endif

i

o app_pattern: a fixed value 0x47525858

o app_info_version: firmware version information, corresponding to APP_INFO_VERSION

. chip_ver: version of the SoC that the firmware runs on, corresponding to CHIP_VER in custom_config.h
o load_addr: firmware load address, corresponding to APP_CODE_LOAD_ADDR in custom_config.h

o run_addr: firmware run address, corresponding to APP_CODE_RUN_ADDR in custom_config.h

. app_info_sum: checksum of firmware information, which is automatically calculated by CHECK_SUM

o check_img: system boot configuration parameter, corresponding to BOOT_CHECK_IMAGE in custom_config.h.
When check_img is set to 1, Bootloader will check the firmware at booting.

. boot_delay: boot configuration parameter, corresponding to BOOT_LONG_TIME in custom_config.h. When the
value is set to 1, the system cold boot will be launched after a one-second delay.

. sec_cfg: security configuration parameter, reserved
. comments: firmware information, up to 12 bytes

The SCA layout is shown as follows.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 10

GOODiX GR5526 Bluetooth LE Software Platform

UART Info(12B)
Enc:Hmac(32B)
UnEnc:Free ADV Name Info(22B)
NVDS Init Info(8B)

w» DFU Disable Cmd Info(4B)

/35548

Reserved
i Comments(12B)
0x0020_2000 Boot Config(4B)
Boot_Info - Boot Info(248)
T] SPI Access Mode(4B)
Backup DFU Config Info Version(2B) 4
(0x1000) (468B) Run Addr(4B)
0x0020_1000 ¢ Pattern(2B)
B0t Infe Img_info_10 ! Load Addr(4B)
oot_Info (408) heck
(0x1000) - CheckSum(4B)
0x0020_0000 4008 : Reserved(8B) APP Size(4B)
Img_Info_1 Boot Config(4B)
(408)
SPI Access Mode(4B)
Reserved e Run Addr(4B)
525 Load Addr(48)
Boot_Info Checksum(4B)
¢ (328) APP Size(4B)

Boot_Info sector
Figure 2-5 SCA layout

o Boot_Info and Boot_Info Backup store the same information. The latter is the backup of the Boot_Info.
° In non-security mode, the Bootloader obtains boot information from Boot_Info by default.

° In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info

Backup and obtains boot information from it.

o The firmware boot information is stored in the Boot_Info (32 B) area. During system boot, Bootloader will check

the boot information and then jump to the entry address of the firmware if the check passes.
° Boot Config: This area stores the system boot configuration information.

° SPI Access Mode: This area stores the SPI access mode configuration. It is a fixed configuration of the

system and cannot be modified.
° Run Addr: Indicates the firmware run address, corresponding to run_addr of BUILD_IN_APP_INFO.
° Load Addr: Indicates the firmware load address, corresponding to load_addr of BUILD_IN_APP_INFO.

° CheckSum: This area stores the firmware checksum which is calculated automatically by the download

algorithm after firmware is generated.

° APP Size: This area stores the firmware size which is calculated automatically by the download algorithm

after firmware is generated.

. Up to 10 pieces of firmware information are stored in Img_Info areas. Firmware information is stored in Img_Info

areas when you use GProgrammer to download firmware or update firmware in DFU mode.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 11

GOODiX GR5526 Bluetooth LE Software Platform

o

Comments: This area stores the descriptive information (up to 12 characters) about firmware. Every time a

firmware file is generated, the file name will be saved in the Comments area by the download algorithm.

Boot_Info (24 B): This area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

Version: This area stores the firmware version, corresponding to VERSION in custom_config.h.

Pattern: This area stores a fixed value 0x4744.

o The DFU Config Info area stores configurations of DFU module in ROM.

o

UART Info: This area stores UART configurations of DFU module, including status bit, baud rate, and GPIO

configurations.

ADV Name Info: This area stores advertising configurations of DFU module, including status bit, advertising

name, and advertising length.

NVDS Init Info: This area stores initialization configurations of NVDS system in DFU module, including status

bit, NVDS area size, and start address.

DFU Disable Cmd Info: This area stores DFU disable command configurations of DFU module, including
status bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a
DFU command.

. The HMAC area stores the HMAC check value. This area is valid only in security mode.

2.4.2 NVDS

NVDS is a lightweight logical data storage system based on Flash HAL. NVDS is located in the Flash memory and data

in it will not be lost in power-off status. By default, NVDS uses the last two sectors of the Flash memory. You can also

specify the number of Flash sectors to be occupied. In NVDS, the last sector is for defragmentation, and the other

sector for data storage.

NVDS is an ideal choice to store small data blocks, for example, application configuration parameters, calibration data,

states, and user information. Bluetooth LE Stack stores parameters such as device bonding parameters in NVDS.

NVDS features:

. Each storage item (TAG) has a unique TAG ID. User applications can read and change data according to TAG IDs,

regardless of the physical addresses for data storage.

o It is optimized based on medium characteristics of Flash memory and supports data check, word alignment,

defragmentation, and erase/write balance.

. The size and start address of NVDS are configurable. Compared with Flash memory which is made up of 4 KB

sectors, NVDS can be in several sectors as configured. Make sure the start address of NVDS is 4 KB aligned.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 12

GOODiX GR5526 Bluetooth LE Software Platform

" Note:

. You can add NVDS_START_ADDR to and modify NVDS_NUM_SECTOR in custom_config.h, to configure the start
address and the size of NVDS.

. Bluetooth LE Stack and applications share the same NVDS storage area. However, TAG ID namespace is divided

into different categories. You can only use the TAG ID name category assigned to applications.

° Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as
an NVDS API parameter.

° Applications cannot use idx as the NVDS APl parameter directly. The idx value ranges from 0x4000 to
Ox7FFF.

. Before running an application for the first time, you can use GProgrammer to write the initial TAG ID value used
by Bluetooth LE Stack and the application to NVDS.

. If you specify an NVDS area, instead of using the default NVDS area in the GR5526 SDK, make sure the start
address configured in GProgrammer is 4 KB aligned.

Data stored in NVDS is in the format below.
8 bytes Up to 1024 bytes
Data Header Data
Figure 2-6 Data format in NVDS

Details of data header are described below.

Table 2-1 Data header format

Byte Name Description

0-1 tag Data tag

2-3 len Data length

4-4 checksum Checksum of data header
5-5 value_cs Checksum of data

6-7 reserved Reserved bits

GR5526 SDK provides the following NVDS APIs, to facilitate developers to manipulate non-volatile data in Flash.

Table 2-2 NVDS APIs

Function Prototype Description
uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the Flash sectors used by NVDS.
uint8_t nvds_get(NvdsTag_t tag, uintl6_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 13

GOODiX GR5526 Bluetooth LE Software Platform

Function Prototype Description

Write data to NVDS and mark the data with TAG IDs. You
uint8_t nvds_put(NvdsTag_t tag, uintl6_t len, const uint8_t *p_buf)
need to create a TAG ID if you write data for the first time.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.
uintl6_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG.

uint8_t nvds_drv_func_replace(nvds_drv_func_t *p_nvds_drv_func) Replace the APIs that can directly control Flash.
uint8_t nvds_func_replace(nvds_func_t *p_nvds_func) Replace the APIs that control NVDS.

Reserve space for device bonding. The space reserved
void nvds_retention_size(uint8_t bond_dev_num)
depends on the number of devices to be bonded.

" Note:

e For details about NVDS APIs, see the NVDS header file (in SDK_Fol der\ conponent s\ sdk\ gr 55xx_nvds
. h).

. NVDS usage recommendation: It is recommended that NVDS be used only for static system configuration (not
for dynamic configuration). For more robust data storage needs, you may develop your own solution or adopt an
open-source file system such as LittleFS.

2.5 RAM Mapping

The RAM of a GR5526 SoC is 512 KB in size with the start address of 0x3000_0000. It consists of 11 RAM blocks. Each
of the first two RAM blocks is 16 KB, followed by two 32-KB blocks, six 64-KB blocks, and a 32-KB block in sequence.
Each RAM block can be powered on/off by software independently.

I Note:
GR5526 provides RAM (start address: 0x3000_0000) with an aliasing memory with the start address being
0x0010_0000 and 0x2000_0000. For more information, see Figure 2-3.

. The region (start address: 0x2000_0000) supports bit field operations, mapping to the region starting from
0x2200_0000.

. The region starting from 0x0010_0000 features higher access efficiency thanks to the Cortex®-M4F architecture.
Therefore, executing code in this region promotes running speed.

o In GR5526 SDK, RW, ZI, HEAP, and STACK use the RAM region starting from 0x2000_0000; RAM_CODE uses the
region starting from 0x0010_0000.

The 512 KB RAM layout is shown in Figure 2-7:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 14

GOODiX GR5526 Bluetooth LE Software Platform

0x3007_FFFF

RAM_32K_2

0x3007_8000
RAM_64K_5

0x3006_8000

0x3002_8000
RAM_64K_0

0x3001_8000
RAM_32K_1

0x3001_0000
RAM_32K_0

0x3000_8000
RAM_16K_1

0x3000_4000
RAM_16K_0

0x3000_0000

Figure 2-7 512 KB RAM layout

Running modes for applications include XIP and mirror modes. For more information about configurations, see
APP_CODE_RUN_ADDR in “Section 4.3.2.1 Configuring custom_config.h”. RAM layouts of the two modes are
different.

Table 2-3 Running modes for applications

Running Mode Description
It refers to Execute in Place mode. User applications are stored in on-chip Flash, and
XIP mode applications use the same space for running and loading. When the system is powered on,
it fetches and executes commands from Flash directly through the Cache Controller.
In mirror mode, user applications are stored in on-chip Flash, and the running space of
Mirror mode applications is defined in RAM. During application boot, applications are loaded into RAM

from external Flash after check is completed, and the system jumps to RAM for operation.

[Note:

Continuous access to Flash is required in XIP mode. Therefore, power consumption in this mode is a little higher than

that in mirror mode.

2.5.1 Typical RAM Layout in XIP Mode

The typical RAM layout under XIP mode is as shown in Figure 2-8. Developers are able to modify the layout based on

product needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 15

GOODiX GR5526 Bluetooth LE Software Platform

End of RAM

Stack Size=SYSTEM_STACK_SIZE

Unused RAM Space
HEAP
RW Size=APP_RAM_SIZE
Zl
0x2000_B000
RAM_CODE

0x2000_6000

ROM reserved RAM
including .bss and .data Size=24 KB
(retention)

0x2000_0000

Figure 2-8 RAM layout in XIP mode

RAM_CODE saves code executed in RAM. To boost the efficiency in execution, it is recommended to define this region
in the aliasing memory (at physical address 0x00100).

The layout in XIP mode allows application firmware to be run directly in the code loading area, so that more RAM
space is available for applications. During update to contents in Flash memory, XIP mode is disabled; during erase of
Flash memory, interrupts with priority lower than FLASH_PROTECT_PRIORITY cannot be generated.

" Note:

. QSPI0, QSPI1, QSPI2, and OSPI support XIP mode. In this mode, users can map the address of Flash memory or
PSRAM to memory, so that users can operate on memory directly.

° When an external PSRAM is used, the PSRAM is mounted to QSPI1, forming continuous SRAM space with
the region from 0x2000 0000 to 0x2007 FFFF.

° When an internal PSRAM is used, the PSRAM is mounted to OSPI, forming continuous SRAM space with the
region from 0x3000 0000 to 0x3007 FFFF.

. Users can add self-defined sections as needed. Avoid modifying the default scatter file of the SDK or deleting
part of the scatter file (such as deleting RAM_CODE from the scatter file). For details about the scatter file, see
“Section 4.3.2.2 Configuring Memory Layout”.

2.5.2 Typical RAM Layout in Mirror Mode

The typical RAM layout in mirror mode is as shown in Figure 2-9. Users can modify the layout based on product needs.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 16

GOODiX GR5526 Bluetooth LE Software Platform

End of RAM
Stack Size=SYSTEM_STACK_SIZE

Unused RAM Space

HEAP

App Code Execution Region

APP_CODE_RUN_ADDR
RW
Zl

0x2000_B000
RAM_CODE

0x2000_6000

ROM reserved RAM
including .bss and .data Size=24 KB
(retention)

0x2000_0000

Figure 2-9 RAM layout in mirror mode

The layout in mirror mode allows application firmware to be run in RAM. The SoC enters cold boot process after
power-on. The Bootloader copies application firmware from Flash to the RAM segment App Code Execution Region.
After wake-up from sleep mode, GR5526 SoC enters warm boot process. To shorten the warm boot time, the

Bootloader does not redo copy of application firmware to the RAM segment App Code Execution Region.

The start address of the App Code Execution Region segment depends on APP_CODE_RUN_ADDR in custom_config.h.
Users need to decide the value of APP_CODE_RUN_ADDR based on the use of .data and .bss segments, to avoid
address overlap between the Call Stack segment (higher address segment) and .bss segments (lower address

segment). Users can view the layout of RAM segments from the .map file.

It is recommended to set APP_CODE_RUN_ADDR with RAM Aliasing Memory address (from 0x0010_0000 to
0x0017_FFFF). Once an overlap between RAM segments happens, when a project is to be built, an error will occur and
the overlapped part will be indicated, to help users quickly check and locate the overlapped part in the RAM.

2.5.3 RAM Power Management

Each RAM block has three power modes: Full Power, Retention Power, and Power Off.
. Full Power: The system is in active mode; MCU is permitted to read from and write to RAM blocks.

. Retention Power: The system is in sleep mode; data in RAM blocks does not get lost and is ready for use by the

system when it switches from sleep mode to active mode.

. Power Off: The system is in power-off mode; RAM blocks will be powered off and data in the blocks will get lost.
Therefore, you need to save the data before the system is powered off.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 17

GOODiX GR5526 Bluetooth LE Software Platform

By default, the PMU in the GR5526 enables all RAM power sources when the system starts. The GR5526 SDK also
provides a complete set of RAM power management APIs. You can configure the power mode of RAM blocks based on

application needs.

By default, the system enables automatic RAM power management mode during boot: It automatically implements
power mode control of RAM blocks according to RAM usage of applications. The configuration rules are provided as
follows:

o When the system is in active mode, unused RAM blocks are set to Power Off mode, and RAM blocks to be used
are set to Full Power mode.

. When the system enters sleep mode, unused RAM blocks remain in Power Off mode, and RAM blocks to be used

are set to Retention Power mode.
The recommended RAM configurations in practice are described below:

. In Bluetooth LE applications, the first 8 KB of RAM_16K_0 and RAM_16K_1 are reserved for Bootloader and
Bluetooth LE Stack only, not available for applications. When the system is in active mode, RAM_16K_0 and
RAM_16K_1 shall be in Full Power mode; when the system is in sleep mode, the two RAM blocks shall be in

Retention Power mode. Non-Bluetooth LE applications can use these two RAM blocks.

. Purposes of RAM_32K_0 and other RAM blocks are defined by applications. Generally, user data and the code
segments to be executed in RAM are defined in continuous segments starting from RAM_32K_0; the top of
function call stacks is defined in upper address part of RAM. The power mode of these RAM blocks can be
enabled, or be controlled by applications.

' Note:
. An MCU is permitted only when a RAM block is in Full Power mode.

e For details about RAM power management APIs, refer to SDK_Fol der \ conponent s\ sdk\ pl at f or m_sd
k. h.

2.6 PSRAM

GR5526VGBIP SoC and GR5526RGNIP SoC have an 8-MB PSRAM with OSPI for data access. The PSRAM address is
mapped to 0x30080000, forming a contiguous SRAM space together with the area from 0x3000 0000 to 0x3007 FFFF,
providing larger SRAM space for users. The PSRAM features:

. Low power consumption
° Partial array self-refresh (PASR)
° Auto Temperature Compensated Self-Refresh (ATCSR) of built-in temperature sensor
° User-configurable refresh rate
° Ultra-low power consumption (ULP) in half sleep mode with data retained

o Software reset

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 18

GOODiX GR5526 Bluetooth LE Software Platform

. Output driver low voltage complementary metal oxide semiconductor (LVCMOS) with programmable drive

strength
. Data mask for data write
o Data strobe enabled high-speed data read
. Register-configurable write and read initial latencies
. Write burst length: 2 bytes to 1024 bytes
o Wrap burst and hybrid burst at 16 B, 32 B, 64 B, and 1 KB
. Linear burst command
o Row boundary crossing (RBX)
° Read can be enabled by mode register.

° RBX write is not supported.

" Note:

. GR5526 SoCs are embedded with PSRAM. By default, PSRAM is disabled. Users can enable PSRAM with OSPI
controller before use.

o To improve power consumption performance, users can modify the impedance matching between the OSPI
controller and PSRAM by adjusting PSRAM drive strength.

° Lower drive strength means lower power consumption, and the waveform tends to be triangle wave, which

is of lower quality.

° Greater drive strength means higher power consumption, and the waveform tends to be square wave,
which features higher quality.

° Set the drive strength appropriate to the application scenario to avoid system crash caused by excessively

high drive strength.

o The efficiency of MCU reading through OSPI is low. Therefore, it is recommended to access OSPI based on DMA

alignment.

2.7 GR5526 SDK Directory Structure

The folder directory structure of GR5526 SDK is as shown below.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 19

GOODiX GR5526 Bluetooth LE Software Platform

1 GR5526 SDK
3 build

™ config
™ gcc
iar
™ keil

39 components

™ drivers_ext
™ graphics
™ libraries
™ profiles
0 sdk

73 documentation

3 drivers
inc

hal
™ src
3 external
™0 fat_fs
freertos
littlefs
Ivgl_8.1.0
Ivgl_8.3.1
mbedtls
segger_rtt
TinyUSB
unity2.5

PR RERRN

3 platform

™ arch
™7 boards
include

soc

-

common
-

include
-

linker
-

src

=3 projects

™1 ble

2 peripheral

Figure 2-10 GR5526 SDK directory structure

Detailed description of folders in GR5526 SDK is as shown below.

Table 2-4 GR5526 SDK folders

Folder Description

Project configuration directory that stores the custom_config.h template file. This file is

build\config
used to configure project parameters.
build\gcc GCC tools
build\keil Keil MDK tools
build\iar IAR tools
components\drivers_ext Drivers of third-party components on the development board
components\graphics Contents about GPU display

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 20

GOODiX

GR5526 Bluetooth LE Software Platform

Folder

components\libraries

components\profiles

components\sdk
documentation
drivers\inc\hal
drivers\inc
drivers\src
external\fat_fs
external\freertos
external\littlefs
external\lvgl_8.1.0
external\lvgl_8.3.1
external\mbedtls
external\segger_rtt
external\TinyUSB
external\unity2.5

platform\arch

platform\boards

platform\include

platform\soc\common

platform\soc\linker

platform\soc\include

platform\soc\src

projects\ble

projects\peripheral

Description

Libraries provided in the GR5526 SDK

Source files of GATT Services/Service Clients implementation examples provided in the
GR5526 SDK

API header files provided in the GR5526 SDK

GR5526 API Reference Manual

HAL and LL header files of the GR5526 peripheral drivers

Driver API header files which are easy to use for application developers

Driver API source code which is easy to use for application developers

Source code from FatFs (a third-party program)

Source code from FreeRTOS (a third-party program)

Source code from LittleFS (a third-party program)

Source code from LVGL V8.1.0 (a third-party program)

Source code from LVGL V8.3.1 (a third-party program)

Source code from mbed TLS (a third-party program)

Source code from SEGGER RTT (a third-party program)

Source code from TinyUSB (a third-party program)

Source code from Unity 2.5 (a third-party program)

Toolchain files of CMSIS

Source files for initializing GR5526 Starter Kit Board (GR5526 SK Board). The files are used
for initializing basic peripherals at board level.

Common header files related to platform

Public source files compatible to GR5526 SoCs. The files include gr_interrupt.c,
gr_platform.c, and gr_system.c.

Symbol table files and library files for the linker

Common header files closely related to underlying driver configurations such as registers
and clock configurations

gr_soc.c which is about initialization processes closely related to SoC implementation. The
processes include initializing Flash and NVDS, configuring crystal, and calibrating PMU.
Bluetooth LE application project examples, such as Heart Rate Sensor and Proximity
Reporter

Peripheral project examples of a GR5526 SoC

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 21

GOODiX Bootloader

3 Bootloader

The GR5526 supports two firmware running modes: XIP and mirror. When the system is powered on, the Bootloader
first reads the system boot configuration information from SCA, then performs application firmware integrity check
and initialization configuration accordingly, and finally jumps to the code running space to run firmware. The boot
procedures may vary in different running modes.

. In XIP mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check,
and then jumps to the code run address in Flash to run code.

o In mirror mode, after finishing application firmware check, the Bootloader loads the firmware in Flash to

corresponding RAM running space based on system configurations, and jumps to and runs the firmware in RAM.

The application boot procedures of the GR5526 SDK are shown as follows.

Boot Start

y

Reset_Handler

Y

Initialize Flash.

v

Read boot information
and check the integrity of
Application Image.

v

Is Application Yes . 5 Yes Copy Application Image to
Image integral? [legpess RAM from Flash.

No ¢ No

Initialize instruction cache.

v

Start DFU service. Jump_to_app(start_addr) ¢——

Figure 3-1 Application boot procedures of the GR5526 SDK

1. When the device is powered on, CPU jumps to 0x0000_0000, from which extracts the extended stack pointer
(ESP) of C-Stack and assigns the value to the main stack pointer (MSP). Then, the program counter (PC) jumps to
0x0000_004, and executes Reset_Handler in ROM to enter the Bootloader.

2. Bootloader initializes Flash.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 22

GOODiX Bootloader

3. Bootloader reads boot information from SCA in Flash and checks application firmware integrity.

' Note:
GR5526 supports encrypting and signing application firmware in security mode.

o Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
HMAC check; after the check succeeds, the Bootloader decrypts SCA boot information and then implements the
signature verification process in the secure boot process, to guarantee firmware integrity and prevent tampering
or disguise; if signature verification succeeds, the automatic decryption functionality is enabled.

o Non-security mode: If the security mode is not enabled, the Bootloader performs cyclic redundancy check (CRC)
on application firmware based on SCA boot information.

4. If CRC fails, the Bootloader enters J-Link DFU mode. You can update application firmware in Flash with
GProgrammer and J-Link.

5. If CRC passes, Bootloader checks the running mode.

. In XIP mode, the Bootloader jumps to the application firmware in Flash to start implementation after XIP
configuration is completed.

. In mirror mode, the Bootloader copies the application firmware in Flash to a specified segment in RAM, and
then runs the application firmware in RAM.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 23

GOODiX Development and Debugging with GR5526 SDK in Keil

4 Development and Debugging with GR5526 SDK in Keil

This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the GR5526 SDK
in Keil.

4.1 Installing Keil MDK

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM’ for Cortex’ and ARM
devices. You can download and install the Keil installation package from the Keil official website. For the GR5526 SDK,
Keil V5.20 or a later version shall be installed.

" Note:

For more information about how to use Keil MDK-ARM IDE, see ARM online manuals.

The main interface of Keil is as shown below.

e - 8 X

Edt View Project Flash Peripherals Tools SVCS Window Help.

i Devug
NEE@ % al|9c|e i| @ acononesne MR S| @)0 0 6 @@}
LY IE]
Project.

Eero.. [@Books| (¥ runc. Oy Tem.
Build Output

Figure 4-1 Keil interface

Frequently used function buttons of Keil are as shown below.

Table 4-1 Frequently used function buttons of Keil

Keil Icon Description
=~ Options for Target
@ Start/Stop Debug Session
£ Download
Build

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 24

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/support/man_arm.htm

GOODiX Development and Debugging with GR5526 SDK in Keil
4.2 Installing GR5526 SDK

The GR5526 SDK is in a .zip file. You can access the details after extracting the file.

" Note:
o SDK_Folder is the root directory of GR5526 SDK.

. Keil_Folder is the root directory of Keil.

4.3 Building a Bluetooth LE Application

This section introduces how to quickly build a custom Bluetooth LE application with Keil and GR5526 SDK.

4.3.1 Preparing ble_app_example

This section elaborates on how to create a project based on the template project provided in GR5526 SDK.

Open SDK_Fol der\ proj ect s\ bl e\ bl e_peri pheral \, copy ble_app_template to the current directory, and
rename it as ble_app_example. Change the base name of .uvoptx and .uvprojx files in bl e_app_exanpl e\ Kei | _
5 to ble_app_example.

» ble_app_example » Keil 5
~

Nare

| | ble_app_example.uvoptx
|| ble_app_example.uvprojx

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click &, and the Options for Target
'GRxx_Soc' window opens. Choose the Output tab, and type ble_app_example in the Name of Executable field, to
name the output file as ble_app_example.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 25

GOODiX

Development and Debugging with GR5526 SDK in Keil

Options for Target "GRxx_Soc’

Device I Target Output | Listing I User I C,-’CHI Asm I Linker I Debug I Ltilties I

Select Folder for Objects... |

Name of Exccutable: |ble_app_example]

% Create Executable: \Objects*ble_app_example
¥ Debug Information
[V Create HEX File

¥ Browse Information

™ Create Library: \Objects‘ble_app_example lib

[~ Create Batch File

Lok ||

Cancel Il Defaults I Help

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project window of Keil.

=% Project:

ble_app_example

E-4% GRxx_Soc

-3
=-E3
=-E3
=3
=3
=3
-3
-3
=-C3
=-E3
=-E3

gr_startup
gr_arch

gr_soc
gr_board
gr_stack_lib
gr_app_drivers
gr_libraries
gr_profiles
external
user_platform

UsSEr_app

Figure 4-4 ble_app_example groups

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

. SDK groups

The SDK groups include gr_startup, gr_arch, gr_soc, gr_board, gr_stack_lib, gr_app_drivers, gr_libraries,

gr_profiles, and external.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

26

GOODiX

Development and Debugging with GR5526 SDK in Keil

Project 8
=4 Project: ble_app_example =
=55 GRxx_Soc
=T gr_startup
| Startup.5

=15 gr_arch

J gr_system.c

| gr_interrupt.c

| gr_platform.c
-5 gr_soc

] grsocc
=5 gr_board

J board_SK.c
=5 gr_stack_lib

1 ble_sdklib
=5 gr_app_drivers

] app_dma.c

] app_gpiote.c

| app_io.c

J app_pwr_mgmt.c

J app_uart.c

) app_uart_dma.c
=5 gr_libraries

L] utility.c

] app_timer.c

B ring_buffer.c

_1 prmu_calibraticn.c

1 app_leg.c

1 app_error.c

£l app_assert.c

] app_key.c

| app_key_core.c

] cortex_backtrace.c

] fault_trace.c
-1 gr_profiles

J ble_prf_utils.c
= external

] SEGGER_RTT.c
[user_platform b

L user_app

-« | BiE
=] Praj... @B-J-JI': {} Func... [].,Tem...

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

SDK Group Name
gr_startup

gr_arch

gr_soc

gr_board

Table 4-2 SDK groups

Description

System boot file

Initialization configuration files and system interrupt APl implementation files for System Core and PMU
gr_soc.c which is used for initializing and calibrating modules such as Clock, PMU, and Vector before
entering the main() function

Board-level description file which is used for implementing components such as log, key, and LED

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 27

GOODiX

Development and Debugging with GR5526 SDK in Keil

SDK Group Name

gr_stack_lib

gr_app_drivers

gr_libraries

gr_profiles

external

. User groups

Description

GR5526 SDK ./ib file

Driver API source files which are easy to use for application developers. You can add related application
drivers on demand.

Open source files of common assistant software modules and peripheral drivers provided in the SDK
Source files of GATT Services/Service Clients. You can add necessary GATT source files for projects on
demand.

Source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-party

programs on demand.

User groups include user_platform and user_app.

Project U x|
=" Project: ble_app_example
=45 GRxx_Soc

[1 gr_startup

{d gr_arch

[1 gr_soc

{d gr_board

[gr_stack_lib

{1 gr_app_drivers

[J gr_libraries

{d gr_profiles

[1 external

e

m

user_platform

] user_periph_setup.c
B4 user_app

J main.c

] user_app.c

J custom_config.h

Figure 4-6 User groups

Functionalities for source files in User groups need to be implemented by developers. Group descriptions are

provided below:

User Group Name

user_platform

Table 4-3 User groups

Description
Software and hardware resource setting and application initialization; you need to execute

corresponding APIs on demand.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 28

GOODiX

Development and Debugging with GR5526 SDK in Keil

User Group Name

user_app

Description
main() function entries and other source files created by developers, which are used to configure
runtime parameters of Bluetooth LE Stack and execute event handlers of GATT Services/Service

Clients

4.3.2 Configuring a Project

You should configure corresponding project options according to product characteristics, including NVDS, code

running mode, memory layout, After Build, and other configuration items.

4.3.2.1 Configuring custom_config.h

custom_config.h is used to configure parameters of application projects. You can modify configurations in
custom_config.h directly or configure parameters in the Configuration Wizard interface of Keil.

" Note:

The custom_config.h of each application example project is in Sr ¢\ conf i g under project directory.

o Modify the configurations in custom_config.h.

GR5526 SDK provides a template configuration file custom_config.h (in SDK_Fol der\ bui | d\ confi g\ cust

om _confi g. h). You can directly modify the template file to configure parameters for application projects.

Macro

SOC_GR5526

SYS_FAULT_TRACE_ENABLE

ENABLE_BACKTRACE_FEA

APP_DRIVER_USE_ENABLE

APP_LOG_ENABLE

APP_LOG_STORE_ENABLE

Table 4-4 Parameters in custom_config.h

Description
Define the SoC version number.

Enable/Disable Callstack Trace Info printing.

If printing is enabled, the Callstack Trace Info is printed when a HardFault occurs.

o 0: Disable

o 1:Enable

Enable/Disable stack backtrace functionality.
o 0: Disable

o 1:Enable

Enable/Disable the App Drivers module.

o 0: Disable

o 1:Enable

Enable/Disable the APP LOG module.

o 0: Disable

o 1:Enable
Enable/Disable the APP LOG STORE module.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

29

GOODiX

Development and Debugging with GR5526 SDK in Keil

Macro

APP_LOG_PORT

SK_GUI_ENABLE

DTM_TEST_ENABLE

PMU_CALIBRATION_ENABLE

FLASH_PROTECT_PRIORITY

NVDS_START_ADDR

NVDS_NUM_SECTOR

SYSTEM_STACK_SIZE

Description

° 0:Disable

° 1:Enable

Set the output mode of APP LOG module.
o 0: UART

o 1:J-Link RTT

° 2: ARMITM

Note:
By default, this macro is commented out in custom_config.h, and the default value is 0. It can be
redefined by developers on demand.

Enable/Disable the GUI module on GR5526 SK Board.

o 0:Disable

o 1:Enable

Enable/Disable DTM Test.

o 0:Disable

o 1:Enable

Enable/Disable PMU calibration. When PMU calibration is enabled, the system monitors

temperature and voltage automatically with adaptive adjustment.

o 0: Disable

o 1:Enable

Note:

PMU calibration shall be enabled in high/low temperature scenarios.

Set the priority level to respond to an exception during Flash write or erase operation.

When FLASH_PROTECT_PRIORITY is set to N, interrupt requests with a priority level not higher than
N are suspended. After the Flash write or erase operation is completed, the system responds to the
suspended interrupt requests.

By default, the system does not respond to any interrupt request during Flash write or erase
operation. Developers can set a value on demand.

Start address of NVDS in Flash

By default, the macro is commented out in custom_config.h. If you need to reconfigure the NVDS
address, enable the macro and set the address as needed (4-KB alignment is compulsory).

Note:

The start address cannot be set in used areas in the memory (such as SCA and user App).

Number of Flash sectors for NVDS

Size of Call Stack required by applications. The default value is 12 KB.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 30

GOODiX

Development and Debugging with GR5526 SDK in Keil

Macro

SYSTEM_HEAP_SIZE

APP_CODE_LOAD_ADDR*

APP_CODE_RUN_ADDR*

EXT_RAM1_STRAT_ADDR

EXT_RAM?2_STRAT_ADDR

SYSTEM_CLOCK*

CFG_LPCLK_INTERNAL_EN

CFG_LF_ACCURACY_PPM

BOOT_LONG_TIME*

BOOT_CHECK_IMAGE

VERSION*

Description

You can set the value as needed. Please note that the value shall not be less than 6 KB.
Note:

After compilation of ble_app_example, the Maximum Stack Usage is provided in Kei | _5\ Cbj ect
s\ bl e_app_exanpl e. ht mfor reference.

Size of Heap required by applications. The default value is 16 KB.

You can set the value as needed.

Start address of the application storage area

Note:

This address shall be within the Flash address range.

Start address of the application running space

If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP mode.
If the value is within the RAM address range, applications run in mirror mode.
Start address of PSRAM (OSPI)

Start address of PSRAM (QSPI M1)

Set the system clock frequency.

° 0:96 MHz

°c 1:64 MHz

o 2:16 MHz (XO)

o 3:48 MHz

o 4:24 MHz

° 5:16 MHz

o 6:32 MHz (PLL)
Enable/Disable the OSC inside an SoC as the Bluetooth LE low-frequency sleep clock. If the OSC

clock is enabled, CFG_LF_ACCURACY_PPM will be set to 500 ppm by force.
o 0: Disable

o 1:Enable

Bluetooth LE low-frequency sleep clock accuracy. The value shall range from 1 to 500 (unit: ppm).

Set 1-second delay (during SoC boot before implementing the second half Bootloader).

o 0: No delay

o 1: Delay for 1 second.

Determine whether to check the image during cold boot in XIP mode.
o 0: Do not check.

o 1: Check.

Version number of application firmware; length: 2 bytes; it is stored in hexadecimal format.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 31

GOODiX

Development and Debugging with GR5526 SDK in Keil

Macro

CHIP_VER

CFG_CONTROLLER_ONLY

CFG_MAX_PRFS

CFG_MAX_BOND_DEVS

CFG_MAX_CONNECTIONS

CFG_MAX_ADVS

CFG_MAX_PER_ADVS

CFG_MAX_SYNCS

CFG_MAX_SCAN

CFG_MUL_LINK_WITH_SAME_DEV

CFG_EATT_SUPPORT

Description
Version of the SoC that the firmware runs on, currently set to 0x5526

Use Bluetooth LE Controller only or not.

o 0: Use Bluetooth LE Controller and Host.

o 1: Use Bluetooth LE Controller only.

Maximum number of GATT Profiles/Services supported by applications

You can set the value on demand. A larger value means occupying more RAM space.

Maximum number of devices that can be bonded to applications; Max.: 4

Maximum number of devices that can be connected to applications; the number shall be no greater
than 10.

You can set the value based on needs. A larger value means more RAM space to be occupied by
Bluetooth LE Stack Heaps.

The size of Bluetooth LE Stack Heaps is defined by the following four macros in
flash_scatter_config.h:

o ENV_HEAP_SIZE

o ATT_DB_HEAP_SIZE

o KE_MSG_HEAP_SIZE

o NON_RET_HEAP_SIZE

Note:

The above four macros cannot be changed by developers.

Maximum number of Bluetooth LE legacy advertising and extended advertising supported by
applications

Maximum number of Bluetooth LE periodic advertising supported by applications

Note:

The total number of legacy advertising and extended advertising (CFG_MAX_ADVS) plus the number
of periodic advertising (CFG_MAX_PER_ADVS) shall be no greater than 5.

Number of synchronized periodic advertising; used for reserving RAM for Bluetooth LE Stack. You
can set the value according to the number of synchronized periodic advertising in use. Max.: 5.
Maximum number of supported Bluetooth LE device used for scanning in applications. Max.: 1.
Support multi-link functionality for a single device or not, typically used for Find My applications.
o 0:No

o 1:Yes

Support the Bluetooth LE EATT functionality or not.

° 0:No

o 1:Yes

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 32

GOODiX

Development and Debugging with GR5526 SDK in Keil

Macro

CFG_MAX_EATT_CHANNELS

CFG_ISO_SUPPORT

CFG_BT_BREDR

CFG_CAR_KEY_SUPPORT

CFG_LCP_SUPPORT

SECURITY_CFG_VAL

Description

Maximum number of Bluetooth LE EATT channels supported in Application. Max.: 10.

Indicate whether the ISO functionality is supported.

° 0:No
o 1:Yes
Support Bluetooth BR/EDR or not.
° 0:No

o 1:Yes

Support digital car key applications or not.

° 0:No

o 1:Yes

Support the LCP module or not.

° 0:No

o 1:Yes

Configure the algorithm security level.
°o 0:Levell

o 1:Level 2

: Macros marked with an asterisk () in the table above are used to initialize the BUILD_IN_APP_INFO structure.

BUILD_IN_APP_INFO is defined at 0x200 in the firmware, and is initialized with macros in custom_config.h.

During system boot, the Bootloader reads value from 0x200 and uses it as a boot parameter.

o Configure parameters in the Configuration Wizard interface.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

33

GOODiX

Development and Debugging with GR5526 SDK in Keil

_] custom_config.h

Expand Al | Collapse All Help ™ Show Grid
Option Value
[=-Basic configuration
Chip version 1
Enable system fault trace module EMABLE
Enable app driver module EMABLE
Eanble APP log medule EMABLE
APP log port type UART
Eanble APP log store module DISABLE
Enable 5K GUI module DISABLE
Enable DTM test support DISABLE
Enable BLE DFU support EMABLE
Enable PMU Calibration EMABLE
Protection priority level 0
MNVDS Start Address 1
The Number of sectors for NVDS 1
Call Stack Size 0x0000 3000
Call Heap Size 00000 4000
[=-Boot info configuration
Code load address Flash address
Code run address Flash address
System clock 96MHZ
External clock accuracy used in the LL to compute timing 500
Enable internal osc as low power clock Default: Disable internal osc as low power clock
Delay time for Boot startup Delay 500ms
In xip mode, check image during cold boot startup Check image
Code version,16bits 1
algorithm security level Enable algorithm level one

Figure 4-7 custom_config.h in the Configuration Wizard interface

Comments in custom_config.h are compliant with Configuration Wizard Annotations of Keil, making it possible

for users to open custom_config.h in Keil and configure application project parameters in the Configuration
Wizard interface of Keil.

[\ Tip:
It is recommended to configure parameters in the Configuration Wizard interface, to prevent inputting invalid

parameters.

4.3.2.2 Configuring Memory Layout

Keil defines memory segments for the linker in .sct files. The GR5526 SDK provides an example
flash_scatter_common.sct (in SDK_Fol der\ pl atform soc\linker\keil\flash_scatter_comm
on. sct) to help developers quickly configure memory layout. The macros used by this .sct file are defined in

flash_scatter_config.h.

" Note:

InKeil, attribute_((section("nanme"))) can be used to define a function or a variable at a specific
memory segment, in which name depends on your choice. A scatter (.sct) file specifies the location for a customized
segment. For example, to define Zero-Initialized (Z!) data of applications at the segment named as .bss.app, you can
set attribute to attribute ((section(".bss.app "))).

You can follow the steps below to configure the memory layout:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 34

https://www.keil.com/pack/doc/CMSIS_Dev/Pack/html/configWizard.html

GOODiX Development and Debugging with GR5526 SDK in Keil

1. Click = (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
Linker tab.

2. On the Scatter File bar of the Linker tab, click ... to browse and select the flash_scatter_common.sct file in SDK
_Fol der\ pl atform soc\Iinker\Kkeil.Youcan also copy the scatter (.sct) file and the configuration file
(.h) to the ble_app_example project directory and then select the scatter file.

[Note:

#! arncc - E -l inflash_scatter_common.sct specifies the directory of the header file required for
flash_scatter_common.sct. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on actual product memory layout.

K3 Options for Target 'GRxx_Soc' >
P g

Device] Tanget] Cutput] Listing l User] C;"CH] Asm Linker] Debug l Litilities]

[Use Memory Layout from Target Dialog ¥/0 Base:
[~ Make RW Sections Posttion Independent R/O Base: |0x00000000
[Make RO Sections Position Independent RAW Base |0x00060000

[Dont Search Standard Libraries
¥ Report ‘might fail' Conditions as Emors

disable Wamings: |

Scatl_iler AN Nplatformsocinkertkeil'lash_scatter_common sct ﬂ J Edit....
ile

Misc AU Nplatformtsocinkertkeilrom_symbol
controls
Linker |-cpu Cortex-M4fp "o s
contral |Hibrary_type=microlib —strict —scatter . %\ platformtsocinkertkeil\flash_scatter_common sct™
string hd

QK | Cancel Defaults Help

Figure 4-8 Configuration of scatter file

4. Click OK to save the settings.

4.3.2.3 Configuring After Build

After Build in Keil can specify the command to be executed after a project is built.

By default, the after build command will be executed for ble_app_template. ble_app_example, which is based on
ble_app_template, does not require manual configuration of After Build.

If you build a project in Keil, follow the steps below to configure After Build:

1. Click ® (Options for Target) on the Keil toolbar and open the Options for Target ‘GRxx_Soc’ dialog box. Select the
User tab.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 35

GOODiX Development and Debugging with GR5526 SDK in Keil

2. From the options expanded from After Build/Rebuild, select Run #1, and type fromelf.exe --text -c --output
Listings\@L.s Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf

to generate a compiling file based on the selected .axf file.

3. From the options expanded from After Build/Rebuild, select Run #2, and type fromelf.exe --bin --output Listings
\@L.bin Objects\@L.axf in the corresponding User Command field. This step helps you utilize Keil fromelf to

generate a compiling file based on the selected .axf file.

4. Click OK to save the settings.

K

Device] Target] Cutput] Listing User IC;"C-H-] Asm] Linker] Debug] Litilities]

Command ltems User Cornmand o Stopoon BExi.. 5.
=--Before Campile C/C++ File
[~ Run#1 (2] Mot Specified [
[Run#2 (3] Mot Specified [
=-Before Build/Rebuild
[~ Run 21 (3] Mot Specified [
[~ Run2 (2] Mot Specified [
- After Build/Rebuild
[+ Run#1 fremelf.exe --text -c --eutput Listings\@L.s Ob... ‘_'ﬂ Not Specified ||
[V Run 2 fromelf.exe --bin --output Listings\@L.bin Obje... ‘_'ﬂ Not Specified ||

™ Run 'After-Build’ Conditionally
Iv¥ Beep When Complete I~ Start Debuagging

CK Cancel Defaults Help

Figure 4-9 Configuration of After Build

4.3.3 Adding User Code

You can modify corresponding code in ble_app_example on demand.

4.3.3.1 Modifying the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK HEAP INIT (heaps table);

int main (void)

{
/** Initialize user peripherals. */
app_periph init();

/** Initialize BLE Stack. */
ble stack init(&&m app ble callback, &heaps table);

// Main Loop
while (1)
{

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 36

GOODiX Development and Debugging with GR5526 SDK in Keil

/*
* Add Application code here, e.g. GUI Update.
=)
app_log flush();
pwr mgmt schedule () ;

. STACK_HEAP_INIT(heaps_table) defines seven global arrays as Heaps for Bluetooth LE Stack. Do not modify the
definition; otherwise, Bluetooth LE Stack might not work normally. The Heap size is related to the Bluetooth LE

service volume configured in “Section 4.3.2.1 Configuring custom_config.h”.

. app_periph_init() is used for initializing peripherals. In development and debugging phases, the
SYS_SET_BD_ADDR in this function can be used to set a temporary Public Address. pwr_mgmt_mode_set()
sets the MCU operation mode (SLEEP/IDLE/ACTIVE) during automatic power management; app_periph_init() is
implemented in user_periph_setup.c, and the example code is as follows.

/**@brief Bluetooth device address. */
static const uint8 t s bd addr[SYS BD ADDR LEN] = {Ox11, Ox11, Ox11, Ox11,0x11, Ox11};

void app periph init (void)
{
SYS SET BD ADDR (s bd addr) ;
bsp log init();
pwr mgmt mode set (PMR MGMT SLEEP MODE) ;

. Add main loop code of applications to while(1) { }, for example, code to handle external input and update GUI.

. To enable the APP LOG module, call the app_log_flush() in the main loop. This is to ensure logs are output
completely before the SoC enters sleep mode. For more information about the APP LOG module, see “Section
4.6.3 Outputting Debug Logs”.

. Call pwr_mgmt_shcedule() to implement automatic power management to reduce system power consumption.

4.3.3.2 Implementing Bluetooth LE Service Logic

Related Bluetooth LE service logic of applications are driven by a number of Bluetooth LE events which are defined

in the GR5526 SDK. Therefore, applications need to implement the corresponding event handlers in GR5526 SDK to
obtain operation results or state change notifications of Bluetooth LE Stack. Event handlers are called in the interrupt
context of Bluetooth LE SDK IRQ. Therefore, do not perform long-running operations in handlers, for example, blocking
function call and infinite loop; otherwise, the system might be blocked, causing Bluetooth LE Stack and the SDK

Bluetooth LE module unable to run in a normal timing.

Bluetooth LE events fall into eight categories: Common, GAP Management, GAP Connection Control, Security
Manager, L2CAP, GATT Common, GATT Server, and GATT Client.

Bluetooth LE events supported by GR5526 SDK are listed below.
Table 4-5 Bluetooth LE events

Event Type Event Name Description

Common BLE_COMMON_EVT_STACK_INIT Bluetooth LE Stack init complete event

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 37

GOODiX

Development and Debugging with GR5526 SDK in Keil

Event Type Event Name
BLE_GAPM_EVT_CH_MAP_SET
BLE_GAPM_EVT_WHITELIST_SET
BLE_GAPM_EVT_PER_ADV_LIST_SET
BLE_GAPM_EVT_PRIVACY_MODE_SET
BLE_GAPM_EVT_LEPSM_REGISTER
BLE_GAPM_EVT_LEPSM_UNREGISTER
BLE_GAPM_EVT_DEV_INFO_GOT
BLE_GAPM_EVT_ADV_START
BLE_GAPM_EVT_ADV_STOP

GAP Management | BLE_GAPM_EVT_SCAN_REQUEST
BLE_GAPM_EVT_ADV_DATA_UPDATE
BLE_GAPM_EVT_SCAN_START
BLE_GAPM_EVT_SCAN_STOP

BLE_GAPM_EVT_ADV_REPORT

BLE_GAPM_EVT_SYNC_ESTABLISH

BLE_GAPM_EVT_SYNC_STOP
BLE_GAPM_EVT_SYNC_LOST
BLE_GAPM_EVT_READ_RSLV_ADDR
BLE_GAPC_EVT_PHY_UPDATED
BLE_GAPC_EVT_CONNECTED
BLE_GAPC_EVT_DISCONNECTED
BLE_GAPC_EVT_CONNECT_CANCEL
BLE_GAPC_EVT_AUTO_CONN_TIMEOUT
BLE_GAPC_EVT_CONN_PARAM_UPDATED
BLE_GAPC_EVT_CONN_PARAM_UPDATE_REQ

GAP Connection
BLE_GAPC_EVT_PEER_NAME_GOT

Control
BLE_GAPC_EVT_CONN_INFO_GOT
BLE_GAPC_EVT_PEER_INFO_GOT
BLE_GAPC_EVT_DATA_LENGTH_UPDATED
BLE_GAPC_EVT_DEV_INFO_SET
BLE_GAPC_EVT_CONNECT_IQ_REPORT
BLE_GAPC_EVT_CONNECTLESS_IQ_REPORT

BLE_GAPC_EVT_LOCAL_TX_POWER_READ

Description

Channel Map Set complete event

Whitelist Set complete event

Periodic Advertising List Set complete event
Privacy Mode for Peer Device Set complete event
LEPSM Register complete event

LEPSM Unregister complete event

Device Info Get event

Advertising Start complete event

Advertising Stop complete event

Scan Request event

Advertising Data update event

Scan Start complete event

Scan Stop complete event

Advertising Report event

Periodic Advertising Synchronization Establish
event

Periodic Advertising Synchronization Stop event
Periodic Advertising Synchronization Lost event
Read Resolvable Address event

PHY Update event

Connected event

Disconnected event

Connect Cancel event

Auto Connect Timeout event

Connect Parameter Updated event

Connect Parameter Request event

Peer Name Get event

Connect Info Get event

Peer Info Get event

Data Length Updated event

Device Info Set event

Connection 1Q Report info event
Connectionless |Q Report info event

Local transmit power read indication info event

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

38

GOODiX

Development and Debugging with GR5526 SDK in Keil

Event Type

GATT Common

GATT Server

GATT Client

Event Name

BLE_GAPC_EVT_REMOTE_TX_POWER_READ

BLE_GAPC_EVT_TX_POWER_CHANGE_REPORT

BLE_GAPC_EVT_PATH_LOSS_THRESHOLD_REPORT

BLE_GAPC_EVT_RANGING_IND
BLE_GAPC_EVT_RANGING_SAMPLE_REPORT
BLE_GAPC_EVT_RANGING_CMP_IND
BLE_GAPC_EVT_DFT_SUBRATE_SET
BLE_GAPC_EVT_SUBRATE_CHANGE_IND
BLE_GATT_COMMON_EVT_MTU_EXCHANGE
BLE_GATT_COMMON_EVT_PRF_REGISTER
BLE_GATTS_EVT_READ_REQUEST
BLE_GATTS_EVT_WRITE_REQUEST
BLE_GATTS_EVT_PREP_WRITE_REQUEST
BLE_GATTS_EVT_NTF_IND
BLE_GATTS_EVT_CCCD_RECOVERY
BLE_GATTS_EVT_MULT_NTF
BLE_GATTS_EVT_ENH_READ_REQUEST

BLE_GATTS_EVT_ENH_WRITE_REQUEST

BLE_GATTS_EVT_ENH_PREP_WRITE_REQUEST

BLE_GATTS_EVT_ENH_NTF_IND

BLE_GATTS_EVT_ENH_CCCD_RECOVERY
BLE_GATTS_EVT_ENH_MULT_NTF
BLE_GATTC_EVT_SRVC_BROWSE
BLE_GATTC_EVT_PRIMARY_SRVC_DISC
BLE_GATTC_EVT_INCLUDE_SRVC_DISC
BLE_GATTC_EVT_CHAR_DISC
BLE_GATTC_EVT_CHAR_DESC_DISC
BLE_GATTC_EVT_READ_RSP
BLE_GATTC_EVT_WRITE_RSP
BLE_GATTC_EVT_NTF_IND
BLE_GATTC_EVT_CACHE_UPDATE

BLE_GATTC_EVT_ENH_SRVC_BROWSE

Description

Remote transmit power read indication info
event

Transmit power change reporting info event
Path loss threshold reporting info event
Ranging indication event

Ranging sample report event

Ranging complete indication event

Default subrate param set complete event
Subrate change indication event

MTU Exchange event

Service Register event

GATTS Read Request event

GATTS Write Request event

GATTS Prepare Write Request event

GATTS Notify or Indicate Complete event
GATTS CCCD Recovery event

GATTS Multiple Notifications event

GATTS Enhanced Read Request event

GATTS Enhanced Write Request event

GATTS Enhanced Prepare Write Request event

GATTS Enhanced Notify or Indicate Complete
event

GATTS Enhanced CCCD Recovery event
GATTS Enhanced Multiple Notifications event
GATTC Service Browse event

GATTC Primary Service Discovery event
GATTC Include Service Discovery event

GATTC Characteristic Discovery event

GATTC Characteristic Descriptor Discovery event

GATTC Read Response event

GATTC Write Response event

GATTC Notify or Indicate Receive event
GATTC Cache Update event

GATTC Enhanced Service Browse event

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

39

GOODiX

Development and Debugging with GR5526 SDK in Keil

Event Type

Security Manager

L2CAP

Event Name
BLE_GATTC_EVT_ENH_PRIMARY_SRVC_DISC
BLE_GATTC_EVT_ENH_INCLUDE_SRVC_DISC

BLE_GATTC_EVT_ENH_CHAR_DISC

BLE_GATTC_EVT_ENH_CHAR_DESC_DISC

BLE_GATTC_EVT_ENH_READ_RSP
BLE_GATTC_EVT_ENH_WRITE_RSP
BLE_GATTC_EVT_ENH_NTF_IND
BLE_SEC_EVT_LINK_ENC_REQUEST
BLE_SEC_EVT_LINK_ENCRYPTED
BLE_SEC_EVT_KEY_PRESS_NTF
BLE_SEC_EVT_KEY_MISSING
BLE_L2CAP_EVT_CONN_REQ
BLE_L2CAP_EVT_CONN_IND
BLE_L2CAP_EVT_ADD_CREDITS_IND
BLE_L2CAP_EVT_DISCONNECTED
BLE_L2CAP_EVT_SDU_RECV
BLE_L2CAP_EVT_SDU_SEND
BLE_L2CAP_EVT_ADD_CREDITS_CPLT
BLE_L2CAP_EVT_ENH_CONN_REQ
BLE_L2CAP_EVT_ENH_CONN_IND
BLE_L2CAP_EVT_ENH_RECONFIG_CPLT

BLE_L2CAP_EVT_ENH_RECONFIG_IND

Description

GATTC Enhanced Primary Service Discovery event
GATTC Enhanced Include Service Discovery event
GATTC Enhanced Characteristic Discovery event
GATTC Enhanced Characteristic Descriptor
Discovery event

GATTC Enhanced Read Response event

GATTC Enhanced Write Response event

GATTC Enhanced Notify or Indicate Receive event
Link Encrypted Request event

Link Encrypted event

Key Press event

Key Missing event

L2cap Connect Request event

L2cap Connected Indicate event

L2cap Credits Add Indicate event

L2cap Disconnected event

L2cap SDU Receive event

L2cap SDU Send event

L2cap Credits Add Completed event

L2cap Enhanced Connect Request event

L2cap Enhanced Connected Indicate event

L2cap Enhanced Reconfig Completed event

L2cap Enhanced Reconfig Indicate event

You need to implement necessary event handlers according to functional requirements of your products. For example,

if a product does not support Security Manager, you do not need to implement corresponding events; if the product

supports GATT Server only, you do not need to implement the events corresponding to GATT Client. Only those event

handlers required for products are to be implemented.

[\Tip:

For details about the usage of Bluetooth LE APIs and event APlIs, refer to the source code of Bluetooth LE examples in
SDK_Fol der\ docunent at i on\ GR5526_API _Ref er ence and SDK_Fol der\ pr oj ects\ bl e.

4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

40

GOODiX Development and Debugging with GR5526 SDK in Keil

Bluetooth LE Stack is the core to implement Bluetooth LE protocols. It can directly operate the Bluetooth 5.3 Core
(see “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after SVCall IRQ,

ensuring that Bluetooth LE Stack runs strictly in a timing specified in Bluetooth Core Spec.

A state change of Bluetooth LE Stack triggers BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler, the
Bluetooth LE event handlers (to be executed in applications) are called to send state change notifications of Bluetooth
LE Stack and related service data to applications. Avoid time-consuming operations when using these event handlers.
Perform such operations in the main loop or in user-level threads instead. You can use the module in SDK_Fol der\
conmponent s\ | i brari es\ app_queue, or your own application framework, to transfer events from Bluetooth LE

Application Application
Queue Main Loop

app_queue_init

event handlers to the main loop.

Bluetooth LE
Stack

SDK Application
Bluetooth LE Callback

BLE_Stack_IRQ |

BLE_SDK_IRQ Bluetooth LE Event

Handler

L app_queue_pop
—

JUBAS 3|puBH

Figure 4-10 System schedule (without OS)

4.4 Generating Firmware

o

After building a Bluetooth LE application, you can directly click L& (Build) on the Keil toolbar to build a project.

After the project compilation is completed, two firmware files are created in Kei | _5\ Li sti ngs and Kei | _5\ Qbj
ect s respectively in the project directory.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 41

GOODiX Development and Debugging with GR5526 SDK in Keil

Table 4-6 Firmware files generated

Name Description

Binary application firmware, can be downloaded to Flash through GProgrammer for
ble_app_example.bin
running.

Binary application firmware, can be downloaded to Flash through Keil or GProgrammer
ble_app_example.hex
for running.

[\ Tip:
Both the two types of firmware can be downloaded to Flash through GProgrammer for running. See GProgrammer

User Manual for detailed operations.

4.5 Downloading .hex Files to Flash

After .hex files are generated, you can download these files to Flash following the steps below:
1. Configure Keil Flash programming algorithm.

(1) Copy SDK _Fol der\ bui | d\ Kei | \ GR5xxx_16MB_Fl ash. FLMto Kei | _Fol der\ ARM Fl ash.

(2) Click # (Options for Target) on the Keil toolbar, open the Options for Target ‘GRxx_Soc’ dialog box, and
select the Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

(7] Options for Target 'GRxx_Soc’ x
Device I Target] Output 1 Ligting] Uzer] C}C-H] Asm] Linker Debug] Ulil'rties]
" Use Smulator with restrictions Settings | | ' Use: [J-LINK/J-TRACE Cortex | Settings
[Limit Speed to Real-Time
¥ Load Application at Startup ¥ Runto main(™ Load Application at Startup 7
Initialization File: Inttialization File:
J | LA build kel sram ini J Edit...
Restore Debug Session Settings Restore Debug Session Settings
¥ Breakpoints v Toolbox v Breakpoints v Toolbox
¥ Watch Windows & Peformance Analyzer ¥ Watch Windows
¥ Memory Display I¥ System Viewer ¥ Memory Display I¥ System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
[SARMCM3.DLL | -MPU [SARMCM3.DLL [-MFU
Dialog DLL: Parameter. Dialog DLL: Parameter:
|DCM.DLL \ﬂcm |TCM DLL |-pCM4
™ Wam f outdated Executable is loaded ™ Wam if outdated Executable is loaded
Manage Component Viewer Description Files .. |

OK Cancel | Defaults | Help

Figure 4-11 Debug tab

(3) In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default

configurations of Keil are shown below:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 42

GOODiX Development and Debugging with GR5526 SDK in Keil

Cortex JLink/JTrace Target Driver Setup X

Debugl Trace Hash Download I

 Download Function RAM for Algorithm
Lofn ¢ EraseFul Chip ¥ Program
i * Frase Sectors |V Verdfy Start: |[u2{]DDD[H)D Slze:lEhFDDD
" DonotErase [V Resetand Run
P ing Algorithm
Diescription | Device Size | Device Type | Address Range I

Start: I Size:

Add | Remove I

0K | Cancel | Apply

Figure 4-12 Default configurations in the Download Function pane

(4) Click Add to add GR5xxx_16MB_Flash.FLM (in SDK_Fol der\ bui | d\ kei | \') to the Programming
Algorithm.

Cortex ILink/ITrace Target Driver Setup x

Debugl Trace Hash Download |

r~ Download Function RAM for Algarithm
LORD " Erase Ful Chip ¥ Program
§ EeseSecos [P Verly Start: [(x20000000 Size: [0<FODO
" DonotErase [V Reset and Run
P ing Algorithm
Description | Device Size | Device Type | Address Range
GRSoo_16MB_Flash 1G Ext. Flash SPI 00200000H - 401FFFFFH

Start: I Size:

Add I Remove |

Figure 4-13 Adding GR5xxx_16MB_Flash.FLM to Programming Algorithm

(5) Configure RAM for Algorithm to define the address space to load and implement the programming
algorithm. Enter the start address of RAM in GR5526 in the Start input field: 0x20000000. Enter OxF00O0 in
the Size input field.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 43

GOODiX Development and Debugging with GR5526 SDK in Keil

RAM for Algorithm

Start: | 0x20000000 Size: |OxFOO0

Figure 4-14 Settings of RAM for Algorithm

(6) Click OK to save the settings.

2. Download firmware.

Ligp

After completing configuration, click ¥ (Download) on the Keil toolbar to download ble_app_example.axf to

Flash. After download is completed, the following results are displayed in the Build Output window of Keil.

I Note:

During file download, if “No Cortex-M SW Device Found” pops up, it indicates the SoC may be in sleep state at that
moment (the firmware with sleep mode enabled is running), so the .hex file cannot be downloaded to Flash. In this
case, developers need to press RESET on the GR5526 SK Board and wait for about 1 second; then click = (Download)

to download the file again.

Build Output 8
Load " Y projects\\ble\\ble peripherali\ble_spp templace\\Keil 5\\Objects\\ble app_example.axf"

Set JLink Project File to " Y projects\ble\ble peripheralible_app template\Keil 5\JLinkSettings.ini”

* JLink Info: Device "CORTEX-M¢" selected

JLink info:

compiled BApr 2% 2016 15:03:58
Link OB-SAM3U128 V3 compiled Apr 1€ 2020 17:20:41

* JLink Info: Found SWD-DE with ID 0x2BA01477
* JLink Info: Found Cortex-M4 rOpl, Little endian

* JLink Info: FPUnit: 15 code (BE) slots and 2 literal slots

* JLink Info: CoreSight components:

* JLink Info: ROMTbl 0 @ EOOFFO00

* JLink Info: ROMTbl O [0]: FFFOF000, CID: B10OSEOOD, PID: 000BBOOC SCS

* JLink Info: ROMTbl O [1]: FFF02000, CID: B10SEOOD, BID: 003BB002 DWT

* JLink Info: ROMTbl O [2]: FFF03000, CID: 00000000, BID: 00000000 222

* JLink Info: ROMTbl 0 [3]: FFF01000, CID: B1OSEOOD, PID: 003BB001 ITM

* JLink Info: ROMTbl O [4]: FFF41000, CID: B105800D, BID: 00OBBSAL TEIU
ROMTableAddr = OxEOOFFO00

Target info:
Device: ARMCM4 FP

VTarget = 3.300V

State of Pins:

TCK: 0, TDI: 1, TDO: 1, TMS: 0, TRES: 1, TRST: 1
Hardware-Breakpoints: 15

Software-Breakpoints: 5182

Watchpoints: 4

JTAG speed: 2667 kiz

Erase Done.
Programming Done.

Verify OK.

Application running ...

Flash Load finished at 17:04:35

Figure 4-15 Download results

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with multiple methods to set debug commands.

4.6.1 Configuring the Debugger

Configure the debugger before debugging. Click # (Options for Target) on the Keil toolbar, open the Options for
Target ‘GRxx_Soc’ dialog box, and select Debug tab. In the window, software simulation debugging configurations

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 44

GOODiX

Development and Debugging with GR5526 SDK in Keil

display on the left, and online hardware debugging configurations display on the right. Bluetooth LE example projects

adopt the online hardware debugging. Related default configurations of the debugger are shown as follows:

V| Options for Target 'GRxx_Soc'

Device | Target | Output | Listing | User | C/C++| Asm | Linker Debug]Utilities]

Settings | | % Use: |JLINK /J TRACE Cortex

" Use Simulator
[~ Limit Speed to Real-Time

with restrictions

Iv¥ Load Application at Startup
Inttialization File:

| ol s |

Restore Debug Session Settings

V¥ Breakpoints WV Toolbox

v Watch Windows & Performance Analyzer
[v System Viewer

Iv¥ Bunto maini)

¥ Memary Display

s

j Settings

[Load Application at Startup [¥
Inttialization File:

Restore Debug Session Settings
W Toolbox

A Abuildeeilaram ni

V¥ Breakpoints
v Watch Windows

¥ Memary Display [v System Viewer

CPU DLL: Parameter: Driver DLL: Parameter:
|SARMCM3.DLL | -MPU |5ARMCM3.DLL |-MPU
Dialog DILL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |1:cru14 |TCI'v1.DLL |1:cru14

[Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

[Wam if outdated Executable is loaded

ok ||

Cancel

|| Defautts |

Figure 4-16 Configuring the Debugger

The default initialization file sram.ini is in SDK_Fol der\ bui | d\ kei | . You can use this file directly, or copy it to the

project directory.

sram.ini contains a set of debug commands, which are executed during debugging. Click Edit... on the right side of the

Initialization File bar, to open sram.ini. Example code of sram.ini is provided as follows:

/**

Ak hkhkhkhk kA hkkhk Ak hhkhhhkrhhkhhhkhhkhkhhkrhhkrhkhhhkhhkhkhhrhkhkrhkhkrhhkrhkhkhkhkrkhkxkkxkxx

* GR55xx object loading script through debugger interface
* (e.g.Jlink# *etc).

* The goal of this script is to load the Keils's object file to the

* GR55xx RAM
* assuring that the GR55xx has been previously cleaned up.

Ak hhkhkhk kA hkhkhkhhkrhhhkrhhkhhhkhkhkhhhhhkrhhkhhhkhkhkhhrhkhkrhkhkrhhkrhkhkhkhkrkhkkrxkkxkxkxx*x

=
// Debugger reset (check Keil debugger settings)

// Preselected reset type (found in Options->Debug->Settings)is

// Normal (0) ;

// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit

// RESET

// Load object file

LOAD SL

// Load stack pointer

SP = RDWORD (0x00000000)

// Load program counter

$ = RDWORD (0x00000004)

// Write 0 to vector table register# remap vector
_ WDWORD (0xEO0O0OEDO8# 0x00000000)

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd.

45

GOODiX Development and Debugging with GR5526 SDK in Keil

" Note:
Keil supports executing debugger commands set by developers in the following order:
1. When Load Application at Startup (Options for Target ‘GRxx_Soc’ > Debug > Load Application at Startup) is

enabled, the debugger first loads the file under Name of Executable (Options for Target ‘GRxx_Soc’ > Output >
Name of Executable).

2. Execute the command in the file specified in Options for Target ‘GRxx_Soc’ > Debug > Initialization File.

3. When options under Options for Target ‘GRxx_Soc’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GRxx_Soc’ > Debug > Run to main() is checked, or the command g, nai n is
discovered in Initialization File, the debugger automatically starts executing CPU commands, until running to the
main() function.

4.6.2 Starting Debugging

After completing debugger configuration, click @ (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

' Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-17. This is to

ensure when you click Reset on the Keil toolbar after enabling Debug Session, the program can run normally.

Cortex ILink/)Trace Target Driver Setup X
Debug]Trace] Fash Download]
J-Link / J-Trace Adapter SW Device
CU (133114462 - IDCODE Device Name
Device: | J-Link OB-5AM3U123 SWD | @ 0x2BAD1477 ARM CoreSight SW-DP
HW : V3.00 di: | V6.51a
FW: |J-Link OB-SAM31128 V3 con
Port: Max Clock: &
sw hd 5MHz - =
Auto Ck | | | |
Connect & Reset Options Cache Options Download Options
Connect: [Nomal ~ v| Reset: |Nomal ~| | ¥ Cache Code I” Verify Code Download
¥ Reset after Connect [v Cache Memary ™ Download to Flash
Interface TCF/AP Misc:
MNetwork Settings
* UsB ¢ TCP/AP .
IP-Address Pot (Auto:) | _Putodetect Al
Scan | 127 0 0 7 . | 0
C . ’ . JLink Cmd
State: ready Q Q
0K Cancel | |

Figure 4-17 Setting Connect and Reset to Normal in Connect & Reset Options

4.6.3 Outputting Debug Logs

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 46

GOODiX Development and Debugging with GR5526 SDK in Keil

GR5526 SDK provides an APP LOG module and supports outputting debug logs of applications from hardware ports
based on customization. Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM
IT™M).

To use the APP LOG module, enable APP_LOG_ENABLE in custom_config.h, and configure APP_LOG_PORT based on

the output method as needed.

4.6.3.1 Module Initialization

After configuration, you need to call app_log_init() during peripheral initialization to initialize the APP LOG module,
including configuring log parameters, and registering log output APIs and Flush APIs.

The APP LOG module supports using the pri nt f () (a Cstandard library function) and APP LOG APIs to output debug
logs. If you choose APP LOG APls, you can optimize log output by setting log level, log format, filter type, or other

parameters; if you choose pri nt f (), set log parameters as NULL.

Call the initialization function of corresponding module (see SDK_Fol der\ conponent s\ | i brari es\ bsp\ bs
p. h for details) and register corresponding transmission and flush functions (see user_log_debug_init() for reference)
according to the configured output port.

If UART is the output port, user_log_debug_init() is implemented as follows.

static void user log debug init (void)
{
app_log init t log init;

log init.filter.level = APP LOG LVL DEBUG;

log init.fmt set[APP_LOG LVL ERROR] = APP LOG _FMT ALL & (~APP LOG_FMT TAG);
log init.fmt set[APP_LOG LVL WARNING] = APP LOG FMT LVL;

log init.fmt set[APP_LOG LVL INFO] = APP _LOG FMT LVL;

log init.fmt set[APP_LOG LVL DEBUG] = APP LOG_FMT LVL;

app log init(&log init, bsp uart send, bsp uart flush);
#if APP LOG STORE ENABLE

app log store info t store info;
app_log store op t op_func;

store info.nv_tag = APP LOG NVDS TAG;
store info.db addr = APP LOG DB _START ADDR;
store info.db size = APP LOG DB SIZE;

store_info.blk size = APP_LOG_ERASE BLK SIZE;

op_func.flash init = hal flash init;
op_ func.flash erase = hal flash erase;
op_func.flash write = hal flash write;
op func.flash read = hal flash read;
op_func.time get = NULL;

app log store init (&store info, &op func);
#endif

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 47

GOODiX Development and Debugging with GR5526 SDK in Keil

" Note:

. The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API
(optional for registration).

. GR5526 SDK provides an APP LOG STORE module, which supports storing the debug logs in Flash and outputting
the logs from Flash. To use the APP LOG STORE module, users need to enable APP_LOG_STORE_ENABLE in
custom_config.h. This module is configured in the ble_app_rscs project (in SDK_Fol der\ pr oj ect s\ bl e\ bl
e_peri pheral \ bl e_app_r scs). This configuration can be a reference when the APP LOG STORE module is
used.

e Application logs output by using pri nt f () cannot be stored by the APP LOG STORE module.

When debug logs are output through UART, the implemented log output APl and flush APl are bsp_uart_send() and
bsp_uart_flush() respectively.

o bsp_uart_send() is the basis for two log output APIs: app_uart asynchronization (app_transmit_async) and

hal_uart synchronization (hal_uart_transmit). You can choose the output methods as needed.

. bsp_uart_flush() is used to output the remaining data that is cached in memory in interrupt mode.

" Note:

You can rewrite the above two APIs.

When debug logs are output through J-Link RTT or ARM ITM, the implemented log output API is

bsp_segger_rtt_send() or bsp_itm_send(). No flush APl is to be implemented in the two modes.

4.6.3.2 Application

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug

logs:

e APP_LOG_ERROR()

e APP_LOG_WARNING()
e APP_LOG_INFO()

e APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() to output all the debug logs cached, to ensure that all debug logs are

output before the SoC is reset or the system enters the sleep mode.

If you choose armcc for compilation and output logs through J-Link RTT, it is recommended to make the following
modifications in SEGGER_RTT.c:

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 48

GOODiX Development and Debugging with GR5526 SDK in Keil

|] SEGGER RTT.c

238 | *

239 | * Static data

248 | *

FA | R R R S R KK R R S R R K KR K R R K KRR R R R K KRR KRR KK R R OR R R R R R R R KK

242 L*f

243 [/

244 // RTT Control Block and allocate buffers for channel @

245 [/

246 _ attribute ((section (".ARM. at 0x20005000"))) SEGGER RTT CB SEGGER_RTT;
247 //SEGGER_RTT_PUT_CB_SECTION(SEGGER_RTT CB_ALIGN(SEGGER_RTT_CB _SEGGER_RTT));

Figure 4-18 Creating RTT Control Block and placing it at 0x20005000

The figure below shows the reference configurations for J-Link RTT Viewer.

KA J-Link RTT Viewer V6.88a | Configuration ? X

Connection to Jink

(®) UsB [serial Mo
) TCRfIP

O Existing Session

Spedfy Target Device

| coRTEX-M4]

Script file (optional)
| |

Target Interface & Speed
SWD * | [4000kHz =~

RTT Control Block
(@) Address (O) Search Range

Enter the address of the RTT Control blodk,
Example: 020000000

| ox20005000]

Cancel

Figure 4-19 Configurations in J-Link RTT Viewer

The address of RTT Control Block can be specified by clicking Address and then entering a custom value, and the input
value can be set to the address of the _SEGGER_RTT structure in the .map file generated by the compiled project, as
shown in the figure below. If creating RTT Control Block through the method recommended in Figure 4-18 and placing
it at 0x20005000, you need to set Address to 0x20005000.

ultra_wfi_or_wfe Bx2008837ec Data @ rom_symbol_txt ABSOLUTE
sdk_gap_env 8x2008038ec Data 8 rom_symbol.txt ABSOLUTE
_SEGGER_RTT Ox2000500@ Data 120 segger_rtt.o(.ARM. _at_@x20805000)
jlink_opt_info 0x20006000 Data @ rom_symbol.txt ABSOLUTE
SystemCoreClock ox2000b000 Data 4 system gr55xx.o(.data)

__ stdout ax2eeaba4da Data 4 app_log.of.data)

Figure 4-20 Obtaining RTT Control Block address

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 49

GOODiX Development and Debugging with GR5526 SDK in Keil

I Note:
If you choose GCC for compilation, modifications shown in Figure 4-18 are not required. The address to be entered

for RTT Control Block in J-Link RTT Viewer should be the address of _SEGGER_RTT in the .map file generated by the
compilation project.

4.6.4 Debugging with GRToolbox

GR5526 SDK provides an Android App, GRToolbox, to debug GR5526 Bluetooth LE applications. GRToolbox features the
following:

. General Bluetooth LE scanning and connecting; characteristics read/write
. Demos for standard profiles, including Heart Rate and Blood Pressure

o Goodix-customized applications

[\ Tip:

You can obtain the GRToolbox installation file from Goodix official website or download it from the application store.

Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 50

https://www.goodix.com/en/software_tool/grtoolbox

GOODiX

Glossary
5 Glossary
Table 5-1 Glossary

Acronym Description

AoA/AoD Angle of Arrival/Angle of Departure

API Application Programming Interface

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DFU Device Firmware Update

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host Controller Interface

loT Internet of Things

ISOAL Isochronous Adaptation Layer

L2CAP Logical Link Control and Adaptation Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System-on-Chip

UART Universal Asynchronous Receiver/Transmitter

XIP Execute in Place
Copyright © 2025 Shenzhen Goodix Technology Co., Ltd. 51

	Preface
	Contents
	1 Introduction
	1.1 GR5526 SDK
	1.2 Bluetooth LE Stack

	2 GR5526 Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 Typical RAM Layout in XIP Mode
	2.5.2 Typical RAM Layout in Mirror Mode
	2.5.3 RAM Power Management

	2.6 PSRAM
	2.7 GR5526 SDK Directory Structure

	3 Bootloader
	4 Development and Debugging with GR5526 SDK in Keil
	4.1 Installing Keil MDK
	4.2 Installing GR5526 SDK
	4.3 Building a Bluetooth LE Application
	4.3.1 Preparing ble_app_example
	4.3.2 Configuring a Project
	4.3.2.1 Configuring custom_config.h
	4.3.2.2 Configuring Memory Layout
	4.3.2.3 Configuring After Build

	4.3.3 Adding User Code
	4.3.3.1 Modifying the main() Function
	4.3.3.2 Implementing Bluetooth LE Service Logic
	4.3.3.3 Scheduling BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

	4.4 Generating Firmware
	4.5 Downloading .hex Files to Flash
	4.6 Debugging
	4.6.1 Configuring the Debugger
	4.6.2 Starting Debugging
	4.6.3 Outputting Debug Logs
	4.6.3.1 Module Initialization
	4.6.3.2 Application

	4.6.4 Debugging with GRToolbox

	5 Glossary

