
GR5xx DFU Development Application Note

Version: 1.6

Release Date: 2024-09-24

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd. is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: Floor 13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828       Zip Code: 518000

Website: www.goodix.com

http://www.goodix.com

Preface

                            Preface
Purpose

This document introduces Device Firmware Upgrade (DFU) principles, GR5xx DFU schemes, App bootloader
applications, and firmware upgrade through GRToolbox (Android) App (a Goodix proprietary Bluetooth LE debugging
tool) and DFU Master, to help users quickly get started with GR5xx DFU schemes.

Audience

This document is intended for:

• Device user

• Developer

• Test engineer

• Technical support engineer

Release Notes

This document is the seventh release of GR5xx DFU Development Application Note, corresponding to Bluetooth Low
Energy (Bluetooth LE) GR5xx System-on-Chip (SoC) series.

Revision History

Version Date Description

1.0 2023-04-20 Initial release

1.1 2023-05-10 Updated the sections "Supported Platform" and "Cross-platform Porting of DFU Master".

1.2 2023-08-22
Updated the following sections: "Supported Platform", "Upgrade of Unencrypted and Unsigned

Firmware", "External Flash Resource Upgrade", and "Upgrade via UART".

1.3 2023-09-24 Updated the section "Supported Platform".

1.4 2023-11-06 Updated the approaches for obtaining GProgrammer, GRToolbox, and GRUart.

1.5 2024-02-27 Updated the section "Supported Platform".

1.6 2024-09-24

• Updated the section "Supported Platform".

• Updated the hardware configuration in "Upgrade via UART".

• Updated the section "Introduction to App Bootloader Project".

• Updated the sections " Data Sent from the Host" in the "Operate System Info Command", "
Program Start Command", and " Program End Command".

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

1.1 DFU Communication Mode...1
1.2 DFU Working Mode...1

2 DFU Scheme Design.. 5

2.1 Background Dual-bank DFU Mode..5
2.1.1 Flash Layout.. 5
2.1.2 Firmware Download Procedure..6
2.1.3 App Bootloader Boot Procedure.. 7

2.2 Non-background Single-bank DFU Mode..8
2.2.1 Flash Layout.. 9
2.2.2 Firmware Download Procedure..9
2.2.3 App Bootloader Boot Procedure.. 10

2.3 Comparison of Upgrade Speeds..11
2.4 Firmware Format... 13

3 Introduction to App Bootloader Project.. 15

4 Upgrade with GRToolbox...20

4.1 Supported Platform... 20
4.2 Preparation.. 20
4.3 Upgrade of Unencrypted and Unsigned Firmware... 21

4.3.1 Firmware Configuration.. 21
4.3.2 Firmware Programming.. 22
4.3.3 Creating Target Firmware for Upgrade...23
4.3.4 To Enter DFU Interface of GRToolbox...25
4.3.5 Firmware Upgrade.. 27

4.3.5.1 Background dual-bank DFU mode... 27
4.3.5.2 Non-background Single-bank DFU Mode...29

4.4 Upgrade of Encrypted and Signed Firmware.. 30
4.4.1 eFuse Setting...31
4.4.2 Download to eFuse...33
4.4.3 Firmware Configuration.. 34
4.4.4 Generating Encrypted and Signed Firmware..34
4.4.5 Firmware Upgrade.. 34

4.5 Upgrade of Signed and Unencrypted Firmware..35
4.5.1 Firmware Configuration.. 35
4.5.2 Generating Signed and Unencrypted Firmware... 35
4.5.3 Firmware Upgrade.. 35

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. II

Contents

4.6 Resource Upgrade... 36
4.6.1 Internal Flash Resource Upgrade..36
4.6.2 External Flash Resource Upgrade... 37

5 DFU Porting Method... 42

6 Upgrade Through DFU Master...50

6.1 Introduction to DFU Master..50
6.2 Cross-platform Porting of DFU Master..50
6.3 Instructions on Upgrade Through DFU Master...55

6.3.1 Preparation..55
6.3.2 Upgrade via UART...55
6.3.3 Upgrade via Bluetooth LE...58

7 Considerations...60

7.1 Deinitializing Peripherals used in App Bootloader Before Jumping from App Bootloader to App Firmware.... 60
7.2 Setting the DFU Task Stack Size of Application Firmware in RTOS Environment According to Specific GR5xx

SoCs... 60

8 Appendix: DFU Communication Protocols... 61

8.1 Basic Frame... 61
8.1.1 Frame Structure.. 61
8.1.2 Byte Order...61

8.2 Appendix: DFU Command Set...61
8.2.1 Get Info Command... 62

8.2.1.1 Data Sent from the Host..62
8.2.1.2 Response Data from the Device.. 62

8.2.2 Operate System Info Command..63
8.2.2.1 Data Sent from the Host..63
8.2.2.2 Response Data from the Device.. 64

8.2.3 DFU Mode Set Command...64
8.2.3.1 Data Sent from the Host..64
8.2.3.2 Response Data from the Device.. 65

8.2.4 DFU Firmware Info Get Command... 65
8.2.4.1 Data Sent from the Host..65
8.2.4.2 Response Data from the Device.. 65

8.2.5 Program Start Command.. 66
8.2.5.1 Data Sent from the Host..66
8.2.5.2 Response Data from the Device.. 67

8.2.6 Program Flash Command..67
8.2.6.1 Data Sent from the Host..68
8.2.6.2 Response Data from the Device.. 68

8.2.7 Writing Firmware in Fast Mode..69
8.2.7.1 Data Sent from the Host..69
8.2.7.2 Response Data from the Device.. 69

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. III

Contents

8.2.8 Program End Command..69
8.2.8.1 Data Sent from the Host..69
8.2.8.2 Response Data from the Device.. 70

8.2.9 Config External Flash Command...70
8.2.9.1 Data Sent from the Host..70
8.2.9.2 Response Data from the Device.. 71

8.2.10 Get Flash Information Command... 72
8.2.10.1 Data Sent from the Host..72
8.2.10.2 Response Data from the Device.. 72

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. IV

Introduction

1 Introduction
Device Firmware Upgrade (DFU) is a boot loading mechanism to upgrade firmware for target devices, allowing
developers to quickly fix defects and enrich product features.

This document focuses on DFU working principles, GR5xx DFU schemes, and firmware upgrade steps.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

Name Description

Developer guide of the specific GR5xx System-

on-Chip (SoC)

Introduces GR5xx Software Development Kit (SDK) and how to develop and debug

applications based on the SDK.

GProgrammer User Manual
Lists GProgrammer operational instructions including downloading firmware to and

encrypting firmware on GR5xx SoCs.

J-Link/J-Trace User Guide
Provides J-Link operational instructions. Available at https://www.segger.com/

downloads/jlink/UM08001_JLink.pdf.

Keil User Guide
Offers detailed Keil operational instructions. Available at https://www.keil.com/

support/man/docs/uv4/.

Bluetooth Core Spec Offers official Bluetooth standards and core specification from Bluetooth SIG.

1.1 DFU Communication Mode

Two DFU communication modes are supported: wireless communication and wired communication.

• Wireless communication: This mode is also known as over-the-air (OTA) DFU (commonly referred to as OTA),
which means firmware upgrade is achieved through wireless communication. Wireless communication via
2G/3G/4G network, Wi-Fi, and Bluetooth can all be used for DFU.

• Wired communication: Mainly include communication through UART, USB, and SPI.

1.2 DFU Working Mode

• DFU schemes are categorized into background DFU mode and non-background DFU mode which are applicable
to both wireless and wired communication modes.

◦ Background DFU mode: The firmware is received by the application which can perform other tasks at the
same time.

◦ Non-background DFU mode: The firmware is received by Bootloader which cannot perform other tasks at
the same time.

• According to the occupied storage area, DFU can also be divided into dual-bank DFU and single-bank DFU.

◦ Dual-bank DFU: The received firmware is first cached in a designated area; once firmware check passes, it
will be copied to the target area.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 1

https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.segger.com/downloads/jlink/UM08001_JLink.pdf
https://www.keil.com/support/man/docs/uv4/
https://www.keil.com/support/man/docs/uv4/

Introduction

◦ Single-bank DFU: The received firmware is written to the target area, directly overwriting the original
firmware.

For background DFU, only the dual-bank mode can be used to store the original and new firmware, whereas for non-
background DFU, either single-bank mode or dual-bank mode can be used. Based on this, common DFU working
modes include

• Background dual-bank DFU mode

• Non-background dual-bank DFU mode

• Non-background single-bank DFU mode

Details are as follows:

• The schematic diagram of the background dual-bank DFU mode is shown in Figure 1-1. The upgrade process
mainly consists of the following steps:

1. The application receives the firmware from the host.

2. The application writes the received firmware to the Bank1 area.

3. After the firmware is written, check the new firmware in the Bank1 area. After the check passes, jump to
and run the bootloader firmware.

4. Bootloader copies the new firmware to the Bank0 area, and checks the new firmware. After the check
passes, jump to and run the new firmware.

 Note:

The device refers to the firmware, and the host refers to the mobile App if a mobile App is used.

Bank1

Bank0
applicaon

Bootloader

Bank1

Bank0
applicaon

Bootloader

(a) (b)

1. Transmit the
new firmware.

Firmware
in use

2. Write the new
firmware to the

Bank1 area.
3. Jump to the

bootloader
firmware.

4. Copy the new
firmware to the

Bank0 area.

Figure 1-1 Schematic diagram of background dual-bank DFU mode

• The schematic diagram of the non-background dual-bank DFU mode is shown in Figure 1-2. The upgrade process
mainly consists of the following steps:

1. Bootloader receives the firmware from the host.

2. Bootloader writes the received firmware to the Bank1 area.

3. After the firmware is written, check the new firmware in the Bank1 area. After the check passes, bootloader
copies the new firmware to the Bank0 area and then checks the new firmware. After the second check
passes, jump to and run the new firmware.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 2

Introduction

Bank1

Bank0
applicaon

Bootloader

Bank1

Bank0
applicaon

Bootloader

(a) (b)
1. Transmit the
new firmware.

Firmware
in use

2. Write the
new firmware
to the Bank1

area.

3. Copy the
new firmware
to the Bank0

area.Firmware
in use

Figure 1-2 Schematic diagram of non-background dual-bank DFU mode

• The schematic diagram of the non-background single-bank DFU mode is shown in Figure 1-3. Bootloader receives
the firmware from the host and writes the new firmware to the Bank0 area. After writing, check the new
firmware. After the check passes, jump to and run the Bank0 application.

Bank0
applicaon

Bootloader 1. Transmit the
new firmware.

Firmware
in use

2. Write the new
firmware to the

Bank0 area.

Figure 1-3 Schematic diagram of non-background single-bank DFU mode

Differences between the three DFU working modes are listed below.

Table 1-2 Differences between three DFU working modes

DFU Mode
Flash Size Required for

Upgrading the Same Firmware
Backup Mechanism

Bootloader

Firmware Size

Performing Other Tasks

During DFU

Background dual-bank

DFU mode
Large Supported Small Supported

Non-background single-

bank DFU mode
Small Not supported Large Not supported

Non-background dual-

bank DFU mode
Large Supported Large Not supported

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 3

Introduction

 Note:

• When the same firmware is upgraded in either background dual-bank DFU mode or non-background dual-bank
DFU mode, a large amount of Flash memory is required because two Flash areas are needed to store the new
firmware and the original firmware, respectively.

• Backup mechanism means that when the received new firmware is damaged, the system continues running the
original firmware.

• The Bootloader firmware in non-background single-bank DFU mode is smaller in size than that of the other two
modes, because only the copying and jumping functionalities are needed in this mode and no data interaction
with the host is required.

• In non-background single-bank DFU mode and non-background dual-bank DFU mode, jumping to bootloader
firmware is required and performing other tasks during upgrade is not supported. In contrast, the background
dual-bank DFU mode allows performing other tasks during upgrade, improving the user experience.

As listed in Table 1-2, the advantage of the non-background dual-bank DFU mode is also available in background dual-
bank DFU mode, whereas the non-background single-bank DFU mode has a unique advantage when compared with
other two modes. Based on this, GR5xx provides two DFU working modes: background dual-bank DFU mode and non-
background single-bank DFU mode.

In applications, you can choose an appropriate DFU working mode according to the Flash size and the size of the
firmware to be upgraded. If (Flash size–Bootloader firmware size–Parameter storage space)/2 ≥ Size of the firmware
to be upgraded, the background dual-bank DFU mode is recommended; if (Flash size–Bootloader firmware size–
Parameter storage space)/2 < Size of the firmware to be upgraded, the non-background single-bank DFU mode is
recommended.

 Note:

The parameter storage space refers to an area in Flash for storing non-volatile data.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 4

DFU Scheme Design

2 DFU Scheme Design
This chapter elaborates on DFU schemes in background dual-bank DFU mode and non-background single-bank DFU
mode of GR5xx.

2.1 Background Dual-bank DFU Mode

2.1.1 Flash Layout

Flash layout in background dual-bank DFU mode is as follows.

SCA Info

APP Info

DFU Info

App bootloader

Bank0 (applicaon)

Bank1

NVDS

FLASH_START_ADDR + 0x0000

Bank0 Start Address

Bank1 Start Address

NVDS Start Address

End Address of Flash

FLASH_START_ADDR + 0x2000

FLASH_START_ADDR + 0x3000

FLASH_START_ADDR + 0x4000

Firmware save addr

Image Info

DFU mode pattern

Image Info

Unused Space

Figure 2-1 Flash layout design

• SCA Info: System Configuration Area (SCA) to store system information and App bootloader boot parameter
configurations

• APP Info: application firmware info area to store the parameters for running the application firmware in the
Bank0 area

• DFU Info: DFU firmware info area to store information of the new firmware in the Bank1 area

◦ Firmware save addr: start address to store the new firmware

◦ Image Info: parameter information of the new firmware

◦ DFU mode pattern: Identify the DFU mode in use.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 5

DFU Scheme Design

• App bootloader: an area that stores the App bootloader firmware and in which the firmware is running

• Bank0: an area that stores the application firmware and in which the firmware is running

• Bank1: an area that caches the new firmware; the firmware that passes the validity check will be copied to
Bank0.

• Non-volatile Data Storage (NVDS): non-volatile data storage area

2.1.2 Firmware Download Procedure

As shown in Figure 2-2, receiving the firmware from the host in background dual-bank DFU mode requires running the
application in the Bank0 area.

1. The Bank0 application receives the firmware from the host.

2. The Bank0 application writes the received firmware to the Bank1 area.

3. After firmware is written, the Bank0 application updates the new firmware information (Image Info in Figure 2-1),
the start address to store the new firmware (Firmware save addr in Figure 2-1), and the current DFU mode (DFU
mode pattern in Figure 2-1) to the DFU Info area.

4. Complete the update in the DFU Info area, and reset the device.

5. After the device is reset, run the App bootloader firmware according to the boot procedure in Figure 2-3.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 6

DFU Scheme Design

SCA Info

APP Info

DFU Info

App bootloader

Bank0 (applicaon)

Bank1

NVDS

FLASH_START_ADDR + 0x0000

Bank0 Start Address

Bank1 Start Address

NVDS Start Address

End Address of Flash

FLASH_START_ADDR + 0x2000

FLASH_START_ADDR + 0x3000

FLASH_START_ADDR + 0x4000

Firmware in use

1. Transmit the
firmware.

2. Write to the Bank1
area.

3. Update DFU
Info area.

Figure 2-2 Firmware download procedure

2.1.3 App Bootloader Boot Procedure

After the device is reset, App bootloader firmware performs firmware copy and check according to the information
in the DFU Info area updated by the Bank0 application, and then jumps to and runs the application firmware. The
detailed boot procedure is as follows.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 7

DFU Scheme Design

Start

Read the data in
the DFU Info area.

Is the data in the
DFU Info area

valid?

Read the data in
the APP Info area. No

Is the Bank0
firmware valid?

Yes

No

Is the Bank1
firmware valid?

Yes

Erase the data in
the DFU Info area. No

Copy the Bank1
firmware to the

Bank0 area.

Yes

Update the data in
the APP Info area.

Erase the data in
the DFU Info area.

Reset the device.

Is the data in the
APP Info area

valid?

Yes

Jump to the Bank0
firmware.

Enter the while(1)
loop. No

Figure 2-3 App bootloader boot procedure

 Note:

• “Is the data in the DFU Info area valid?” refers to whether there is any data in the DFU Info area.

• “Is the data in the APP Info area valid?” refers to whether there is any data in the APP Info area.

2.2 Non-background Single-bank DFU Mode

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 8

DFU Scheme Design

2.2.1 Flash Layout

Flash layout in non-background single-bank DFU mode is as follows.

SCA Info

APP Info

DFU Info

App bootloader

Bank0 (applicaon)

NVDS

FLASH_START_ADDR + 0x0000

Bank0 Start Address

NVDS Start Address

End Address of Flash

FLASH_START_ADDR + 0x2000

FLASH_START_ADDR + 0x3000

FLASH_START_ADDR + 0x4000

Firmware save addr

Image Info

DFU mode paern

Image Info

Unused Space

Figure 2-4 Flash layout

Flash layout in this mode has no Bank1 area, which is the only difference between the two modes. For detailed
descriptions about Flash areas, refer to “Section 2.1.1 Flash Layout”.

2.2.2 Firmware Download Procedure

Two scenarios are supported in this mode: with/without the Bank0 firmware.

• For the scenario with the Bank0 firmware: The firmware download procedure is shown as follows.

1. The application in the Bank0 firmware is running. It receives the upgrade mode command issued by the
host.

2. The Bank0 firmware receives the non-background single-bank DFU mode command from the host, then
writes the mode to the DFU Info area, and finally resets the device.

3. After the device is reset, the application in the App bootloader firmware is running. It receives the firmware
from the host.

4. The App bootloader firmware writes the new firmware to the Bank0 area, then writes the new firmware
information to the APP Info area and erases the data in the DFU Info area, and finally resets the device.

After the device is reset, run the new firmware in the Bank0 area according to the boot procedure in Figure 2-6.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 9

DFU Scheme Design

SCA Info

APP Info

DFU Info

App bootloader

Bank0 (applicaon)

NVDS

FLASH_START_ADDR + 0x0000

Bank0 Start Address

NVDS Start Address

End Address of Flash

FLASH_START_ADDR + 0x2000

FLASH_START_ADDR + 0x3000

FLASH_START_ADDR + 0x4000

Unused Space

1. Send the upgrade
mode command.

2. Write the
upgrade mode
parameter to
DFU Info area.

3. Transmit the firmware.

4. Write the
firmware.

Figure 2-5 Firmware download procedure

According to the steps above, the host first connects to the Bank0 firmware; after receiving the non-background
single-bank DFU mode command, the Bank0 firmware resets the device. Then, the mobile App (GRToolbox)
needs to reconnect to the App bootloader firmware. To ensure accurate connection of the mobile App to the
App bootloader firmware, GR5xx provides a solution: Assuming the Bluetooth device address of the application
firmware is x, after the mobile App jumps to the bootloader, the Bluetooth device address will change to x+1.
This enables the mobile phone to automatically connect to the App bootloader firmware by the address + 1.

• For the scenario without the Bank0 firmware: App bootloader receives the DFU mode command and writes the
DFU mode to the DFU Info area. No re-connection via Bluetooth is required. Other procedures are the same as
those for the scenario with the Bank0 firmware.

2.2.3 App Bootloader Boot Procedure

In non-background single-bank DFU mode, no Bank1 area is available to cache the new firmware. Therefore, the DFU
Info area stores DFU mode parameters only. The App bootloader boot procedure is as follows:

1. Read the non-background single-bank DFU mode command, and then start DFU.

2. After firmware download completes, update the new firmware parameters to the APP Info area, and then reset
the device.

3. After the device is reset, read the data in the APP Info area, and then jump to and run the application firmware
according to the information in the APP Info area.

The following figure shows the boot procedure:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 10

DFU Scheme Design

Start

Read the data in
the DFU Info

area.

Is the data in the
DFU Info area

valid?

Start upgrading. Yes

Read the data in
the APP Info

area.

No

Is the data in the
APP Info area

valid?

Jump to the
Bank0 firmware.

Yes

No

Run the Bank0
firmware.

Figure 2-6 App bootloader boot procedure

2.3 Comparison of Upgrade Speeds

GR5xx offers two firmware upgrade speeds: normal mode and fast mode, with the latter being faster than the former.
For details between the two speeds, refer to the table below.

Table 2-1 Comparison between normal mode and fast mode

Mode Firmware Transfer Mode RAM Requirement
Time

Required
Description

Normal

mode

For each frame of data

transferred, the device will

reply with the check value of

the current data.

2 KB buffer to

receive firmware
Long

In this mode, if an error occurs on a frame of data

before the firmware is sent completely, the error can

be detected immediately, and the upgrade process

will be terminated.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 11

DFU Scheme Design

Mode Firmware Transfer Mode RAM Requirement
Time

Required
Description

Fast mode

The device will reply with

check values only after

the firmware is written

completely.

8 KB buffer to

receive firmware

under the maximum

bandwidth

Short

This mode can greatly shorten the time when you

upgrade large firmware. However, data will be

checked only after the firmware is sent completely.

Under the maximum bandwidth, the upgrade speed in fast mode can be about 6 times as fast as that in normal mode.
Theoretically, error(s) may occur in fast mode during transmission, and the error(s) will only be discovered in the
final check. Therefore, the time cost in this mode is relatively high if an error occurs. However, in actual tests, the
probability of such errors is very low. Therefore, when upgrading large firmware, you can use fast mode to improve
efficiency.

The introduction of fast mode also leads to an increase in RAM usage, so the RAM space for firmware upgrade
is limited in some applications. In this case, using fast mode may cause insufficient system RAM space, and
therefore, only normal mode can be used for upgrading. For application scenarios with limited RAM space, relevant
configurations also need to be made on the firmware side, to minimize RAM usage. The configuration file is in SDK
_Folder\components\libraries\dfu_port\dfu_port.h, and the detailed configuration is as follows.
Based on this configuration, RAM usage can be minimized.

#define ONCE_WRITE_DATA_LEN 1024

#define DFU_BUFFER_SIZE 2048

The data interaction mechanisms for the two modes are as follows.

Device Host

Send firmware informaon

Nofy aer the firmware informaon accept

Firmware
informaon

Firmware data

Send firmware data

Nofy aer the firmware data write complete

Send firmware data

Nofy aer the firmware data write complete
...

Nofy aer the firmware data write complete

Send firmware data

Firmware
 end

Send end cmd

Nofy aer the end cmd accept

Figure 2-7 Normal mode

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 12

DFU Scheme Design

Device Host

Send firmware informaon

Nofy aer flash erase completes

Firmware
informaon

Firmware data

Send firmware data

Send firmware data

Nofy aer wring data to flash completes

Firmware
 end

Send end cmd

Nofy aer the end cmd accept

……

Figure 2-8 Fast mode

In normal mode, the device needs to reply each firmware data frame sent by the host. However, in fast mode, the
device will reply only after all data frames have been sent. Therefore, fast mode has a higher upgrade speed than
normal mode.

2.4 Firmware Format

To ensure security, it is necessary to sign or encrypt the firmware during transmission. GR5xx provides three firmware
formats: unencrypted and unsigned firmware, encrypted and signed firmware, and signed firmware. The .bin formats
for the three types of firmware are shown as follows.

Code data Info data

Code data Info data

Code data Info data

Encrypon and signing informaon

Signing informaon

N byte(s) 48 bytes

N byte(s) 48 bytes 856 bytes

N byte(s) 48 bytes 856 bytes

Unencrypted and
unsigned firmware

Encrypted and
signed firmware

Signed firmware

Figure 2-9 Firmware format

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 13

DFU Scheme Design

Each field of the data format is detailed below:

• Code data: firmware data that shall be 16-byte aligned. N indicates a variable length.

• Info data: firmware description (Image Info in “Section 2.1.1 Flash Layout”)

• Encryption and signing information: information needed for encrypting and signing an unencrypted and unsigned
firmware file

• Signing information: information needed for signing an unencrypted and unsigned firmware file

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 14

Introduction to App Bootloader Project

3 Introduction to App Bootloader Project
The App bootloader project is in SDK_Folder\projects\ble\dfu\app_bootloader, and the project
directory structure is shown below.

 Note:

SDK_Folder is the root directory of the GR5xx SDK in use.

Figure 3-1 Project directory

 Note:

Only the App bootloader project in the GR5405 SDK contains the hal_drivers directory.

The files and corresponding functionalities in each group are described in detail as follows:

Table 3-1 Group details of the App bootloader project

Group Description

gr_startup Assembly startup file

gr_arch SoC architecture files

gr_soc SoC initialization file

gr_board Starter Kit Board (SK Board) initialization file

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 15

Introduction to App Bootloader Project

Group Description

gr_stack_lib Protocol stack library file

gr_app_drivers App driver files

gr_libraries Component files, including DFU components

hal_drivers HAL driver files

gr_crypto Cryptography algorithm files

gr_profiles OTA profile files

user_platform File for users to initialize the platform

user_security Encrypting and signing files

user_app App bootloader project functionality files

The App bootloader firmware is needed for the entire upgrade process in both background dual-bank DFU mode and
non-background single-bank DFU mode. Main functionalities of the App bootloader firmware:

• Application firmware startup

• Verification of firmware signature and checksum

• Firmware download (receiving firmware from the host)

• Firmware programming

The functionalities of the App bootloader vary depending on the specific upgrade mode. To avoid redundant
functionalities, relevant macros are provided to trim down the functionalities. The following table details the
configuration items of App bootloader.

 Note:

• bootloader_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

• custom_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

Table 3-2 App bootloader configuration items

File Name Macro Description

BOOTLOADER_DFU_BLE_ENABLE

• 0: Disable DFU communication via Bluetooth Low Energy (Bluetooth
LE).
In background dual-bank DFU mode, only jumping and copying
functionalities of App bootloader are needed, so this macro can be
disabled.

• 1: Enable DFU communication via Bluetooth LE.
In non-background single-bank DFU mode, App bootloader will receive
firmware information, and this macro needs to be enabled to upgrade
firmware via Bluetooth LE.

bootloader_config.h

BOOTLOADER_DFU_UART_ENABLE
• 0: Disable DFU communication via UART.

This macro can be disabled in background dual-bank DFU mode.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 16

Introduction to App Bootloader Project

File Name Macro Description

• 1: Enable DFU communication via UART.
In non-background single-bank DFU mode, this macro needs to be
enabled to upgrade firmware via UART.

BOOTLOADER_DFU_ENABLE

The macro can be used with its default configuration to indicate

whether App bootloader enables the DFU functionality. The value

of this macro depends on the values of the above two macros,

BOOTLOADER_DFU_BLE_ENABLE and BOOTLOADER_DFU_UART_ENABLE.

BOOTLOADER_WDT_ENABLE

Enable/Disable the watchdog.

• 0: Disable

• 1: Enable

When a program crashes, the system can be reset through watchdog

feeding. If there is a risk of system crashes, this macro needs to be

enabled.

BOOTLOADER_SIGN_ENABLE

To upgrade an encrypted or signed firmware file, enable this macro to

enable App bootloader to perform signature verification on the firmware.

• 0: Disable signature verification.

• 1: Enable signature verification.

BOOTLOADER_PUBLIC_KEY_HASH

After signature verification is enabled, public_key_hash shall be

configured to correctly complete the signature verification process of the

new firmware by App bootloader firmware. For detailed configuration,

refer to “Section 4.4.3 Firmware Configuration”.

DFU_FW_SAVE_ADDR

In App bootloader, this macro represents the start address to store the

Bank0 application firmware. For the specific value, refer to “Section 2.2.1

Flash Layout”.

In ble_app_template_dfu firmware, this macro represents the start

address to store the Bank1 firmware (the address displayed in the Copy

Address(0x) field in GRToolbox in background dual-bank DFU mode). For

specific configuration, refer to “Section 2.2.1 Flash Layout”.

BOOTLOADER_BOOT_PORT_ENABLE

When users do not use the GR5xx DFU scheme, enable this macro to use a

custom scheme.

• 0: Use the default scheme provided by Goodix.

• 1: Use a custom scheme.

APP_FW_COMMENTS

The default configuration is “ble_app_temp”. This macro must be set to

match the application in the Bank0 area, to allow the application to jump

from App bootloader firmware to application firmware.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 17

Introduction to App Bootloader Project

File Name Macro Description

When App bootloader starts, if the APP Info data is detected to be invalid,

it will further search for data in SCA and match the firmware COMMENTS

in the SCA data with this macro. If the match is successful, the SCA data

will be updated to the APP Info area, and the firmware will be started

according to the matched SCA data.

Note:

• APP_FW_COMMENTS supports up to 12 characters.

• The first 12 characters of the firmware file name should correspond to
APP_FW_COMMENTS.

APP_LOG_ENABLE

In development and debug phase, this macro allows users to view the log

information output by App bootloader.

• 0: Disable log information.

• 1: Enable log information.

APP_CODE_LOAD_ADDR

This macro represents the start address in Flash to store the App

bootloader firmware. For the specific value, refer to “Section 2.1.1 Flash

Layout” or “Section 2.2.1 Flash Layout” according to the upgrade mode.

custom_config.h

APP_CODE_RUN_ADDR

This macro represents the start address in Flash to run the App

bootloader firmware. Generally, the value is consistent with that of

APP_CODE_LOAD_ADDR.

N/A ENABLE_DFU_SPI_FLASH

This macro sets whether to support external Flash to upgrade resource

data. Enabling this macro allows upgrading resource data for external

Flash in App bootloader firmware. Add the macro to a project in Keil by

clicking Options for Target > C/C++ > Preprocessor Symbols > Define. For

instructions on operation, refer to “Section 4.6.2 External Flash Resource

Upgrade”.

To use a custom DFU scheme, set BOOTLOADER_BOOT_PORT_ENABLE in bootloader_config.h to 1 and add the custom
DFU scheme to SDK_Folder\projects\ble\dfu\app_bootloader\Src\user\bootloader_boot_p
ort.c. The framework of the code snippet is as follows.

#include "bootloader_config.h"
#if BOOTLOADER_BOOT_PORT_ENABLE
#include "bootloader_boot.h"
void bootloader_dfu_task(void)
{
}
void bootloader_verify_task(void)
{
}
void bootloader_jump_task(void)
{

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 18

Introduction to App Bootloader Project

}
#endif

 Note:

To make the App bootloader firmware smallest (minimum code size), it is necessary to adopt the
background dual-bank DFU mode, and disable DFU communication via Bluetooth LE of App bootloader
(BOOTLOADER_DFU_BLE_ENABLE), DFU communication via UART (BOOTLOADER_DFU_UART_ENABLE), log
information (APP_LOG_ENABLE), and external Flash (ENABLE_DFU_SPI_FLASH).

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 19

Upgrade with GRToolbox

4 Upgrade with GRToolbox
This chapter elaborates on how to upgrade GR5xx firmware with GRToolbox.

4.1 Supported Platform

Table 4-1 Supported development platform

Software Development Platform Development Board

GR551x SDK V2.0.1 and later versions GR5515-SK-BASIC

GR5526 SDK V1.0.1 and later versions GR5526-SK-BASIC

GR5525 SDK V0.8.0 and later versions GR5525-SK-BASIC

GR533x SDK V0.9.0 and later versions GR5331-SK-BASIC

GR5405 SDK V1.1.6 and later versions GR5405-SK-BASIC

4.2 Preparation

• Hardware preparation

Table 4-2 Hardware preparation

Name Description

Development board Starter Kit Board of the corresponding SoC

Android phone A mobile phone running on Android 5.0 (KitKat) or later

Connection cable USB Type-C cable (Micro USB 2.0 cable for GR551x SoCs)

DuPont wire 3

J-Link debug probe
JTAG emulator launched by SEGGER. For more information, visit https://www.segger.com/products/

debug-probes/j-link/.

• Software preparation

Table 4-3 Software preparation

Name Description

Windows Windows 7/Windows 10

J-Link driver A J-Link driver. Available at https://www.segger.com/downloads/jlink/.

Keil MDK5
An integrated development environment (IDE). MDK-ARM Version 5.20 or later is required. Available

at https://www.keil.com/download/product/.

GProgrammer (Windows) A programming tool. Available at https://www.goodix.com/en/software_tool/gprogrammer_ble.

GRUart (Windows)
A serial port debugging tool. Available at https://www.goodix.com/en/download?

objectId=43&objectType=software.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 20

https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/downloads/jlink/
https://www.keil.com/download/product/
https://www.goodix.com/en/software_tool/gprogrammer_ble
https://www.goodix.com/en/download?objectId=43&objectType=software
https://www.goodix.com/en/download?objectId=43&objectType=software

Upgrade with GRToolbox

Name Description

GRToolbox (Android) V2.16 and

later versions
A Bluetooth LE debugging tool. Available at https://www.goodix.com/en/software_tool/grtoolbox.

 Note:

• To use the DFU scheme introduced in this document, GRToolbox must be in V2.16 or later versions, and the
firmware on the device must satisfy the requirements on SDK versions in Table 4-1.

• If users use the DFU scheme introduced here in the application firmware, but use the Second Boot firmware as
the startup firmware (for GR551x SDK V1.7.0 and earlier versions or GR5526 SDK V1.0.0 and earlier versions),
they can complete firmware upgrade with GRToolbox V2.16 and later versions in background dual-bank DFU
mode.

The following sections will introduce upgrade steps for unencrypted and unsigned firmware, encrypted and signed
firmware, and signed firmware respectively by taking GR551x for example.

4.3 Upgrade of Unencrypted and Unsigned Firmware

4.3.1 Firmware Configuration

The following two projects are needed for upgrade with GRToolbox.

• Project in SDK_Folder\projects\ble\dfu\app_bootloader\Keil_5

• Project in SDK_Folder\projects\ble\ble_peripheral\ble_app_template_dfu\Keil_5

1. Configure the App bootloader project.

The configuration items of the App bootloader project for upgrading unencrypted and unsigned firmware are
listed below.

 Note:

• bootloader_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

• custom_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

Table 4-4 Configuration items of the App bootloader project (for upgrading unencrypted and unsigned firmware)

File Name Macro Value

BOOTLOADER_DFU_BLE_ENABLE 1: Enable DFU communication via Bluetooth LE.

BOOTLOADER_DFU_UART_ENABLE 0: Disable DFU communication via UART.

BOOTLOADER_WDT_ENABLE 1: Enable

BOOTLOADER_SIGN_ENABLE 0: Disable signature verification.

BOOTLOADER_BOOT_PORT_ENABLE 0: Use the default scheme provided by Goodix.

bootloader_config.h

APP_FW_COMMENTS "ble_app_temp"

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 21

https://www.goodix.com/en/software_tool/grtoolbox

Upgrade with GRToolbox

File Name Macro Value

DFU_FW_SAVE_ADDR

(FLASH_START_ADDR + 0x30000)

Note:

FLASH_START_ADDR may vary according to a

specific SoC.

APP_LOG_ENABLE 1: Enable log information.

APP_CODE_LOAD_ADDR

custom_config.h

APP_CODE_RUN_ADDR

(Flash_START_ADDR+0x40000)

Note:

FLASH_START_ADDR may vary according to a

specific SoC.

2. Configure the ble_app_template_dfu project.

 Note:

• custom_config.h is in SDK_Folder\projects\ble\ble_peripheral\ble_app_template_dfu\S
rc\config.

• user_periph_setup.c is in SDK_Folder\projects\ble\ble_peripheral\ble_app_template_dfu
\Src\platform.

Table 4-5 Configuration items of the ble_app_template_dfu project (for upgrading unencrypted and unsigned firmware)

File Name Macro Value

APP_CODE_LOAD_ADDR

custom_config.h
APP_CODE_RUN_ADDR

0x01030000

Note:

The address may vary according to a specific SoC.

user_periph_setup.c DFU_FW_SAVE_ADDR

(FLASH_START_ADDR + 0x60000)

Note:

The start address of the Bank1 area in Flash cannot

overlap the Bank0 area and the App bootloader area.

4.3.2 Firmware Programming

Compile the App bootloader and ble_app_template_dfu projects, to generate app_bootloader.bin and
ble_app_template_dfu.bin respectively; then import the two .bin files into GProgrammer for programming and set the
App bootloader firmware as the boot firmware. Firmware programming with GProgrammer is shown as follows.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 22

Upgrade with GRToolbox

Figure 4-1 Firmware programming

After firmware programming, GRUart will output logs as follows.

Figure 4-2 Log information

4.3.3 Creating Target Firmware for Upgrade

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 23

Upgrade with GRToolbox

Open SDK_Folder\projects\ble\ble_peripheral\ble_app_template_dfu, then copy the
ble_app_template_dfu project in this directory and rename the project as ble_app_template_dfu_mine, and finally
open the project in Keil. Follow the steps below to create target firmware for upgrade.

1. Name the target firmware.

Change the advertising name of the device in user_app.c (path: SDK_Folder\projects\ble\ble_perip
heral\ble_app_template_dfu_mine\Src\user) to Goodix_Tem_New:

(1) Change the advertising name of the device.

#define DEVICE_NAME "Goodix_Tem_New"

(2) Modify the name used for scan response.

static const uint8_t s_adv_rsp_data_set[] =
{
 // Complete Name
 0x0f,
 BLE_GAP_AD_TYPE_COMPLETE_NAME,
 'G', 'o', 'o', 'd', 'i', 'x', '_', 'T', 'e', 'm', '_', 'N', 'e', 'w',
 // Manufacturer specific adv data type
 0x05,
 BLE_GAP_AD_TYPE_MANU_SPECIFIC_DATA,
 // Goodix SIG Company Identifier: 0x04F7
 0xF7,
 0x04,
 // Goodix specific adv data
 0x02, 0x03,
};

2. Modify the load address and run address. Take GR551x as an example. Modify APP_CODE_RUN_ADDR and
APP_CODE_LOAD_ADDR to 0x01030000. For configurations of other SoC series, refer to “Section 2.1.1 Flash
Layout” or “Section 2.2.1 Flash Layout”.

Table 4-6 To modify the load address and run address

File Name Macro Value

APP_CODE_LOAD_ADDR
custom_config.h

APP_CODE_RUN_ADDR
0x01030000

3. Generate a .bin file.

(1) Recompile the project. After recompilation, ble_app_template_dfu.bin is generated in ble_app_templa
te_dfu_mine\keil_5\Listings.

(2) The firmware generated by Keil contains no firmware information at the end. However, during upgrade, the
transmitted firmware needs to contain firmware information. Therefore, after ble_app_template_dfu.bin is
generated by Keil, it needs to be imported into GProgrammer.

(3) Then, the target firmware, ble_app_template_dfu_fw.bin, is generated in ble_app_template_dfu_mi
ne\keil_5\Listings, as shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 24

Upgrade with GRToolbox

Figure 4-3 Generated target firmware

(4) Save ble_app_template_dfu_fw.bin to the root directory of the mobile phone.

4.3.4 To Enter DFU Interface of GRToolbox

Two approaches are available to enter the DFU interface of GRToolbox:

• Click in the upper-right corner on the Device interface.

• Click Application > DFU.

 Note:

GR551x is taken as an example for the GRToolbox screenshots mentioned in this section.

The two approaches are detailed below.

• Click in the upper-right corner on the Device interface.

1. Start GRToolbox; select Goodix_Tem_DFU in the device list on the Device interface and establish
connection (Figure 4-4).

2. Click in the upper-right corner on the Device interface (Figure 4-5) to jump to the DFU interface (Figure
4-6).

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 25

Upgrade with GRToolbox

Figure 4-4 Selecting Goodix_Tem_DFU Figure 4-5 Clicking Figure 4-6 DFU interface

• Click Application > DFU.

1. Start GRToolbox; click Application > DFU, as shown in Figure 4-7.

2. Enter the DFU interface (Figure 4-8). As no device is connected, click CONNECT at the bottom to enter the
device connection interface, as shown in Figure 4-9.

3. Select Goodix_Tem_DFU from the device list to enter DFU mode, as shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 26

Upgrade with GRToolbox

Figure 4-7 Clicking DFU Figure 4-8 DFU interface Figure 4-9 Scanning device Figure 4-10 Entering DFU mode

4.3.5 Firmware Upgrade

This section focuses on detailed upgrade operations in background dual-bank DFU mode and non-background single-
bank DFU mode.

4.3.5.1 Background dual-bank DFU mode

1. After entering DFU mode on GRToolbox, click SELECT to import ble_app_template_dfu_fw.bin in the root
directory, and select Dual-bank Updates.

2. After Dual-bank Updates is selected, Copy Address(0x) appears below (Figure 4-11).

By default, Copy Address(0x) is greyed out and cannot be modified. If Copy Address(0x) is incorrect, click in the
upper-right corner and select Customize Copy Address to modify the address, as shown in Figure 4-13.

Fast Mode and Write Ctrl Point in Figure 4-12 are described below:

• Fast Mode: Select whether to enable fast mode. If Fast Mode is not selected, firmware upgrade will be
performed in normal DFU mode, which is slower than fast mode.

• Write Ctrl Point: Send a command to start DFU. In applications, the DFU task is not always running, to
reduce power consumption. If the DFU task for the device connected with GRToolbox is not running now
and firmware information needs to be obtained through GRToolbox before the upgrade starts, you can click
Write Ctrl Point to send a command to start the DFU task. For DFU task stop and start mechanisms, refer to
“Chapter 5 DFU Porting Method”.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 27

Upgrade with GRToolbox

Figure 4-11 Selecting Dual-bank Updates Figure 4-12 To customize copy address Figure 4-13 To modify Copy Address

3. Click UPDATE to start upgrade, as shown in Figure 4-14. During the upgrade process, there will be a circular
progress view indicating the upgrade progress. After upgrade completes, “Upgrade completed.” will be displayed
at the bottom.

When the target firmware is created, the advertising name of the device has been modified to
Goodix_Tem_New, so you can search for firmware named as Goodix_Tem_New to verify whether the upgrade
has completed. As shown in Figure 4-15, Goodix_Tem_New in the device list indicates that upgrade succeeds.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 28

Upgrade with GRToolbox

Figure 4-14 Upgrade progress Figure 4-15 Searching for “Goodix_Tem_New”

4.3.5.2 Non-background Single-bank DFU Mode

The non-background single-bank DFU mode is applicable to two scenarios:

• The ble_app_template_dfu firmware is running.

• The application firmware is damaged, so the App bootloader firmware is running.

Operation steps for the two scenarios are detailed below.

• The ble_app_template_dfu firmware is running.

The steps for non-background single-bank DFU mode are basically the same as those for background dual-bank
DFU mode.

1. Start GRToolbox; search for Goodix_Tem_DFU and establish connection; then enter the DFU interface and
select Single-bank Updates, as shown in Figure 4-16.

2. To upgrade in fast mode, select Fast Mode in the upper-right corner (Figure 4-17).

3. After setting, click UPDADE.

The time taken to enter the circular progress view interface in this mode is longer than that in background
dual-bank DFU mode. This is because currently it is required to jump from the ble_app_template_dfu
firmware to App bootloader firmware and re-establish connection. After reconnection, you can see the
circular progress view (Figure 4-18). After upgrade completes, “Update completed.” will be displayed at the
bottom.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 29

Upgrade with GRToolbox

Figure 4-16 Selecting Single-bank Updates Figure 4-17 Selecting Fast Mode Figure 4-18 Upgrade progress

• The App bootloader firmware is running.

If the application firmware is damaged or there is no application firmware, firmware upgrade needs
to be performed in App bootloader. The operations are basically the same as those for upgrade in
ble_app_template_dfu, except for different advertising names. The advertising name of the device to be
connected is "Bootloader_OTA". The operations after connection are the same as those for upgrade in
ble_app_template_dfu. You can refer to the steps for upgrade in ble_app_template_dfu.

4.4 Upgrade of Encrypted and Signed Firmware

Setting the system to encryption mode requires setting eFuse, which contains information on product configuration,
security mode control, and keys for encryption and signing. Therefore, if no setting information has been downloaded
to eFuse, you need to set eFuse first, and then download the setting information to eFuse. To enter the encryption
page on GProgrammer, click Encrypt & Sign on the toolbar on the left, as shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 30

Upgrade with GRToolbox

Figure 4-19 Encrypt & Sign interface

 Note:

GR533x SoCs do not support encryption and signing related functionalities.

4.4.1 eFuse Setting

You can specify Name, ID, and Firmware Key on the Encrypt & Sign interface of GProgrammer, and configure Security
Mode and SWD, to generate eFuse files.

Figure 4-20 eFuse Settings pane

eFuse is a one-time programmable (OTP) memory with random access interfaces in SoCs. Parameters in Figure 4-20
are detailed below:

• Firmware Key: Firmware keys can be random keys automatically generated by software. Users can also add key
files themselves.

• Security Mode: Select Open to enable security mode. Once enabled, this mode cannot be disabled.

• SWD: Select Close to disable SWD. In such case, users can upgrade firmware through DFU.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 31

Upgrade with GRToolbox

• Batch eFuse: To generate a specific number of firmware key files, select Batch eFuse and enter the number. The
files are used for one-key-for-one-device scenario. If Batch eFuse is not selected, only one data key file will be
generated.

The files are generated as below:

Figure 4-21 Generated files

• efuse.json: a temporary file

• Encrypt_key_info.bin, 2_Encrypt_key_info.bin, and 3_Encrypt_key_info.bin: files to be downloaded to eFuse,
covering information on products, encryption, and signing. These files shall be downloaded to and stored in
eFuse.

• firmware.key: a private key for encrypting firmware

• Mode_control.bin: a file covering information on security mode and SWD. The file shall be downloaded to and
stored in eFuse.

• product.json: a product information file. This file shall be imported to GProgrammer for encrypting or signing
firmware.

• sign.key: a private key to generate signatures

• sign_pub.key: a public key to verify signatures

• Public_key_hash.txt: a public key hash to verify signatures

To make file download to eFuse or firmware encryption and signing user-friendly, the paths for Encrypt_key_info.bin
and Mode_control.bin are added to the Download area by default; the path for product.json is added to the Product
Info pane in the Encrypt and Sign area by default.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 32

Upgrade with GRToolbox

Figure 4-22 Encrypt & Sign interface

4.4.2 Download to eFuse

For users who have completed eFuse settings, click Download to eFuse to download the files to eFuse. Otherwise,
users need to manually add Encrypt_key_info.bin and Mode_control.bin before downloading the files to eFuse.

Figure 4-23 Downloading files to eFuse

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 33

Upgrade with GRToolbox

4.4.3 Firmware Configuration

To upgrade encrypted and signed firmware, you need to configure the App bootloader related parameters, to verify
the application firmware before jumping to it.

 Note:

bootloader_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

Table 4-7 Configuration of bootloader_config.h (encryption and signing)

File Name Macro Value

BOOTLOADER_SIGN_ENABLE 1: Enable signature verification.
bootloader_config.h

BOOTLOADER_PUBLIC_KEY_HASH Values in Public_key_hash.txt

BOOTLOADER_PUBLIC_KEY_HASH is a set of values stored in Public_key_hash.txt as shown in Figure 4-21. Copy the
values from the file and paste them into the BOOTLOADER_PUBLIC_KEY_HASH macro in bootloader_config.h.

4.4.4 Generating Encrypted and Signed Firmware

When encryption mode is enabled, only firmware that has been encrypted and signed can be downloaded to Flash.
GProgrammer allows users to encrypt and sign multiple firmware files by using one set of product information
(Product Info) and one random number (Random Number). When adding more than one firmware file by clicking
Encrypt & Sign > Encrypt and Sign > Firmware, separate each file path with a semicolon (;), as shown in Figure 4-24.

Figure 4-24 Adding more than one firmware file

In an encrypted SoC, it is required to encrypt both App bootloader firmware and ble_app_template_dfu firmware, so
that the application can run correctly. The encrypted and signed firmware files are shown as follows:

Figure 4-25 Firmware files after encryption and signing

4.4.5 Firmware Upgrade

The operations to upgrade encrypted and signed firmware through GRToolbox are almost the same as those for
unencrypted and unsigned firmware, except that the encrypted and signed firmware is stored in the mobile phone.
For specific operations, refer to “Section 4.3.5 Firmware Upgrade”.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 34

Upgrade with GRToolbox

4.5 Upgrade of Signed and Unencrypted Firmware

Signing firmware is to prevent the firmware from being tampered with by third parties during transmission. Therefore,
after the firmware is written and before jumping to the application firmware, the signature of the application
firmware needs to be verified.

4.5.1 Firmware Configuration

Only signed and unencrypted firmware requires relevant configuration in App bootloader firmware. The relevant
configuration items are shown in the following table:

 Note:

bootloader_config.h is in SDK_Folder\projects\ble\dfu\app_bootloader\Src\config.

Table 4-8 Configuration of bootloader_config.h (signing)

File Name Macro Value

BOOTLOADER_SIGN_ENABLE 1: Enable signature verification.
bootloader_config.h

BOOTLOADER_PUBLIC_KEY_HASH Values in Public_key_hash.txt

4.5.2 Generating Signed and Unencrypted Firmware

Sign the firmware with GProgrammer, as shown in Figure 4-26. According to “Section 2.4 Firmware Format”, the length
of the contents added to the end of both encrypted firmware and signed firmware is the same, and the steps for
generating them are basically the same. The difference is that to generate signed and unencrypted firmware, do not
select Encrypt in the Encrypt & Sign > Encrypt and Sign area of GProgrammer. Figure 4-27 shows the generated signed
firmware.

Figure 4-26 Firmware signing interface

Figure 4-27 Generated signed firmware

4.5.3 Firmware Upgrade

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 35

Upgrade with GRToolbox

The steps for upgrading signed and unencrypted firmware are the same as those for unencrypted and unsigned
firmware. Refer to “Section 4.3.5 Firmware Upgrade”.

4.6 Resource Upgrade

Resource upgrade refers to upgrading images, fonts, audio files, and other non-code data. GR5xx supports resource
upgrade for internal Flash and external Flash.

• Internal resource upgrade: Add DFU-related components to upgrade resources in the app_bootloader firmware
or application firmware. No other configuration is required.

• External resource upgrade: Add DFU-related components and configure related macros in Keil.

4.6.1 Internal Flash Resource Upgrade

Steps for internal Flash resource upgrade:

1. Set Start Address(0x) and Flash Type, as shown in Figure 4-28.

Figure 4-28 Internal Flash resource upgrade

• Start Address(0x): the start address to store the data; it needs to be set by developers in advance, to
avoid overwriting other useful data during resource data download. For GR551x, considering the locations
of app_bootloader.bin and ble_app_template_dfu.bin in Flash, you need to set the start address to
0x01060000. For other SoC series, refer to “Section 2.1.1 Flash Layout” or “Section 2.2.1 Flash Layout”.

• Flash Type: Inner refers to Flash inside the SoC; External refers to external Flash connected to the SoC.

2. Click UPDATE. Then, the upgrade progress is shown as follows.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 36

Upgrade with GRToolbox

Figure 4-29 Internal resource upgrade progress

3. After resource download, the firmware in use will check the resource data. If the data passes the check,
“Upgrade completed.” will be prompted at the bottom of GRToolbox.

4.6.2 External Flash Resource Upgrade

External Flash resources can be upgraded in both App bootloader firmware and ble_app_template_dfu firmware.

• A common scenario is to perform external Flash resource upgrade in ble_app_template_dfu firmware. Configure
"ENABLE_DFU_SPI_FLASH" in the ble_app_template_dfu project, as shown in Figure 4-30, to enable the current
project to perform external Flash resource upgrade.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 37

Upgrade with GRToolbox

Figure 4-30 To enable external Flash resource upgrade

• To upgrade external Flash resources in App bootloader firmware, you need to add “ENABLE_DFU_SPI_FLASH” as
shown in Figure 4-30, and add a macro to enable Bluetooth LE in the app_bootloader project. The table below
lists the configuration in detail.

Table 4-9 Configuration of bootloader_config.h

File Name Macro Value

bootloader_config.h BOOTLOADER_DFU_BLE_ENABLE 1: Enable DFU communication via Bluetooth LE.

After configuration, steps for external Flash resource upgrade in both App bootloader firmware and
ble_app_template_dfu firmware are the same as follows:

1. Configure memory I/O, as shown below.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 38

Upgrade with GRToolbox

Figure 4-31 To configure memory I/O

To configure I/O interfaces, you can choose from SPI, QSPI0, and QSPI1 according to the communication mode
between external Flash and GR5xx. In the example, the on-board external Flash is used for upgrading, and the
on-board external Flash I/O interfaces for different SoC series are shown in the following table:

Table 4-10 On-board external Flash I/O interfaces

Development Board I/O Type CS CLK IO0 IO1 IO2 IO3

GR5515-SK-BASIC QSPI1 GPIO_15 GPIO_9 GPIO_8 GPIO_14 GPIO_13 GPIO_12

GR5525-SK-BASIC QSPI0 GPIO_15 GPIO_18 GPIO_19 GPIO_14 GPIO_13 GPIO_12

GR5526-SK_BASIC QSPI0 GPIO_26 GPIO_21 GPIO_22 GPIO_23 GPIO_24 GPIO_25

 Note:

• GR5331-SK-BASIC has no on-board external Flash or QSPI. To perform external Flash resource upgrade, you need
to use SPI to drive the external Flash. For detailed operations, refer to GR533x Datasheet. The GR533x I/Os used
for SPI shall be connected to external Flash pins with DuPont wires.

• GR5405-SK-BASIC has on-board external Flash, but no QSPI. You need to use SPI to drive the external Flash. You
can perform Flash read/write/erase operations on demand.

Take GR5515-SK-BASIC as an example. Select CONFIG I/O, and then make configurations as shown in Figure 4-32.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 39

Upgrade with GRToolbox

Figure 4-32 Pin configurations for external Flash

2. After configuration, click UPDATE. Then, the upgrade progress is shown as follows.

Figure 4-33 Upgrade progress

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 40

Upgrade with GRToolbox

3. After upgrade completes, the firmware in use will check the data in external Flash. If the data passes the check,
“Upgrade completed.” will be prompted at the bottom of GRToolbox.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 41

DFU Porting Method

5 DFU Porting Method
This chapter introduces how to port DFU functionalities by taking the ble_app_template_freertos example project
(in SDK_Folder\projects\ble\ble_peripheral\ble_app_template_freertos\Keil_5) as an
example, to help users apply the GR5xx DFU scheme to their customized projects. The porting process mainly consists
of the following steps:

1. Initialize DFU.

2. Add DFU scheduler.

3. Initialize DFU services (communicating via Bluetooth LE) and receive/process data.

4. Add DFU components.

5. Add OTA Profile.

Detailed steps are provided below.

1. Initialize DFU. The code is in app_periph_init() in user_periph_setup.c, as shown below:

#include “dfu_port.h”
void app_periph_init(void)
{
 dfu_uart_init();
 dfu_uart_ctrl_pin_init();
 dfu_port_init(uart_send_data, DFU_FW_SAVE_ADDR, &dfu_pro_call);
}

dfu_uart_init() is a UART initialization function. For communication via UART, UART needs to be initialized. Take
GR551x as an example. The initialization code snippet when data is transmitted via UART1 is as follows:

static app_uart_params_t dfu_uart_param;
#define DFU_UART_RX_BUFF_SIZE 0x400
#define DFU_UART_TX_BUFF_SIZE 0x400
static uint8_t s_dfu_uart_rx_buffer[DFU_UART_RX_BUFF_SIZE];
static uint8_t s_dfu_uart_tx_buffer[DFU_UART_TX_BUFF_SIZE];

static void dfu_uart_init(void)
{
 app_uart_tx_buf_t uart_buffer;

 uart_buffer.tx_buf = s_dfu_uart_tx_buffer;
 uart_buffer.tx_buf_size = DFU_UART_TX_BUFF_SIZE;

 dfu_uart_param.id = APP_UART1_ID;
 dfu_uart_param.init.baud_rate = APP_UART_BAUDRATE;
 dfu_uart_param.init.data_bits = UART_DATABITS_8;
 dfu_uart_param.init.stop_bits = UART_STOPBITS_1;
 dfu_uart_param.init.parity = UART_PARITY_NONE;
 dfu_uart_param.init.hw_flow_ctrl = UART_HWCONTROL_NONE;
 dfu_uart_param.init.rx_timeout_mode = UART_RECEIVER_TIMEOUT_ENABLE;
 dfu_uart_param.pin_cfg.rx.type = APP_UART1_RX_IO_TYPE;
 dfu_uart_param.pin_cfg.rx.pin = APP_UART1_RX_PIN;
 dfu_uart_param.pin_cfg.rx.mux = APP_UART1_RX_PINMUX;
 dfu_uart_param.pin_cfg.rx.pull = APP_UART_RX_PULL;
 dfu_uart_param.pin_cfg.tx.type = APP_UART1_TX_IO_TYPE;
 dfu_uart_param.pin_cfg.tx.pin = APP_UART1_TX_PIN;
 dfu_uart_param.pin_cfg.tx.mux = APP_UART1_TX_PINMUX;

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 42

DFU Porting Method

 dfu_uart_param.pin_cfg.tx.pull = APP_UART_TX_PULL;

 app_uart_init(&dfu_uart_param, dfu_uart_evt_handler, &uart_buffer);
 app_uart_receive_async(APP_UART1_ID, s_dfu_uart_rx_buffer,
 sizeof(s_dfu_uart_rx_buffer));
}

During upgrade via UART, you not only need to initialize UART TX and RX pins, but also initialize a control pin to
wake up the device which is in sleep and to start the stopped DFU task. Therefore, if sleep mechanism is adopted
for the device, an AON pin shall be selected as the control pin. Take GR551x as an example. The initialization code
snippet is as follows when AON_GPIO_PIN_1 is selected as the control pin:

#define DFU_UART_CTRL_PIN AON_GPIO_PIN_1

void dfu_uart_ctrl_pin_init(void)
{
 app_io_init_t io_init = APP_IO_DEFAULT_CONFIG;

 io_init.pull = APP_IO_PULLUP;
 io_init.mode = APP_IO_MODE_IT_FALLING;
 io_init.pin = DFU_UART_CTRL_PIN;
 io_init.mux = APP_IO_MUX;
 app_io_init(APP_IO_TYPE_AON, &io_init);

 app_io_event_register_cb(APP_IO_TYPE_AON, &io_init, app_io_event_handler,
 "DFU uart ctrl pin interrupt");
}

In the application firmware, DFU_FW_SAVE_ADDR represents the start address to copy the firmware in
background dual-bank DFU mode. DFU_FW_SAVE_ADDR can be set as follows:

#define DFU_FW_SAVE_ADDR (FLASH_START_ADDR + 0x60000)

 Note:

This value is variable. Do not set it to an address conflicting with that of the App bootloader firmware and the Bank0
firmware.

uart_send_data() is a UART TX function, which needs to be registered for upgrade via UART. This function is
defined as follows:

static void uart_send_data(uint8_t *data, uint16_t size)
{
 app_uart_transmit_async(APP_UART1_ID, data, size);
}

dfu_pro_call() is a callback function to print the progress during upgrade. The code snippet is shown below:

static void dfu_program_start_callback(void);
static void dfu_programing_callback(uint8_t pro);
static void dfu_program_end_callback(uint8_t status);

static dfu_pro_callback_t dfu_pro_call =
{
 .dfu_program_start_callback = dfu_program_start_callback,
 .dfu_programing_callback = dfu_programing_callback,

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 43

DFU Porting Method

 .dfu_program_end_callback = dfu_program_end_callback,
};

static void dfu_program_start_callback(void)
{
 APP_LOG_DEBUG("Dfu start program");
}

static void dfu_programing_callback(uint8_t pro)
{
 APP_LOG_DEBUG("Dfu programing---%d%%", pro);
}

static void dfu_program_end_callback(uint8_t status)
{
 APP_LOG_DEBUG("Dfu program end");
 if (0x01 == status)
 {
 APP_LOG_DEBUG("status: successful");
 }
 else
 {
 APP_LOG_DEBUG("status: error");
 }
}

2. Create DFU signal amount and a DFU scheduling task.

#include “dfu_port.h”

#define DFU_TASK_STACK_SIZE (1024 * 2)
TaskHandle_t dfu_task_handle;
SemaphoreHandle_t xDfuSemaphore;
uint8_t start_dfu_task_flag = 0;

int main(void)
{
 ……
 xDfuSemaphore = xSemaphoreCreateBinary();
 xTaskCreate(vStartTasks, "create_task", 512, NULL, 0, NULL);
 vTaskStartScheduler();
 for(;;);
}

static void vStartTask(void *arg)
{
 ……
 xTaskCreate(dfu_schedule_task, "dfu_schedule_task", DFU_TASK_STACK_SIZE, NULL,
 configMAX_PRIORITIES - 2, &dfu_task_handle);
 ……
 vTaskDelete(NULL);
}

static void dfu_schedule_task(void *p_arg)
{
 while (1)
 {
 if (!start_dfu_task_flag)

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 44

DFU Porting Method

 {
 xSemaphoreTake(xDfuSemaphore, portMAX_DELAY);
 }
 dfu_schedule();
 }
}

In applications, the current DFU task needs to be paused to reduce power consumption when there is no data
interaction between the host and the device. Based on this, GR5xx allows adding a timeout mechanism and
signal amount to the DFU task. As shown in the above code, after the DFU task is created, it waits for the signal
amount and starts running after receiving the signal amount. The release method of the DFU signal amount
varies in different communication modes. For communication via Bluetooth LE, the signal amount is released by
sending a DFU Enter command through the Control Point characteristic. For communication via UART, the signal
amount is released by triggering an external interrupt through the control pin.

If the device does not receive the data from the host within a certain period of time, it is considered that
the current DFU task has ended. In the timeout callback function, reset the start flag of the DFU task to stop
executing the DFU task and wait for the DFU signal amount. The timeout mechanism is implemented through the
app_timer software timer component. When using app_timer, add #include “app_timer.h” to the code.
The timer initialization function is defined as follows. This function needs to be called in app_periph_init().

static app_timer_id_t s_cmd_wait_timer_id;

static void dfu_timer_init(void)
{
 app_timer_create(&s_cmd_wait_timer_id, ATIMER_REPEAT, cmd_wait_timeout_handler);
}

The timeout callback function is defined as follows:

static uint16_t s_dfu_last_count;
static uint16_t s_dfu_curr_count;
extern uint8_t start_dfu_task_flag;

static void cmd_wait_timeout_handler(void* p_arg)
{
 if (s_dfu_last_count < s_dfu_curr_count)
 {
 s_dfu_last_count = s_dfu_curr_count;
 }
 else
 {
 s_dfu_curr_count = 0;
 s_dfu_last_count = 0;
 dfu_cmd_parse_state_reset();
 fast_dfu_state_machine_reset();
 start_dfu_task_flag = 0;
 dfu_timer_stop();
 }
}

As shown above, if the host does not send data to the device within a certain period of time, the timeout
function will be triggered, which will call dfu_cmd_parse_state_reset(). dfu_cmd_parse_state_reset() is
implemented in the SDK and can be called directly; it is to reset the state machine for parsing the DFU command,
to facilitate data parsing in the next upgrade. fast_dfu_state_machine_reset() also needs to be called in the

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 45

DFU Porting Method

timeout function; it is to reset the state machine of the fast mode, to facilitate data transmission between the
host and device in the next upgrade. fast_dfu_state_machine_reset() is currently not implemented in dfu_port.c
of GR551x SDK V2.0.1 and GR5525 SDK V0.8.0; it needs to be implemented by users by referring to the following
code:

void fast_dfu_state_machine_reset(void)
{
 s_fast_dfu_mode = 0;
 s_program_end_flag = 0;
 s_fast_dfu_state = FAST_DFU_INIT_STATE;
}

Then, reset the start flag of the DFU task and stop the DFU software timer. The code snippet to stop the software
timer is as follows:

static void dfu_timer_stop(void)
{
 app_timer_stop(s_cmd_wait_timer_id);
}

3. Initialize DFU services and receive/process data. To perform DFU in communication mode via Bluetooth LE,
initialize DFU-related services in service_init() in user_app.c and add #include “dfu_port.h” as follows:

static void services_init(void)
{
 dfu_service_init(dfu_enter);
}

By default, dfu_enter() is defined as empty. Users can add code to the function to trigger the DFU task. In
addition, to implement the DFU timeout mechanism, call the timer start function in dfu_enter(). When the
device receives the DFU Enter command, it releases the DFU signal amount, sets the start flag of the DFU task,
and starts the software timer for the DFU timeout mechanism. The code snippet to be added is as follows:

extern SemaphoreHandle_t xDfuSemaphore;
extern uint8_t start_dfu_task_flag;

static void dfu_enter(void)
{
 if (!start_dfu_task_flag)
 {
 start_dfu_task_flag = 1;
 xSemaphoreGive(xDfuSemaphore);
 dfu_timer_start();
 }
}

The implementation code of dfu_timer_start() is as follows:

#define DFU_CMD_WAIT_TIMEOUT 4000

void dfu_timer_start(void)
{
 app_timer_start(s_cmd_wait_timer_id, DFU_CMD_WAIT_TIMEOUT, NULL);

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 46

DFU Porting Method

}

If communication mode via UART is adopted, there is no dfu_enter command and no corresponding dfu_enter
callback function. In this mode, the DFU task is woken up in the interrupt service function of the control pin
initialized in Step 1. The interrupt service function is defined as follows:

extern SemaphoreHandle_t xDfuSemaphore;
extern uint8_t start_dfu_task_flag;

void app_io_event_handler(app_io_evt_t *p_evt)
{
 app_io_pin_state_t pin_level = APP_IO_PIN_RESET;

 if (p_evt->pin == DFU_UART_CTRL_PIN)
 {
 pin_level = app_io_read_pin(APP_IO_TYPE_AON, DFU_UART_CTRL_PIN);
 if (pin_level == APP_IO_PIN_RESET)
 {
 do
 {
 pin_level = app_io_read_pin(APP_IO_TYPE_AON, DFU_UART_CTRL_PIN);
 } while(pin_level == APP_IO_PIN_SET);

 if (!start_dfu_task_flag)
 {
 start_dfu_task_flag = 1;
 xSemaphoreGive(xDfuSemaphore);
 dfu_timer_start();
 }
 }
 }
}

After starting the DFU software timer, you need to call the function that increments count at the data reception
location. The function for incrementing count is defined as follows:

void dfu_rev_cmd_count(void)
{
 s_dfu_curr_count++;
}

When DFU is performed in communication mode via Bluetooth LE, call dfu_rev_cmd_count() at the location
of receiving data via Bluetooth LE (in otas_evt_process(otas_evt_t *p_evt) in dfu_port.c). The data reception
function for DFU is also added here. The code snippet is shown below:

static void otas_evt_process(otas_evt_t *p_evt)
{
 switch(p_evt->evt_type)
 {

 case OTAS_EVT_RX_RECEIVE_DATA:
 dfu_rev_cmd_count();
 if (!s_fast_dfu_mode || s_program_end_flag)
 {
 dfu_ble_receive_data_process(p_evt->p_data, p_evt->length);
 }
 else

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 47

DFU Porting Method

 {
 s_fast_dfu_state = FAST_DFU_PROGRAM_FLASH_STATE;
 fast_dfu_write_data_to_buffer(p_evt->p_data, p_evt->length);
 }
 break;

 }
}

When DFU is performed in communication mode via UART, call dfu_rev_cmd_count() at the location of receiving
data via UART (in dfu_uart_evt_handler()). The data reception function for DFU is also added here. The code
snippet is shown below:

void dfu_uart_evt_handler(app_uart_evt_t * p_evt)
{
 switch(p_evt->evt_type)
 {

 case APP_UART_EVT_RX_DATA:
 dfu_rev_cmd_count();
 dfu_uart_receive_data_process(s_dfu_uart_rx_buffer, p_evt->data.size);
 app_uart_receive_async(APP_UART1_ID, s_dfu_uart_rx_buffer,
 DFU_UART_RX_BUFF_SIZE);
 break;

 }
}

 Note:

If the DFU task for the device connected with GRToolbox is not running now and you need to obtain firmware
information through GRToolbox before clicking UPDATE, you can click Write Ctrl Point to send a command to wake up
the DFU task. For details, refer to “Section 4.3.5 Firmware Upgrade”.

4. Add dfu_port.c and otas.c to gr_libraries and gr_profiles project folders respectively, as shown below.

 Note:

dfu_port.c and otas.c are in SDK_Folder\components\libraries\dfu_port and SDK_Folder\compon
ents\profiles\otas respectively.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 48

DFU Porting Method

Figure 5-1 Keil project list

5. In custom.config.h, set APP_CODE_LOAD_ADDR and APP_CODE_RUN_ADDR to FLASH_START_ADDR + 0x30000,
so that they will not overlap the address of the boot firmware. Here, GR551x is taken as an example and APP_CO
DE_RUN_ADDR and APP_CODE_LOAD_ADDR are set to 0x01030000.

// <o> Code load address
// <i> Default: 0x01002000
#define APP_CODE_LOAD_ADDR 0x01030000

// <o> Code run address
// <i> Default: 0x01002000
#define APP_CODE_RUN_ADDR 0x01030000

6. To allow the App bootloader firmware to correctly jump to the application firmware, the “COMMENTS” of both
needs to be matched. The default “COMMENTS” of the App bootloader firmware is “ble_app_temp”, so you
need to define the “COMMENTS” of the ble_app_template_freertos firmware in custom.config.h as follows:

#define APP_FW_COMMENTS "ble_app_temp"

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 49

Upgrade Through DFU Master

6 Upgrade Through DFU Master
This chapter focuses on upgrade through DFU master.

6.1 Introduction to DFU Master

Firmware upgrade can be done not only by using GRToolbox to communicate with the device, but also through DFU
master in certain scenarios. GR5xx SDK provides a dfu_master component and the corresponding dfu_master example
project. Firmware upgrade through the dfu_master component can be done in communication mode via UART or
Bluetooth LE, with the upgrade principles shown in the following:

• The diagram for communication via UART is shown below.

DFU Master DFU Slave

TX RX

TXRX

GND GND

CTRL CTRL

Figure 6-1 Upgrade via UART

• The diagram for communication via Bluetooth LE is shown below.

DFU Master DFU Slave

Bluetooth LE Bluetooth LE

Figure 6-2 Upgrade via Bluetooth LE

 Note:

The GR5xx dfu_master scheme supports background dual-bank DFU mode only. In communication mode via UART,
firmware can be upgraded in normal mode; in communication mode via Bluetooth LE, firmware can be upgraded in
both normal mode and fast mode.

6.2 Cross-platform Porting of DFU Master

The GR5xx dfu_master component is in SDK_Folder\components\libraries\dfu_master. Follow the
steps below to port the dfu_master component to other platforms:

1. Register the dfu_master-related APIs. The registration code is as follows:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 50

Upgrade Through DFU Master

static dfu_m_func_cfg_t s_dfu_m_func_cfg =
{
 .dfu_m_get_img_info = dfu_m_get_img_info,
 .dfu_m_get_img_data = dfu_m_get_img_data,
 .dfu_m_send_data = dfu_uart_data_send,
 .dfu_m_fw_read = hal_flash_read,
 .dfu_m_event_handler = dfu_m_event_handler,
};

 Note:

There is no dfu_m_fw_read() provided in GR551x SDK V2.0.1 and GR5525 SDK V0.8.0.

dfu_m_get_img_info() is defined as follows. It is to obtain the image_info of the to-be-transmitted firmware and
save the information to the img_info variable. The function needs to be implemented by users according to the
location of the image_info.

static void dfu_m_get_img_info(dfu_img_info_t *img_info)
{

}

dfu_m_get_img_data() is defined as follows. It is to obtain the data with the specified “addr” and “length” of the
to-be-transmitted firmware and save the data to p_data.

static void dfu_m_get_img_data(uint32_t addr, uint8_t *p_data, uint16_t length)
{

}

dfu_uart_data_send() is defined as follows. It is to transmit the p_data with the specified “length” via UART to
GRUart. If data is transmitted via Bluetooth LE, the registered API needs to be a Bluetooth LE data transmission
function.

void dfu_uart_data_send(uint8_t *p_data, uint16_t length)
{

}

dfu_m_fw_read() is to read the flag bit in the firmware information of the to-be-transmitted firmware. In the
dfu_master example project, the to-be-transmitted firmware is stored in Flash, so hal_flash_read() is registered.
Users need to register this API according to the way to read firmware data by the platform in use.

dfu_m_event_handler() is an event callback function after the upgrade command is executed. You can refer to
the following to implement this function.

static void dfu_m_event_handler(dfu_m_event_t event, uint8_t pre)
{
 switch(event)
 {
 case PRO_START_SUCCESS:
 APP_LOG_DEBUG("Upgrade Start");
 break;

 case PRO_FLASH_SUCCESS:

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 51

Upgrade Through DFU Master

 APP_LOG_DEBUG("Upgrade Progress %d%%", pre);
 break;

 case PRO_END_SUCCESS:
 APP_LOG_DEBUG("Upgrade End");
 user_master_status_set(MASTER_IDLE);
 break;
 ……
 }
}

2. Define the upgrade parameters before upgrade starts. Parameters vary according to the specific communication
mode (via UART and via Bluetooth LE). In communication mode via UART/Bluetooth LE, information and data of
the to-be-transmitted firmware need to be obtained. In communication mode via Bluetooth LE, you also need to
determine whether to enable the fast mode. In the GR5xx dfu_master example project, the upgrade parameters
can be defined according to the following principle:

Select UART.

Select
Bluetooth LE.

Scan Connect Enable Fast
Mode.

Select Image.

Select Image.

MASTER_IDLE

MASTER_UART_
SELECT_IMG

MASTER_UART_
UPDATING

MASTER_BLE_
SELECT_DEVICE

MASTER_BLE_
CONNECTED

MASTER_FAST_
DFU_MODE_SET

MASTER_BLE_
SELECT_IMG

MASTER_BLE_
UPDATING

Figure 6-3 State of dfu_master before upgrade

• MASTER_IDLE: idle state

• MASTER_UART_SELECT_IMG: Select firmware in communication mode via UART.

• MASTER_UART_UPDATING: upgrading state in communication mode via UART

• MASTER_BLE_SELECT_DEVICE: Select device in communication mode via Bluetooth LE.

• MASTER_BLE_CONNECTED: connected state in communication mode via Bluetooth LE

• MASTER_FAST_DFU_MODE_SET: enablement state of fast mode

• MASTER_BLE_SELECT_IMG: Select firmware in communication mode via Bluetooth LE.

• MASTER_BLE_UPDATING: upgrading state in communication mode via Bluetooth LE

Users can define parameters before upgrade on their platforms according to the above state diagram.

3. Port the dfu_master component. To port the dfu_master component to other platforms, you need to ensure
the header files included in dfu_master.c are platform-independent, and the following two header files shall be
retained:

#include "dfu_master.h"

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 52

Upgrade Through DFU Master

#include <string.h>

dfu_m_system_info_get() in dfu_master.c requires the start address of the target device. The Flash start
addresses of GR5xx SoCs are shown in the following table:

Table 6-1 Flash start addresses of GR5xx SoCs

Part Number FLASH_START_ADDR

GR551x 0x01000000

GR5526 0x00200000

GR5525 0x00200000

GR533x 0x00200000

GR5405 0x00200000

Take GR551x for example. Add the following macro definition to dfu_master.c:

#define FLASH_START_ADDR 0x01000000

For firmware upgrade in communication mode via Bluetooth LE, select whether to enable the fast mode. When
the fast mode is enabled, the master will not wait for response from the device after sending the firmware data.
After the first frame of data is sent, the second frame will be sent, and so on. In the dfu_master example project,
when data is sent in fast mode, ble_send_cplt_flag will be set in the Bluetooth LE send complete event callback
after each data frame is sent. The code snippet is as follows:

static void otas_c_evt_process(otas_c_evt_t *p_evt)
{
 ……
 switch (p_evt->evt_type)
 {
 ……
 case OTAS_C_EVT_TX_CPLT:
 if (fast_dfu_mode == 0x00)
 {
 dfu_m_send_data_cmpl_process();
 }
 else if (fast_dfu_mode == 0x02 && s_program_size ! = 0)
 {
 ble_send_cplt_flag = 1;
 }
 break;
 ……
 }
 ……
}

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 53

Upgrade Through DFU Master

 Note:

fast_dfu_mode in the code snippet above can be set to two values, as described below:

• 0x00: Disable

• 0x02: Enable

You need to ensure the header files included in dfu_master.h are platform-independent, and the following two
header files shall be retained:

#include <stdbool.h>
#include <stdint.h>

Add the following boot_info_t type definition to dfu_master.h in GR551x SDK V2.0.1 and GR5525 SDK V0.8.0.

typedef struct
{
 uint32_t bin_size;
 uint32_t check_sum;
 uint32_t load_addr;
 uint32_t run_addr;
 uint32_t xqspi_xip_cmd;
 uint32_t xqspi_speed: 4;
 uint32_t code_copy_mode: 1;
 uint32_t system_clk: 3;
 uint32_t check_image:1;
 uint32_t boot_delay:1;
 uint32_t is_dap_boot:1;
 uint32_t reserved:21;
} boot_info_t;

4. Add the DFU command scheduler and the DFU command parser. The DFU command scheduler needs to be
called in a loop during upgrade. The code snippet is as follows:

while(1)
{
 dfu_m_schedule(app_dfu_rev_cmd_cb);
}

app_dfu_rev_cmd_cb() is the function that increments count for the DFU timeout mechanism. For
implementation of the timeout mechanism, refer to “Chapter 5 DFU Porting Method”.

The DFU command parser shall be called at the location where the master receives data returned from the to-
be-upgraded device. For example, in communication mode via Bluetooth LE, the DFU command parser shall be
called at the following location:

static void otas_c_evt_process(otas_c_evt_t *p_evt)
{
 ……
 switch (p_evt->evt_type)
 {
 ……
 case OTAS_C_EVT_PEER_DATA_RECEIVE:
 dfu_m_cmd_prase(p_evt->p_data, p_evt->length);
 break;

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 54

Upgrade Through DFU Master

 ……
 }
 ……
}

6.3 Instructions on Upgrade Through DFU Master

6.3.1 Preparation

Refer to “Section 4.2 Preparation”.

6.3.2 Upgrade via UART

1. Hardware configuration

Set up the environment for upgrade via DFU master UART. UART1 is used for data transmission for all series of
GR5xx SoCs. The TX and RX pins corresponding to different series of GR5xx SoCs are shown in the following table:

Table 6-2 Hardware configuration

Hardware Platform TX Pin RX Pin

GR5515-SK-BASIC GPIO_30 GPIO_26

GR5526-SK-BASIC GPIO_32 GPIO_33

GR5525-SK-BASIC GPIO_7 GPIO_6

GR5331-SK-BASIC GPIO_5 GPIO_6

GR5405-SK-BASIC AON_GPIO_3 AON_GPIO_2

In the following, GR5515-SK-BASIC is taken as an example to introduce upgrade steps in detail. GPIO_30 and
GPIO_26 are the TX and RX pins of UART1, respectively. The two development boards communicate with each
other through their UART1 pins. The schematic diagram is shown as follows.

Micro USB Cable

PC

Micro USB Cable

PC

DFU Master DFU Slave

GPIO_30

GPIO_26 GPIO_26

GPIO_30

DuPont Wire Cable

Figure 6-4 Environment for upgrade via UART

2. Steps

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 55

Upgrade Through DFU Master

(1) For upgrade via UART in RTOS environment, the DFU task might not always run, and the system might be in
sleep state. In this case, the CTRL wire shown in Figure 6-1 is needed.

If DFU master needs to use the DFU function, it sends a signal (can be an I/O level transition signal) through
the CTRL wire to notify the DFU slave that it needs to run the DFU task.

(2) The default load address and run address of the dfu_master firmware are FLASH_START_ADDR + 0x2000.
Download the dfu_master firmware to the device, and store the firmware for upgrade on the device as
well.

(3) Refer to “Section 4.3.3 Creating Target Firmware for Upgrade” to create the target firmware for upgrade.
The load address and run address of the target firmware are FLASH_START_ADDR + 0x30000. Take GR551x
for example. Download the dfu_master firmware and the firmware for upgrade to the device, as shown in
Figure 6-5.

Figure 6-5 Downloading the dfu_master firmware and the firmware for upgrade

(4) The app_bootloader firmware and the ble_app_template_dfu firmware need to be downloaded to the DFU
slave, as shown in Figure 6-6. For details, refer to GProgrammer User Manual.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 56

Upgrade Through DFU Master

Figure 6-6 Downloading the app_bootloader firmware and the ble_app_template_dfu firmware

(5) After download, connect the DFU master and the DFU slave with DuPont wires (as shown in Table 6-3), and
connect UART0 of both DFU master and DFU slave to the PC with Micro USB cables.

Table 6-3 To connect DFU master and DFU slave

DFU Master DFU Slave

UART1 UART1

GPIO_30 GPIO_26

GPIO_26 GPIO_30

(6) Start GRUart and view the DFU master logs (as shown below). You can upgrade firmware via UART or
Bluetooth LE. Inputting 1 in the Tx pane indicates upgrade via UART.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 57

Upgrade Through DFU Master

Figure 6-7 Logs for upgrade via UART

(7) Select the firmware version for upgrade, and enter the upgrade mode. Then, the upgrade progress will be
displayed on GRUart.

6.3.3 Upgrade via Bluetooth LE

Control Point will be used to wake up the system if the firmware is upgraded in RTOS environment, the DFU task is not
running, and the system is in sleep state. Then, the system will execute the DFU task.

The steps for upgrade via Bluetooth LE and via UART are almost the same, except that one more step is added for
upgrade via Bluetooth LE. The specific steps are as follows:

1. Select BLE.

2. Select Normal DFU or Fast DFU.

3. Select the firmware version for upgrade, and enter the upgrade mode. Then, the upgrade progress will be
displayed on GRUart.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 58

Upgrade Through DFU Master

Figure 6-8 Logs for upgrade via Bluetooth LE

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 59

Considerations

7 Considerations
This chapter provides information worthy of particular attention during DFU.

7.1 Deinitializing Peripherals used in App Bootloader Before Jumping from App
Bootloader to App Firmware

• Reason

The following operations are required before jumping from App bootloader to App firmware.

1. Disable the interrupt.

2. Clear the pending bit.

3. Deinitialize peripherals used in App bootloader.

• Solution

Operations 1 and 2 have been implemented by GR5xx SDK. Therefore, to avoid firmware jump failure or
abnormal power consumption of the application firmware, it is necessary to deinitialize the peripherals used by
the App bootloader before jumping.

7.2 Setting the DFU Task Stack Size of Application Firmware in RTOS Environment
According to Specific GR5xx SoCs

• Reason

DFU implementation for GR551x series is different from that for other SoC series, so a different task stack size is
required.

• Solution

At least 6 KB needs to be allocated for DFU task stack of GR551x, and at least 1 KB for other SoC series.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 60

Appendix: DFU Communication Protocols

8 Appendix: DFU Communication Protocols
The firmware upgrade between the host and the device is based on DFU communication protocols.

8.1 Basic Frame

The basic frame defines the lowest-level data packet structure in communication. The application data packet protocol
is based on the basic frame, in the “Data” field of the basic frame. If the basic frame length exceeds the maximum
payload of link communication, the host needs to segment the frame for transmission. After receiving the correct
frame header and data length, the device starts processing the data.

8.1.1 Frame Structure

Frame header Frame type Data length Data Parity bit

2 2 2 0–2048 2 bytes

Figure 8-1 Frame structure

• Frame header: the start of a frame, represented by 0x47 and 0x44 which are the ASCII code values of characters
‘G’ and ‘D’

• Frame type: used to distinguish data types in the “Data” field

• Data length: length of data in the “Data” field

• Data: data with configurable length; maximum length: 2048 bytes

• Parity bit: 16-bit checksum for frame type, data length, and data

8.1.2 Byte Order

The little-endian mode is adopted for the “Data” field of the basic frame. The low byte data shall be stored at low
addresses in Flash, and the high byte data at high addresses.

8.2 Appendix: DFU Command Set

DFU commands are delivered by the host and received by the device. The DFU command set is listed as follows.

Table 8-1 DFU command description

Command Command Code Description

Get Info 0x01 The host gets the system information and DFU version of the SoC.

Operate System Info 0x27
The host sends this command to handle data in the System Configuration Area of

the device, including reading and updating the data.

DFU Mode Set 0x41 The host sets the DFU mode on the device.

DFU Firmware Info Get 0x42 The host gets firmware information on the device.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 61

Appendix: DFU Communication Protocols

Command Command Code Description

Program Start 0x23
The host sends Image Info and information about whether to enable the fast

mode when programs are downloaded to the device.

Program Flash 0x24 The host writes firmware data to the device.

Program End 0x25
The host sends this command to notify the device that the programming data has

been sent.

Config External Flash 0x2A Configure external Flash.

Get Flash Information 0x2B Get Flash information.

8.2.1 Get Info Command

The Get Info command is used to get the system information of the SoC; after receiving the command, the device will
send information on ID, Flash, RAM, and stack version of the SoC to the host.

8.2.1.1 Data Sent from the Host

Table 8-2 Format of data sent through the Get Info command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x01 Get Info command

4–5 Data length 0 No data content

6–7 Checksum 0x00–0xFF 16-bit checksum for frame type and data length

8.2.1.2 Response Data from the Device

Table 8-3 Format of data replied through the Get Info command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code

values of characters ‘G’ and ‘D’

2–3 Frame type 0x01 Get Info command

4–5 Data length 1 or 9
If getting information fails, the data field only contains the

response.

6 Response 0x01/0x02
• 0x01: Getting system information succeeds.

• 0x02: Getting system information fails.

7 Stack Major 0x00–0xff Main version number

8 Stack Minor 0x00–0xff Minor version number

9–10

Data content

Stack Build 0x00–0xff Build number

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 62

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

11–14 Stack SVN 0x00–0xff SVN number

15 SDK Major 0x00–0xff Main version number

16 SDK Minor 0x00–0xff Minor version number

17–18 SDK Build 0x00–0xff Build number

19–22 SDK SVN 0x00–0xff SVN number

23 DFU Version
0x02 or invalid

data bit

Get the DFU version.

• 0x02: DFU schemes introduced in this document

• Invalid data bit: DFU schemes in earlier versions

24–25 Checksum 0x00–0xFF
16-bit checksum for frame type, data length, and data

content

8.2.2 Operate System Info Command

The host sends this command to handle data in the System Configuration Area of the device, including reading and
updating the data.

8.2.2.1 Data Sent from the Host

Table 8-4 Format of data sent through the Operate System Info command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x27 Operate System Info command

4–5 Data length N Length of data in the “Data” field

6
Operating

command
0x00/0x01

• 0x00: Get the data in the System Configuration Area.

• 0x01: Update the data in the System Configuration Area.

7–10 Start address 0x00–0xFF A valid address in the System Configuration Area

11–12 Data length 0x00–0xFF
Length of data to be read from the start address; it cannot exceed the

System Configuration Area.

13–N

Data content

Content

update
0x00–0xFF

If it is a data get command, there is no need to update the content

segment.

N+1 to N+2 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 63

Appendix: DFU Communication Protocols

 Note:

N in the table above indicates variable length for the “Data” field:

• For a data update command, N ranges from 14 bytes to 1036 bytes.

• For a data read command, the “Data” field has a fixed length of 7 bytes.

8.2.2.2 Response Data from the Device

Table 8-5 Format of data replied through the Operate System Info command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code

values of characters ‘G’ and ‘D’

2–3 Frame type 0x27 Operate System Info command

4–5 Data length N Length of data in the “Data” field

6 Response 0x01/0x02
• 0x01: Data read succeeds.

• 0x02: Data read fails.

7
Operating

command
0x00/0x10/0x01/0x11

• 0x00: Read the data in the System Configuration Area
(unencrypted SoCs).

• 0x10: Read the data in the System Configuration Area
(encrypted SoCs).

• 0x01: Update the data in the System Configuration Area
(unencrypted SoCs).

• 0x11: Update the data in the System Configuration Area
(encrypted SoCs).

8–11 Start address 0x00–0xFF

12–13 Data length 0x00–0xFF

14–N

Data content

Data 0x00–0xFF

If it is a data update command, this data segment is invalid.

N+1 to N+2 Checksum 0x00–0xFF
16-bit checksum for frame type, data length, and data

content

8.2.3 DFU Mode Set Command

This command is used to set the DFU mode on GRToolbox. Two DFU modes are available: background dual-bank DFU
mode and non-background single-bank DFU mode.

8.2.3.1 Data Sent from the Host

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 64

Appendix: DFU Communication Protocols

Table 8-6 Format of data sent through the DFU Mode Set command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x41 DFU Mode Set command

4–5 Data length 0x01 1-byte data content

6 Data content
0x01

0x02

• 0x01: background dual-bank DFU mode

• 0x02: non-background single-bank DFU mode

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

8.2.3.2 Response Data from the Device

The device will not respond to the DFU Mode Set command.

8.2.4 DFU Firmware Info Get Command

This command allows the host to get firmware information stored in the APP Info area of the firmware.

8.2.4.1 Data Sent from the Host

Table 8-7 Format of data sent through the DFU Firmware Info Get command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x42 DFU Firmware Info Get command

4–5 Data length 0 No data content

6–7 Checksum 0x00–0xFF 16-bit checksum for frame type and data length

8.2.4.2 Response Data from the Device

Table 8-8 Format of data replied through the DFU Firmware Info Get command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values

of characters ‘G’ and ‘D’

2–3 Frame type 0x42 DFU Firmware Info Get command

4–5 Data length Response data length

6 Data content Response
0x01

0x02

• 0x01: Getting information succeeds.

• 0x02: Getting information fails.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 65

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

7–10 Copy_load_addr Storage start address for firmware upgrade

11 Run_position
0x00

0x01

• 0x00: The App bootloader firmware is running.

• 0x01: The App firmware is running.

12–59 Image_Info Firmware information stored in the APP Info area

59–61 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

8.2.5 Program Start Command

The Program Start command is used to send firmware information and information about whether to enable the fast
mode.

8.2.5.1 Data Sent from the Host

Table 8-9 Format of data sent through the Program Start command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x23 Program Start command

4–5 Data length N

• If the Program Start command targets firmware, the “Data” field has 41 bytes,
including 1 byte for Flash type and 40 bytes for Image Info.

• If the Program Start command targets data, the “Data” field has 9 bytes,
including 1 byte for Flash type, 4 bytes for start address, and 4 bytes for data
content.

6 Upgrade type

0x00

0x01

0x02

0x03

0x10

0x20

0x12

0x22

• 0x00: Upgrade unencrypted and unsigned firmware in normal mode in internal
Flash.

• 0x10: Upgrade unencrypted and signed firmware in normal mode in internal
Flash.

• 0x20: Upgrade encrypted and signed firmware in normal mode in internal
Flash.

• 0x02: Upgrade unencrypted and unsigned firmware in fast mode in internal
Flash.

• 0x12: Upgrade unencrypted and signed firmware in fast mode in internal
Flash.

• 0x22: Upgrade encrypted and signed firmware in fast mode in internal Flash.

• 0x01: Upgrade resources in normal mode in external Flash.

• 0x03: Upgrade resources in fast mode in external Flash.

7–N Data content 0x00–0xFF Data content to be written to the device

N+1 to N+2 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 66

Appendix: DFU Communication Protocols

8.2.5.2 Response Data from the Device

The response data from the device varies according to the specific upgrade mode.

• The response data frame from the device in normal mode is shown as follows.

Table 8-10 Format of data replied through the Program Start command in normal mode

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x23 Program Start command

4–5 Data length 0x01 Length of data in the “Data” field

6 Response 0x01/0x02
◦ 0x01: Succeeded.

◦ 0x02: Failed.

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, response, and data length

• The response data frame from the device in fast mode is shown as follows.

Table 8-11 Format of data replied through the Program Start command in fast mode

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x23 Program Start command

4–5 Data length 0x04 Length of data in the “Data” field

6 Response 0x01/0x02
◦ 0x01: Succeeded.

◦ 0x02: Failed.

7 Erasing state

0x00

0x01

0x02

0x03

0x04

0x05

0x06

◦ 0x00: The start address of the Flash area to be erased is not 4 KB aligned.

◦ 0x01: Start erasing.

◦ 0x02: in normal erasing operation

◦ 0x03: Erasing completes and data can be delivered.

◦ 0x04: The Flash area to be erased overlaps the current running area.

◦ 0x05: Erasing fails.

◦ 0x06: invalid Flash area to be erased

8–9
Number of

erased pages
0x00–0xFF Number of erased pages

10–11 Checksum 0x00–0xFF
16-bit checksum for frame type, response, data length, erasing state, and

number of erased pages

8.2.6 Program Flash Command

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 67

Appendix: DFU Communication Protocols

The Program Flash command is used for DFU in normal mode only. For DFU in fast mode, the data is transmitted
directly when you write data to the firmware, instead of by data frames.

8.2.6.1 Data Sent from the Host

Table 8-12 Format of data sent through the Program Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code

values of characters ‘G’ and ‘D’

2–3 Frame type 0x24 Program Flash command

4–5 Data length N Max. length: 2 KB

6 Program type

0x00

0x01

0x02

0x10

0x11

0x12

• 0x00: Store data after erasing the internal Flash page
at a specified address.

• 0x01: Store data in internal Flash according to Image
Info sent by the Program Start command.

• 0x02: Call a Flash write API to write data to internal
Flash.

• 0x10: Store data after erasing the external Flash page
at a specified address.

• 0x11: Store data in external Flash according to Image
Info sent by the Program Start command.

• 0x12: Call a Flash write API to write data to external
Flash.

7–10 Start address 0x00–0xFF Valid Flash address of the device

11–12 Data length 0x00–0xFF
The maximum data length is recommended to be 1024

bytes.

13–N

Data content

Data 0x00–0xFF Data sent from the host to the device

N+1 to N+2 Checksum 0x00–0xFF
16-bit checksum for frame type, data length, and data

content

8.2.6.2 Response Data from the Device

Table 8-13 Format of data replied through the Program Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x24 Program Flash command

4–5 Data length 0x01 1 byte (for response)

6 Data content 0x01/0x02 • 0x01: Succeeded.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 68

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

• 0x02: Failed.

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

8.2.7 Writing Firmware in Fast Mode

8.2.7.1 Data Sent from the Host

In fast mode, when each frame of data is written during DFU, the firmware data is sent directly in the maximum
transmission unit (MTU) of Bluetooth, so no data frame format is needed.

8.2.7.2 Response Data from the Device

Table 8-14 Format of data replied for writing firmware in fast mode

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0xFF Fast DFU Writing Data to Flash Complete command

4–5 Data length 0x01 Length of data in the “Data” field

6 Response 0x01/0x02
• 0x01: Succeeded.

• 0x02: Failed.

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and response

8.2.8 Program End Command

The host sends this command to notify the device that the programming data has been sent.

8.2.8.1 Data Sent from the Host

Table 8-15 Format of data sent through the Program End command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x25 Program End command

4–5 Data length 0x05 Length of data in the “Data” field

6
Data

content
Reset type flag

0x00

0x01

0x02

0x12

• 0x00: Store the firmware Image Info in the Img Info area of
SCA, and do not run the firmware after reset.

• 0x01: Store the firmware Image Info in the APP Info area in
Flash, and run the firmware immediately after reset.

• 0x02: Download data to internal Flash without operations to
the APP Info and SCA areas.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 69

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

• 0x12: Download data to external Flash.

7–10
Checksum of

programming file
0x00–0xFF Checksum of transmitted file

11–12 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

8.2.8.2 Response Data from the Device

The response data from the device will be different depending on whether DFU is performed in fast mode. In fast
mode, an additional firmware data checksum will be replied to help the host to verify if the firmware being sent is
correct. The data frame format is shown below:

Table 8-16 Format of data replied through the Program End command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x25 Program End command

4–5 Data length 0x04 Length of data in the “Data” field

6 Response 0x01/0x02
• 0x01: Succeeded.

• 0x02: Failed.

7–10

Firmware data

checksum (DFU

in fast mode)

0x00–0xFF Return the checksum calculated by the firmware.

11–12 Checksum 0x00–0xFF 16-bit checksum for frame type, response, data length, and data content

8.2.9 Config External Flash Command

The host sends this command to configure the external Flash SPI of the device.

8.2.9.1 Data Sent from the Host

Table 8-17 Format of data sent through the Config External Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of

characters ‘G’ and ‘D’

2–3 Frame type 0x2A Config External Flash command

4–5 Data length N Length of data in the “Data” field

6 External Flash type 0x01/0x02
• 0x01: SPI Flash

• 0x02: QSPI Flash

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 70

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

CS IO TYPE 00–04 Select GPIO type.

CS PIN 00–15 Select GPIO pins.7–9

CS IO MUX 00–09 Select Pin Mux.

CLK IO TYPE 00–03 Select GPIO type.

CLK PIN 00–31 Select GPIO pins.10–12

CLK IO MUX 00–09 Select Pin Mux.

MOSI(IO0) IO

TYPE
00–03 Select GPIO type.

MOSI(IO0) PIN 00–31 Select GPIO pins.13–15

MOSI(IO0)IO

MUX
00–09 Select Pin Mux.

MISO(IO1)IO

TYPE
00–03 Select GPIO type.

MISO(IO1) PIN 00–31 Select GPIO pins.16–18

MISO(IO1)IO

MUX
00–09 Select Pin Mux.

IO2IO TYPE 00–03 Select GPIO type; valid for QSPI only.

IO2 PIN 00–31 Select GPIO pins; valid for QSPI only.19–21

IO2 IO MUX 00–09 Select Pin Mux; valid for QSPI only.

IO3IO TYPE 00–03 Select GPIO type; valid for QSPI only.

IO3 PIN 00–31 Select GPIO pins; valid for QSPI only.22–24

IO3 IO MUX 00–09 Select Pin Mux; valid for QSPI only.

25

Data content

QSPI ID 00–02 QSPI module ID, valid for QSPI only

26–27 Checksum 0x00–0xFF
16-bit checksum for frame type, data length, external Flash type, and

data content

8.2.9.2 Response Data from the Device

Table 8-18 Format of data replied through the Config External Flash command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x2A Initialize External Flash command

4–5 Data length 0x01 1 byte (for response)

6 Data content 0x01/0x02 • 0x01: Initialization succeeds.

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 71

Appendix: DFU Communication Protocols

Byte No. Description Valid Value Remarks

• 0x02: Initialization fails.

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and data content

8.2.10 Get Flash Information Command

The host sends this command to get internal/external Flash information from the device, including Flash ID and Flash
size. External Flash size is available through the Serial Flash Discoverable Parameters (SFDP) protocol. For all Flash
chips supporting the SFDP protocol, the host can get the Flash size by sending this command.

8.2.10.1 Data Sent from the Host

Table 8-19 Format of data sent through the Get Flash Information command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code values of characters ‘G’

and ‘D’

2–3 Frame type 0x2B Get external Flash ID.

4–5 Data length 0x01 1 byte

6 Flash type 0x00/0x01
• 0x00: internal Flash

• 0x01: external Flash

7–8 Checksum 0x00–0xFF 16-bit checksum for frame type, data length, and Flash type

8.2.10.2 Response Data from the Device

Table 8-20 Format of data replied through the Get Flash Information command

Byte No. Description Valid Value Remarks

0–1 Frame header 0x4744
Represented by 0x47 and 0x44 which are the ASCII code

values of characters ‘G’ and ‘D’

2–3 Frame type 0x2B Get external Flash ID.

4–5 Data length 0x09 1 byte (for response)

6 Response 0x01/0x02
• 0x01: Data read succeeds.

• 0x02: Data read fails.

Flash ID 0x00–0xFF Flash ID
7–14 Content

Flash size 0x00–0xFF Flash size

14–15 Checksum 0x00–0xFF
16-bit checksum for frame type, data length, response, and

data content

Copyright © 2024 Shenzhen Goodix Technology Co., Ltd. 72

	Preface
	Contents
	1 Introduction
	1.1 DFU Communication Mode
	1.2 DFU Working Mode

	2 DFU Scheme Design
	2.1 Background Dual-bank DFU Mode
	2.1.1 Flash Layout
	2.1.2 Firmware Download Procedure
	2.1.3 App Bootloader Boot Procedure

	2.2 Non-background Single-bank DFU Mode
	2.2.1 Flash Layout
	2.2.2 Firmware Download Procedure
	2.2.3 App Bootloader Boot Procedure

	2.3 Comparison of Upgrade Speeds
	2.4 Firmware Format

	3 Introduction to App Bootloader Project
	4 Upgrade with GRToolbox
	4.1 Supported Platform
	4.2 Preparation
	4.3 Upgrade of Unencrypted and Unsigned Firmware
	4.3.1 Firmware Configuration
	4.3.2 Firmware Programming
	4.3.3 Creating Target Firmware for Upgrade
	4.3.4 To Enter DFU Interface of GRToolbox
	4.3.5 Firmware Upgrade
	4.3.5.1 Background dual-bank DFU mode
	4.3.5.2 Non-background Single-bank DFU Mode

	4.4 Upgrade of Encrypted and Signed Firmware
	4.4.1 eFuse Setting
	4.4.2 Download to eFuse
	4.4.3 Firmware Configuration
	4.4.4 Generating Encrypted and Signed Firmware
	4.4.5 Firmware Upgrade

	4.5 Upgrade of Signed and Unencrypted Firmware
	4.5.1 Firmware Configuration
	4.5.2 Generating Signed and Unencrypted Firmware
	4.5.3 Firmware Upgrade

	4.6 Resource Upgrade
	4.6.1 Internal Flash Resource Upgrade
	4.6.2 External Flash Resource Upgrade

	5 DFU Porting Method
	6 Upgrade Through DFU Master
	6.1 Introduction to DFU Master
	6.2 Cross-platform Porting of DFU Master
	6.3 Instructions on Upgrade Through DFU Master
	6.3.1 Preparation
	6.3.2 Upgrade via UART
	6.3.3 Upgrade via Bluetooth LE

	7 Considerations
	7.1 Deinitializing Peripherals used in App Bootloader Before Jumping from App Bootloader to App Firmware
	7.2 Setting the DFU Task Stack Size of Application Firmware in RTOS Environment According to Specific GR5xx SoCs

	8 Appendix: DFU Communication Protocols
	8.1 Basic Frame
	8.1.1 Frame Structure
	8.1.2 Byte Order

	8.2 Appendix: DFU Command Set
	8.2.1 Get Info Command
	8.2.1.1 Data Sent from the Host
	8.2.1.2 Response Data from the Device

	8.2.2 Operate System Info Command
	8.2.2.1 Data Sent from the Host
	8.2.2.2 Response Data from the Device

	8.2.3 DFU Mode Set Command
	8.2.3.1 Data Sent from the Host
	8.2.3.2 Response Data from the Device

	8.2.4 DFU Firmware Info Get Command
	8.2.4.1 Data Sent from the Host
	8.2.4.2 Response Data from the Device

	8.2.5 Program Start Command
	8.2.5.1 Data Sent from the Host
	8.2.5.2 Response Data from the Device

	8.2.6 Program Flash Command
	8.2.6.1 Data Sent from the Host
	8.2.6.2 Response Data from the Device

	8.2.7 Writing Firmware in Fast Mode
	8.2.7.1 Data Sent from the Host
	8.2.7.2 Response Data from the Device

	8.2.8 Program End Command
	8.2.8.1 Data Sent from the Host
	8.2.8.2 Response Data from the Device

	8.2.9 Config External Flash Command
	8.2.9.1 Data Sent from the Host
	8.2.9.2 Response Data from the Device

	8.2.10 Get Flash Information Command
	8.2.10.1 Data Sent from the Host
	8.2.10.2 Response Data from the Device

