G@WDIX

GR5xx APP Log Application Note

Version: 3.0

Release Date: 2023-03-30

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

GCDD]X and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other

trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer
Information contained in this document is intended for your convenience only and is subject to change without prior

notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

GA@DIiX preface

Preface
Purpose

This document introduces the functionalities, operating mechanisms, and applications of APP Log module in Bluetooth
Low Energy (Bluetooth LE) GR5xx Software Development Kit (SDK), to help developers quickly get started with
secondary development of the module.

Audience

This document is intended for:
. GR5xx user

. GR5xx developer

o GR5xx tester

o Hobbyist developer

Release Notes

This document is the second release of GR5xx APP Log Application Note, corresponding to Bluetooth LE GR5xx System-
on-Chip (SoC) series.

Revision History

Version Date Description

1.0 2022-05-10 Initial release

e Updated descriptions about GR5xx SoCs.
3.0 2023-03-30
e Updated the code in sections "Log Output" and "Log Storage and Export".

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. |

GA@DIiX Contents

Contents

o = ol N |
L INEPOAUCTHION. cccee e i cciieiireeieieeeeeeeeereereernnanessseeeeeeeeeseennnnsssssssssseseeessnnnessssssssssseeeesnsnnnssssssssssseensennnnnsssssssssssnaensnnnnn 1
2 ENVIFONMENT SETUP....iiiiuiiiiiieniiiiiiieniiiiiineiiiiiensiisieessssistesssssstmesssssstrsssssestessessessessesssssesssssssssssssssssssssssssensssssssenne 2
P R o 4= T o T T | 4o o VOO PTP O PPPPPPPPPN 2

3 Application of APP LOZ IMOGUIE.......ccceeeeeeueneeeeeeereeereennnnnssseesesseseeeeenassssssssssssesssesssnnsssssssssssssesssssnnnsssssssssesasasssnnns 3
3.1 IMPOrting APP LOZ MOTQUIE.......co ittt e e e e e e et e e e e e e e e e aaaaaaeeeeeeesssnsbsaeeeaaeesesannsssasaaeseennnn 3
3.1.1 AAAING SOUICE FIlES..ccciiieiiiiiieee e e ettt e e e e e ettt e e e e e e e ettt aeeeeeesesstsbaaeeaeeeeeasnssssaaaaeseesssansssseaeaaeesansnnsenns 3

3.1.2 Configuring Mode and FUNCEIONAIITY.......eiieiiieieeiiiee ettt eebee e e et e e e etbe e e e sabeeeeennraeeeennrees 5

3.2 Module Initialization and SChEAUIING........uuieiiii i e e e st e e e e e e e e ae e e e e e e e e e nnnraaeeas 6
000 R o = @ LU o o 11 | PPNt 6

I A oY= B (o] =Y ={ I 1o Lo I 3'q o Lo o SRR 8

S T O 10 o]0] o T o = £ 11
S 0] o] =1 [11 =30 e Y =4 11
3.4.1 Obtaining LOZS iN REAI TiMB...ciiiiciiiiiieee ettt e e e e e e e et e e e e e e e e e s s s abtraeeeeeesseensssaaaeeeseessnnnnses 11

A S q o To T n Y=] o] =Te I o =L UUUPOt 14

4 MOAUIE DETAIIS.....cceeeeeeicciiiiiiiiieiiieseeeeeeereereennnasesseseeseeeeeresnnnnsssssssssssseeesssnnnnssssssssssesseessnnnnnssssssssssenasessnnnansnns 18
4.1 Log TransmisSioN and STOragE APIS.......coiuiiiiiiiiiie ittt ettt e stee e sateesteesbeeesabeesabeeessteesaseesnneanns 18
4.2 LOZ SCREUUINEG AP ..eiiiieieeeiee ettt ettt ettt e st e bt e e s a bt e s bt e e beeesabee s beeesabeesabeeenabeesabaesrnbeasnbeeeseeens 19

B FAQL . i iiiiiiieinneneiiiiieiiiiietesnnsssssssiessssteessnsssssssssssssssssessessssnsssssssssssssssssnnnnnsssssssssssssssannnne 21
5.1 Why Are Logs Exported Through GRTOOIDOX MiSSING?.......cviiiiiiieiciiie et e s e e e e e e e sneee s 21
5.2 Why Does Exporting of Historical Logs Through GRTOOIDOX Fail?........cccuvveiiiiiieieiieie e 21

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 1]

G@Dix Introduction

1 Introduction

GR5xx APP Log module is provided in GR5xx Software Development Kit (SDK) to assist developers in development and

debugging, supporting the following functionalities:

o Output logs in real time. You can customize the output mode of debug logs (through a hardware port such as
UART or J-Link RTT).

. Store and export logs. You can store the logs in Flash of GR5xx System-on-Chips (SoCs), and obtain the logs on

the mobile App GRToolbox (Android) through Bluetooth connection when needed.

. Set log levels and filter logs. You can output logs at multiple levels (DEBUG, INFO, WARNING, ERROR) and filter
logs by levels, to record information such as log level, time, and source.

Before getting started, you can refer to the following documents.
Table 1-1 Reference documents
Name Description

Developer guide of the specific GR5xx SoC | Introduces GR5xx SDK and how to develop and debug applications based on the SDK.

Provides J-Link operational instructions. Available at https://www.segger.com/downloads/

J-Link/J-Trace User Guide
jlink/UMO08001_JLink.pdf.

Offers detailed Keil operational instructions. Available at https://www.keil.com/support/

man/docs/uv4/.

Keil User Guide

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 1

https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.keil.com/support/man/docs/uv4/
https://www.keil.com/support/man/docs/uv4/

G@Dix Environment Setup

2 Environment Setup

This chapter introduces how to rapidly set up an operating environment for GR5xx APP Log module.

2.1 Preparation

Perform the following tasks before applying GR5xx APP Log module.
. Hardware preparation

Table 2-1 Hardware preparation

Name Description

Development board Starter Kit Board (SK Board) of the corresponding SoC
Connection cable USB Type C cable (Micro USB 2.0 cable for GR551x SoCs)
Android phone A mobile phone running on Android 5.0 (KitKat) and later

e Software preparation

Table 2-2 Software preparation

Name Description
Windows Windows 7/Windows 10
J-Link driver A J-Link driver. Available at https://www.segger.com/downloads/jlink/.

An integrated development environment (IDE). MDK-ARM Version 5.20 or later is required.
Keil MDK
Available at https://www.keil.com/download/product/.

A J-Link log output tool. Available at https://www.segger.com/products/debug-probes/j-link/tools/

J-Link RTT Viewer (Windows)

rtt-viewer/.
GRUart (Windows) A serial port debugging tool. Available in SDK_Fol der\t ool s\ GRUar t .
GRToolbox (Android) A Bluetooth LE debugging tool. Available in SDK_Fol der\ t ool s\ GRTool box.

" Note:

SDK_Folder is the root directory of the GR5xx SDK in use.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 2

https://www.segger.com/downloads/jlink/
https://www.keil.com/download/product/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/

G(DDiX Application of APP Log Module

3 Application of APP Log Module

This chapter introduces how to add GR5xx APP Log module to a project and how to use the module by taking

ble_app_pcs (an example project) in GR5xx SDK as an example.

3.1 Importing APP Log Module

APP Log module is optional for running a GR5xx-based project. Before using the module, add the files of APP Log

module to the project directory and enable the macro switch of the module.

3.1.1 Adding Source Files

The ble_app_rscs and ble_app_template_freertos projects in GR5xx SDK enable log-related functionalities of APP Log
module and implement log storage and export. You can refer to the two projects for porting and development.

The table below lists the source files of APP Log module.

Table 3-1 Source files of APP Log module

File Description
SDK_Folder\components\libraries
Source file of APP Log module. It is required to add the file before using APP Log module.
\app_log\app_log.c
SDK_Folder\components\libraries Source file for log storage of APP Log module. It is required to add the file before using the log

\app_log\app_log_store.c storage and export functionalities of APP Log module.

SDK_Folder\components\libraries Source file for exporting stored logs through Bluetooth. It is required to add the file before using

\app_log\app_log_dump_port.c the log storage and export functionalities of APP Log module.
SDK_Folder\components\profile Source file corresponding to Bluetooth service for log export. It is required to add the file before
\Ims\Ims.c using the log storage and export functionalities of APP Log module.

The steps to add related source files of APP Log module are as follows by taking ble_app_pcs in GR5xx SDK as an

example:

1. Run ble_app_pcs.
The source code and project file of ble_app_pcs are in SDK_Fol der\ proj ect s\ bl e\ bl e_peri pheral \
bl e_app_pcs, and project file is in the Keil_5 folder.

2. Add the source files of APP Log module to the project directory of ble_app_pcs.

(1). Select and right-click GRxx_Soc, and then choose Add Group to add a directory named as "gr_board".
Select and right-click gr_board, and then choose Add Existing Files to Group ‘gr_board’ to add the file in SD
K_Fol der\ pl at f or m boar ds\ boar d_SK. c.

(2). Select and right-click gr_libraries. Choose Add Existing Files to Group ‘gr_libraries’ to add app_error.c,

app_assert.c, app_log.c, app_log_store.c, and app_log_dump_port.c to gr_libraries, as shown in Figure 3-1.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 3

GA@DIiX

Application of APP Log Module

Project
B “% Project: ble_app_pcs
%5 GRxx_Soc

3 gr_startup

1 grarch

[grsoc

= [gr_board

I _] board_SK.c

[J gr_stack_lib

[gr_app_drivers

=I5 gr_libraries

1 utility.c

ring_buffer.c
app_key.c
app_key_core.c

app_timer.c
pmu_calibration.c
app_log.c
app_error.c

app_assert.c

app_log_store.c

PEEEPEEPEEE

app_log_dump_port.c

= [gr_profiles

_] ble_prf_utils.c
] pesc

J Ims.c

[external

3 user_platform
[user_app

L)

Figure 3-1 Adding source files into the project

(3). Select and right-click gr_profiles. Choose Add Existing Files to Group ‘gr_profiles’ to add /Ims.c to

gr_profiles, and add the corresponding header file path, as shown below:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

G@DIX Application of APP Log Module

l Options for Target 'GRxx_Soc' et
Device I Target I Output I L1 stingl User C/C++ Iﬂ.sm I Linker I Debug I Utilities I
Preprd FoOlder Setup ? Xk
Dj Setup Compiler Include Paths: X ||
Undel| ..\ \components \profiles\gus A
1} -GN \components\profiles\gus_c L
Lan AL \components \profilesVhids |
Q41 \.\.\.\.\components \profiles\hmcps
™ Bx|..\.\\ . \components\profiles\hrs vl
- \components\profiles hrs_c I
Optimi3| \ ___\components'profiles\hts F
LA \componentsprofilesias Lides
Mo AL\ \componentsprofiles'\lls
I GG\ \components \profiles ms |
AL \components \profiles \ndcs
v On GG \components \profiles \otas pns
1] \components\profiles\otas_c B
Incid |-\ .\ \components \profiles \pass ;J
Pall ..\ W\ \components \profiles\pass_c
U \components\profiles\pcs —
Co AL \components \profiles\rscs
AL \componentsprofiles'\rses_c
Compll..\..\..\..\..\components \profiles \rtus atll| [P
r 0K Cancel | "
1) 4 Cancel I Defaunlts I Help |

Figure 3-2 Adding header files into the project

According to the output port adopted for the APP Log module, the UART driver source file and SEGGER RTT source
driver file may be needed, depending on the configured output mode. The steps to add the two files are similar to

those to add the sources files of APP Log module.
Currently, the two files have been added to all projects in GR5xx SDK by default.

e The UART driver source file is in SDK_Fol der\ conponent s\ app_dri ver s\ src and SDK_Fol der\ dri
vers\src.

e The SEGGER RTT driver source file is in SDK_Fol der\ ext er nal \ segger _rtt.

3.1.2 Configuring Mode and Functionality

Macros related to APP Log module are defined in custom_config.h, as shown below. You can configure the mode and

functionalities of APP Log module according to project requirements and hardware environment.

// <o> Enable APP log module

// <0=> DISABLE

// <1=> ENABLE

#ifndef APP LOG_ENABLE

#define APP LOG_ENABLE 1
#endif

// <o> APP log port type

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 5

G(DDiX Application of APP Log Module

// <0=> UART

// <1=> RTT

// <2=> ITM

#ifndef APP LOG_PORT

#define APP_LOG_PORT 0
#endif

// <o> Enable APP log store module
// <0=> DISABLE

// <1=> ENABLE

#ifndef APP LOG STORE ENABLE
#define APP LOG STORE ENABLE 0
#endif

Table 3-2 Macro description of APP Log module

Macro Definition

Enable/Disable APP Log module.

APP_LOG_ENABLE e 0: Disable APP Log module.

e 1:Enable APP Log module.

Set the output mode of APP Log module.
APP_LOG_PORT e 0: UART

e 1:J-Link RTT

Enable/Disable the log storage functionality of APP Log module.

APP_LOG_STORE_ENABLE ¢ 0: Disable the log storage functionality.

e 1: Enable the log storage functionality.

3.2 Module Initialization and Scheduling

After configuration, you need to call related initialization function during peripheral initialization to complete the
initialization, and call related scheduling function when appropriate. The initialization and scheduling functions to be
called vary according to the specific App Log functionalities required. The sections below introduce the application and

scenarios of related APlIs.

3.2.1 Log Output

If only the log output functionality is required, you can call app_log_init() of APP Log module to complete module

initialization.

The input parameters of app_log_init() include the log initialization parameter, log output API, and flush API (optional
for registration). Call the initialization function of corresponding APl and register corresponding the transmission and

flush functions according to the configured output port.

o To output debug logs through UART port, UART-related initialization function shall be called. Taking board_SK.c
as an example, bsp_uart_init (UART initialization function), bsp_uart_send (UART transmission function), and
bsp_uart_flush (UART flush function) shall be executed to initialize APP Log module. The code snippet is as

follows:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 6

G(DDiX Application of APP Log Module

" Note:
board_SK.cis in SDK_Fol der\ pl at f or Ml boar ds\ board_SK. c.

void bsp log init (void)
{
#if (APP LOG ENABLE == 1)
#if (APP_LOG PORT == 0)
bsp uart init();
#elif (APP LOG PORT == 1)
SEGGER RTT ConfigUpBuffer (0, NULL, NULL, 0, SEGGER RTT MODE BLOCK IF FIFO FULL);
#endif
#if (APP_LOG PORT <= 2)
app log init t log init;

log init.filter.level = APP LOG LVL DEBUG;

log init.fmt set[APP LOG LVL ERROR] = APP LOG FMT ALL & (~APP LOG FMT TAG) ;
log init.fmt set[APP LOG LVL WARNING] = APP LOG FMT LVL;

log init.fmt set[APP LOG LVL INFO] = APP LOG_FMT LVL;

log init.fmt set[APP LOG LVL DEBUG] = APP LOG FMT LVL;

#if (APP_LOG_PORT == 0)
app log init(&log init, bsp uart send, bsp uart flush);

#elif (APP _LOG PORT == 1)
app log init(&log init, bsp segger rtt send, NULL);
#elif (APP _LOG PORT == 2)
app log init(&log init, bsp itm send, NULL);
#endif
app_assert_init();
#endif
#endif

}

Related parameters are described as follows:

° bsp_uart_send is to implement app_uart async (app_uart_transmit_async API) and hal_uart sync
(hal_uart_transmit API) output APIs. You can select a proper log output mode according to specific
application requirements.

° bsp_uart_flush is a uart_flush API for outputting the remaining data cached in RAM of GR5xx SoCs in
interrupt mode.

You can rewrite the above two APIs.

. When debug logs are output through J-Link RTT port, the implemented log output APl is bsp_segger_rtt_send().
No flush APl is to be implemented in this mode.

Initialization of different output modes has been implemented in board_SK.c. When using board_SK.c directly,
you only need to configure APP_LOG_PORT to select the log output mode. You can also refer to board_SK.c for
development.

If asynchronous output mode is adopted (such as asynchronous output in interrupt mode through UART port),
app_log_flush() shall be called in scenarios where cached data needs to be cleared, to output all logs in the cache to
prevent logs from missing due to cache clearing. For example, app_log_flush() shall be called before the system enters
sleep mode. The code snippet is as follows:

#include "app log.h"

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 7

GA@DIiX

Application of APP Log Module

int main (void)

{

// Initialize user peripherals.

app _periph init();

if (is_enter ultra deep sleep())

{

pwr mgmt ultra sleep(0);

}

// Initialize ble stack.
ble stack init(ble evt handler,

// Loop
while (1)
{

pwr mgmt schedule () ;

&¢heaps table) ;

app_log_flash() calls the flush API registered by users during initialization to implement all output functionalities.

3.2.2 Log Storage and Export

To use the log storage and export functionalities, you need to call app_log_store_init() to complete log storage-related

configurations, and initialize the log storage and export functionalities in SDK_Fol der\ pr oj ect s\ bl e\ bl e_pe
ri pheral\ bl e _app_pcs\ Src\platform user_periph_setup. c for ble_app_pcs. The code snippet is as

follows:

#include "board SK.h"
#include "app assert.h"
#include "app log.h"

#include "flash scatter config.h"

static void log store init (void)

{

app log store info t store info;
op_func;

app _log store op t

store info.nv tag
store info.db addr
store info.db size
store info.blk size

op_func.flash init
op_func.flash erase

= 0x40ff;

= hal flash

op_func.flash write =

op_func.flash read
op_func.time get
op_func.sem give
op_func.sem take

FLASH START ADDR + 0x60000;

0x20000;
0x1000;

init;

hal flash erase;
hal flash write;

hal flash

NULL;
NULL;
NULL;

app log store init (&store info,

In addition, you need to call log_store_init() and board_init() in app_periph_init(), where:

read;

&op_func) ;

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

G(DDiX Application of APP Log Module

1. app_log_store_info_t: Contains information about log storage area; parameters involved include NVDS tag, start
address for storage, storage area size, and storage area block size (minimum erasing unit).

2. app_log _store_op_t: Contains operating functions and other functionality functions of Flash that stores the logs.
All operating functions shall be implemented, including initialization, erasing, read, and write functions. Other
functionality functions can be implemented according to specific circumstances.

. To add real time to the stored log, op_func.time_get shall be implemented.

. To use APP Log module in an environment equipped with an operating system, op_func.sem_give and
op_func.sem_take shall be implemented.

You can determine the initialization parameters of the module according to Flash layout and category of the operating
system.

Log storage and export shall be implemented in app_log_store_schedule(). Therefore, you shall call
app_log_store_schedule() when needed.

. In ble_app_pcs, you need to call app_log_store_schedule() in main() loop, and comment out the code used for
entering ultra-low power mode. The code snippet is as follows:

#include "app log.h"

int main (void)

{
// Initialize user peripherals.
app_periph init();

// if (is_enter ultra deep sleep())
// {

// pwr mgmt ultra sleep(0);

// }

// Initialize ble stack.
ble stack init (ble evt handler, &heaps table);

// Loop
while (1)
{
app_log flush();
app_log store schedule() ;
pwr mgmt schedule () ;

}

. To use APP Log module in an environment equipped with an operating system, it is recommended to call
app_log_store_schedule() (at low priority) independently, and signal amount-related APIs shall be registered

during initialization (refer to ble_app_template_freertos). The scheduling mode is as follows:

static void log store dump task(void *p_ arg)
{
while (1)
{
app_log store schedule() ;
}

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 9

GA@DIiX

Application of APP Log Module

In addition, the log export functionality of APP Log module is implemented through Bluetooth transmission, so the
Bluetooth service in use shall be initialized. It is recommended to call app_log_dump_service_init() in the callback
function after initialization of the Bluetooth Low Energy (Bluetooth LE) Stack completes. In ble_app_pcs, you need to

call app_log_dump_service_init() in services_init in user_app.c. The code snippet is as follows:
#include "app log.h"
#include "app log dump port.h"

static void services init(void)

{

app_ log dump service init();
Add print information into ble_app_init. The code snippet is as follows:
#include "app error.h"

void ble app init (void)
{

sdk err t error code;
ble gap bdaddr t bd addr;
sdk version t version;

sys _sdk verison get (&version);
APPiLOGiINFO("Goodix BLE SDK V%d.%d.%d (commit
version.major, version.minor, version.build,

$x) ",

version.commit id);

error code = ble gap addr get (&bd addr) ;
APP_ERROR CHECK (error code) ;

APP LOG INFO ("Local Board %$02X:%02X:%02X:%02X:%02X:%02X.",
addr[5

I4

bd_addr.
bd_addr.
bd_addr.
bd_addr.
bd_addr.
bd_addr.

gap_addr.
gap_addr.
gap_addr.
gap_addr.
gap_addr.
.addr [0

gap_addr

]
addr([4],
addr[3],
addr[2]
addr[1]

]

I4

);

APP LOG_INFO ("PCS example started.");

You can use APP Log APIs to output debug logs (refer to "Section 3.3 Outputting Logs", which will be stored in Flash,
and then you can export logs through GRToolbox (for details, refer to "Section 3.4 Obtaining Logs").

After modification (adding/enabling/initializing APP Log module) to a project, you can program the compiled project
to the SK Board.

I Note:
You need to set APP_LOG_ENABLE and APP_LOG_STORE_ENABLE to 1 in\ bl e_app_pcs\ Src\ confi g\ cust om
_confi g. h to enable the log and storage sub-modules.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 10

G(DDiX Application of APP Log Module
3.3 Outputting Logs

The APP Log module supports using printf() (a C standard library function) and APIs provided in APP Log module to
output debug logs.

e To output debug logs using printf(), set app_log_init_t *p_log_init in app_log_init() to “NULL”. However, you
cannot optimize logs by setting log level, log format, and filter type in APP Log module, and logs output in this
way cannot be stored and exported.

o To output debug logs using APP Log APIs, you can call any of the following four APIs to output debug logs after
initialization of the APP Log module:

s APP_LOG_ERROR()

o APP_LOG_WARNING()
> APP_LOG_INFO()

s APP_LOG_DEBUG()

You can also optimize output logs by setting log level, log format, filter type, or other parameters, to further
simplify application debugging.

" Note:

You can set the log level and log filter type respectively by configuring APP_LOG_TAG and APP_LOG_SEVERITY_LEVEL
in SDK_Fol der\ conmponent s\ | i brari es\app_I| og\app_| og. h.

3.4 Obtaining Logs

Logs can be obtained in real time or exported through GRToolbox.

3.4.1 Obtaining Logs in Real Time

You can obtain debug logs through a proper PC tool on a PC according to the configured output mode.

o To output logs through UART port, GRUart in GR5xx SDK can be used to obtain logs in real time.

Connect the PC with the SK Board that you wish to read debug logs from, and start GRUart on the PC. After

configuration completes, you can obtain debug logs from the SK Board, as shown below.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 11

G@D]X Application of APP Log Module

& GRuart - O X
PortName: |COM35 - @ A
Vart GLog MultiSend
Rx

Setting [JHex [White [Tine SaveRx | ClearRev | Search

[BideT [2022-08-08 15:38:51 170]JAPP_I: Goodix BLE SDE V2.0.0 (commit 6c484ch3)
et [2022-09-08 15:38:51 170]JAPP_I: Local Board EA:CB:3E:CF:00:0C.

[HideRxPara [2022-09-08 15:38:51 185]APP_I: PCS example started.

[TopMost

TxEx Data Count Tx

TxCnt 0O Bytes [] Hex [] NewLine Loop [] Period50 T ms

RxCnt 234 Bytes

Clear | Send | Clear

Port: COM95 BaudRate: 115200 DataBits: 8 StopBit: 1 ParityBit: None CTS=0 DSR=0 DCD=0

Figure 3-3 GRUart interface

o To output logs through J-Link RTT port, you can use J-Link RTT Viewer to obtain logs in real time.

Connect the PC with the SK Board that you wish to read debug logs from, and start J-Link RTT Viewer on the PC

to enter the configuration interface. Configure J-Link RTT Viewer as shown below.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

GA@DIiX

Application of APP Log Module

ﬂ J-Link FTT Viewer V&.51a (beta) | Configuration ?

Connection to J-ink

(®) UsE [] serial Mo
() TCRfIP
O Existing Session

Specify Target Device

([CORTEX-M4

Script file (optional)

Target Interface & Speed

SWD * | 4000 kHz

RTT Control Blodk
(®) Address () Search Range

Enter the address of the RTT Contral block,
Example: 0x20000000

| 0x00805000

Ok

Figure 3-4 J-Link RTT Viewer configuration interface

Before configuring RTT Control Block, find out the address of RTT Control Block (the variable “_SEGGER_RTT”).

° You can select Search Range in the J-Link RTT Viewer configuration interface and set the entire RAM

address as the search range. Then J-Link RTT Viewer automatically searches the RTT Control Block address

(not recommended due to slow search speed).

° You can also obtain the address by searching from the “_SEGGER_RTT"” structure in the .map file generated

by the project, and then select Address in the configuration interface to specify the RTT Control Block

address.

It is recommended to modify SEGGER_RTT.c as follows to define RTT Control Block as the specified address, to

improve efficiency. The code snippet for configuring RTT Control Block as 0x00805000 is as follows:

// RTT Control Block and allocate buffers for channel 0
//

__attribute ((section(".ARM. at 0x00805000"))) SEGGER RTT CB SEGGER RTT
//SEGGER RTT PUT CB SECTION (SEGGER RTT CB ALIGN (SEGGER RTT CB SEGGER RTT));

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

13

G(DDiX Application of APP Log Module

I Note:
SEGGER_RTT.cisin SDK_Fol der\ ext ernal \ segger _rtt\ SEGGER RTT. c.

After configuration completes, click OK. When the SK Board is connected with J-Link RTT Viewer, the J-Link
RTT Viewer log interface will display, as shown below. Firmware logs shown in the interface indicates that the

configuration succeeds.

B J-Link RTT Viewer V6.80a - O x
File Terminals Input Logsing Help
All Terminals Terminal 0

TickCount: 1883, Time:

TickCount: : Time:
TickCount: Time:
TickCount: 4883, Time:
TickCount: 58 Time: 3
TickCount: 68 Time: 3
TickCount: Time:
: TickCount: Time:
TickCount: ¢ Time: 12/8@
TickCount: 18883, Time: 81:00:

TickCount: 11883, Time: 681:00:11.0818

Enter Clear

RTT Viewer connected. 0. 006 MB

Figure 3-5 Log output interface of J-Link RTT Viewer

3.4.2 Exporting Stored Logs

GRToolbox (Android) in GR5xx SDK supports exporting logs in APP Log module.
The ble_app_template_freertos project is taken as an example to introduce the log export functionality (for detailed

configurations, refer to "Section 3.1.2 Configuring Mode and Functionality").

1. Open GRToolbox on an Android phone and connect the phone with the SK Board. Goodix Log Service (GLS) is

then discovered, as shown below.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

14

GA@DIiX

Application of APP Log Module

4:52 PM w3 2@ T (E»

Device o DISCONNECT

Goodix_Tem_0S
EA:CB:3E:CF:00:11

SCANNER

.
H
.

Connect Success

Generic Access
UuUID:0x1800
PRIMARY SERVICE

Generic Attribute
UuUID:0x1801
PRIMARY SERVICE

Goodix OTA Service
UUID:abed0401-d344-460a-8075-b9e8ec90d71b
PRIMARY SERVICE

Goodix Log Service
UUID:abed0b01-d344-460a-8075-b9e8ec90d71b
PRIMARY SERVICE

am

&F e ao

Device Profile Application
= @] <

&

Settings

Figure 3-6 Successful discovery of GLS after connecting the phone to the Board through GRToolbox

[l Note:

GRToolbox screenshots in this document are used to help you better understand the operating steps only. The user

interface of GRToolbox in actual use prevails.

2. Tap Bin the upper-right corner and select Dump Log from the drop-down list:

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

15

GA@DIiX

Application of APP Log Module

Request connect interval

Goodix_Tem_0S
SCATIER EAcE:3ECcr00:11 Request MTU

Connect Success
Read remote RSSI

Generic Access o .
UUID:0x1800 Characteristic Util

PRIMARY SERVICE

- Set PHY
Generic Attribute
UUID:0x1801 Bond
PRIMARY SERVICE

| Dump Log
Goodix OTA Service
UUID:abed0401-d344-460a-8075-b9e8ec90d71b
PRIMARY SERVICE

Goodix Log Service
UUID:a6ed0b01-d344-460a-8075-b9e8ec90d71b

PRIMARY SERVICE
2 as
& e ao 1y
Device Profile Application Settings

Figure 3-7 To output logs

3. Inthe Dump Log dialog box, you can delete/save/read logs, as shown below.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

16

GA@DIiX

Application of APP Log Module

Dump Log

307557, Time:

308562, Time:

309567, Time:

310572, Time:

[0021/12/01 01:05:07:726]

12/01 01:05:

[0021/12/01 01:05:08:731]

12/01 01:05:

[0021/12/01 01:05:09:735]

12/01 01:05:

[0021/12/01 01:05:10:740]

12/01 01:05:

APP_I: TickCount:

07.725

APP_I: TickCount:

08.730

APP_I: TickCount:

09.735

APP_I: TickCount:

10.740

DELETE

Figure 3-8 Dump Log interface of GRToolbox

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd.

17

G(DDiX Module Details

4 Module Details

APP Log module provides log APIs at multiple levels. When you call these APIs, information such as log level, time,
and source will be added to the beginning in original logs according to the API level, and logs will be filtered according
to the filter type configured during initialization. Then logs will be transmitted by calling corresponding transmission

function. The following figure shows the calling relationship between log output functions.

app_log_output()

Log Data

v

Level Filter

;

Format Log Data

v

app_log_data_trans()

UART Data Sending

v

app_log_store_save()

Add Time Stamp

'

ring_buffer_write()

Figure 4-1 Calling relationship between log output functions

I Note:
The logic code of APP Log module is in app_Jlog.c.

4.1 Log Transmission and Storage APIs

Path: gr _| i brari es\ app_I 0g. ¢ under the project directory

Name: app_log_data_trans()

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 18

G(DDiX Module Details

static void app log data trans(uint8 t *p data, uintl6 t length)
{

if (NULL == p data || 0 == length)

{

return;

}

if (s_app_ log env.trans func)
{

s _app_log env.trans func(p data, length);
}

#i1if APP_LOG_ STORE ENABLE
app_log store save(p _data, length);

#endif

}

Call s_app_log_env.trans_func (for example, UART transmission function) registered during module initialization
in the transmission function, and determine whether to call app_log_store_save() based on whether
APP_LOG_STORE_ENABLE is enabled.

Path:gr | i braries\app_| og store. c underthe project directory

Name: app_log_store_save()

uintl6 t app log store save(const uint8 t *p data, const uintl6 t length)
{

ring buffer write(&s log store rbuf, time encode, APP LOG STORE TIME SIZE) ;

ring buffer write(&s log store rbuf, p data, length);

if ((APP_LOG STORE ONECE OP SIZE <= ring buffer items count get (&s log store rbuf)) &&
! (s_log store env.store status & APP LOG STORE DUMP BIT))

s log store env.store status |= APP LOG STORE SAVE BIT;
if (s _log store ops.sem give)
{

s _log store ops.sem give();

}

app_log_store_save() caches logs into a ring buffer and adds a timestamp. When the data in the buffer reaches the
waterline, the flag bit that is to be written into Flash will be set and the signal amount will be sent.

" Note:

You can adjust the ring buffer size and waterline threshold according to project requirements, to save RAM space
while avoiding buffer overflow. You can configure ring buffer size by using ring_buffer_init and adjust RAM space to
store logs by modifying RAM_RESERVE_SECTION_SIZE in SDK_Fol der\ pl at form soc\ |l i nker\kei |\ fl ash
_scatter_config.h.

4.2 Log Scheduling API

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 19

G@Dix Module Details

Flash operations (including log writing, log export, and log clearing) are performed in app_log_store_schedule().
The Flash operation function that is registered during module initialization will be called when you perform Flash

operations. The logic code for log storage and export is in app_log_store.c.
When logs are exported, the export success callback function s_log_dump_cbs->dump_process_cb will be called to
transfer the exported data.

Path:gr _| i braries\app_| og_st ore. c under the project directory

Name: log_dump_from_flash()

static void log dump from flash (void)

{

if (s_log store ops.flash read && need dump size)

{

if (s_log dump cbs->dump process cb)

{
s log dump cbs->dump process cb (dump buffer, dump len);

}

During implementation of APP Log module, the data transmission API of BLE Log Service is called in this callback
function, to transmit the log data read from Flash from the device to the mobile phone through Bluetooth LE. The data
transmission and peer command processing logics are implemented in app_log_store_dump_port.c, and Log Service is

implemented in Ims.c.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 20

GA@DIiX aa

5 FAQ

This chapter describes possible problems, reasons, and solutions when you use APP Log module.

5.1 Why Are Logs Exported Through GRToolbox Missing?
. Description
Logs exported through GRToolbox are missing.

. Analysis

The ring buffer used to temporarily store logs overflows.

. Solution

Increase the size of the ring buffer used to temporarily store logs. In an environment equipped with an operating

system, you can try to increase the task priority of app_log_store_schedule().

5.2 Why Does Exporting of Historical Logs Through GRToolbox Fail?
. Description
Only recent logs are exported through GRToolbox. Historical logs cannot be exported.

. Analysis
RAM space for storing logs is insufficient, or logs are printed too frequently, thus the storage space overflows and

overwrites historical logs.
. Solution
° Increase the RAM space for log storage.

° Delete unnecessary log print tasks.

Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. 21

	Preface
	Contents
	1 Introduction
	2 Environment Setup
	2.1 Preparation

	3 Application of APP Log Module
	3.1 Importing APP Log Module
	3.1.1 Adding Source Files
	3.1.2 Configuring Mode and Functionality

	3.2 Module Initialization and Scheduling
	3.2.1 Log Output
	3.2.2 Log Storage and Export

	3.3 Outputting Logs
	3.4 Obtaining Logs
	3.4.1 Obtaining Logs in Real Time
	3.4.2 Exporting Stored Logs

	4 Module Details
	4.1 Log Transmission and Storage APIs
	4.2 Log Scheduling API

	5 FAQ
	5.1 Why Are Logs Exported Through GRToolbox Missing?
	5.2 Why Does Exporting of Historical Logs Through GRToolbox Fail?

