

# **GR5xx Throughput Example Application**

Version: 3.1

Release Date: 2023-11-06

#### Copyright © 2023 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co., Ltd. is prohibited.

#### **Trademarks and Permissions**

**GODIX** and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as "Goodix") makes no representation or guarantee for this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any other means.

#### Shenzhen Goodix Technology Co., Ltd.

Headquarters: Floor 12-13, Phase B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828 Zip Code: 518000

Website: www.goodix.com



### **Preface**

#### **Purpose**

This document introduces how to use and verify a throughput example in the Bluetooth Low Energy (Bluetooth LE) GR5xx Software Development Kit (SDK), to help users quickly get started with secondary development.

#### **Audience**

This document is intended for:

- Device user
- Developer
- Test engineer
- Hobbyist developer
- Technical writer

#### **Release Notes**

This document is the third release of *GR5xx Throughput Example Application*, corresponding to Bluetooth LE GR5xx System-on-Chip (SoC) series.

#### **Revision History**

| Version | Date       | Description                                                              |
|---------|------------|--------------------------------------------------------------------------|
| 1.0     | 2023-01-10 | Initial release                                                          |
| 3.0     | 2023-03-30 | Updated descriptions about GR5xx SoCs.                                   |
| 3.1     | 2023-11-06 | Updated the approaches for obtaining GProgrammer, GRToolbox, and GRUart. |



## **Contents**

| Preface                                          |    |
|--------------------------------------------------|----|
| 1 Introduction                                   |    |
| 2 Profile Overview                               | 2  |
| 2.1 Device Roles                                 | 2  |
| 2.2 Throughput Service                           | 2  |
| 3 Initial Operation                              | 4  |
| 3.1 Preparation                                  | 4  |
| 3.2 Firmware Programming                         | 4  |
| 3.3 Test and Verification                        | 5  |
| 3.3.1 Test Between SK Board A and a Mobile Phone | 5  |
| 3.3.2 Test Between THS Server and THS Client     |    |
| 4 Application Details                            | 14 |
| 4.1 Project Directory of THS Server              | 14 |
| 4.2 Project Directory of THS Client              | 14 |
| 4.3 Running Procedures                           | 15 |
| 5 Setting THS Parameters on GRUart               | 16 |
| 5.1 Scanning Device                              | 16 |
| 5.2 Updating Connection Parameters               | 16 |
| 5.3 Setting MTU                                  | 16 |
| 5.4 Setting PDU                                  | 17 |
| 5.5 Setting PHY                                  | 17 |
| 5.6 Setting Test Mode                            | 17 |
| 5.7 Setting TX Power                             |    |
| 5.8 Starting/Stopping Test                       | 18 |



### 1 Introduction

The GR5xx throughput example in this document demonstrates how link parameters influence the data throughput in Bluetooth Low Energy (Bluetooth LE) connections. These link parameters include Connection Interval, Maximum Transmission Unit (MTU), Data Length, PHY, and TX Power. This example can also verify Bluetooth LE data throughput of GR5xx System-on-Chips (SoCs) in different transfer modes (Notify, Write, and Notify & Write).

This document introduces how to use a throughput example in the GR5xx Software Development Kit (SDK) to verify Bluetooth LE data throughput of GR5xx SoCs.

Before getting started, you can refer to the following documents.

Table 1-1 Reference documents

| Name                             | Description                                                                                                                                             |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| GR5xx Sample Service Application | Introduces how to apply and customize Goodix Sample Service in developing Bluetooth LE                                                                  |
| and Customization                | applications based on GR5xx SDK.                                                                                                                        |
| Developer guide of the specific  | Introduces CREW SDK and how to develop and debug applications based on the SDK                                                                          |
| GR5xx SoC                        | Introduces GR5xx SDK and how to develop and debug applications based on the SDK.                                                                        |
| Bluetooth Core Spec              | Offers official Bluetooth standards and core specification from Bluetooth SIG.                                                                          |
| Division of CATT Canal           | Provides details about Bluetooth profiles and services. Available at <a href="https://www.bluetooth.com/">https://www.bluetooth.com/</a>                |
| Bluetooth GATT Spec              | specifications/gatt/.                                                                                                                                   |
| J-Link/J-Trace User Guide        | Provides J-Link operational instructions. Available at <a href="https://www.segger.com/downloads/jlink/">https://www.segger.com/downloads/jlink/</a>    |
| J-Liliky J-Trace Oser Guide      | UM08001_JLink.pdf.                                                                                                                                      |
| Keil User Guide                  | Offers detailed Keil operational instructions. Available at <a href="https://www.keil.com/support/man/docs/">https://www.keil.com/support/man/docs/</a> |
| keli Osei Guide                  | <u>uv4/</u> .                                                                                                                                           |



#### 2 Profile Overview

#### 2.1 Device Roles

Goodix Throughput Profile defines two device roles:

- Throughput Server: Initiate advertising, wait for a connection request from Throughput Client, receive data from Throughput Client, and send data to Throughput Client using Notify.
- Throughput Client: Send a connection request, establish connections with Throughput Server, send data to Throughput Server using Write without Response, and receive data from Throughput Server.

### 2.2 Throughput Service

Throughput Service interactions between Throughput Server and Throughput Client are shown in Figure 2-1.

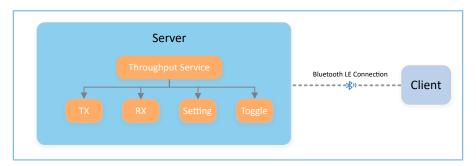



Figure 2-1 Server-client interactions

The Throughput Service (THS) is a type of service customized by Goodix. THS is intended for setting the data transfer rate and parameters in THS tests, and the 128-bit vendor-specific UUID of which is A6ED0301-D344-460A-8075-B9E8EC90D71B.

THS characteristics include:

- TX: Send data to THS Client.
- RX: Receive data from THS Client.
- Setting: Receive parameter settings of THS tests, such as MTU, PHY, TX Power, Connection Interval, and Data Length, and notify setting results to THS Client.
- Toggle: Start/Stop THS tests.

THS characteristics are described in Table 2-1.

Table 2-1 THS characteristics

| Characteristic | UUID                                     | Туре     | Support   | Security | Property |
|----------------|------------------------------------------|----------|-----------|----------|----------|
| тх             | A6ED0302-D344-460A-8075-<br>B9E8EC90D71B | 128 bits | Mandatory | None     | Notify   |



| Characteristic | UUID                                     | Туре     | Support   | Security | Property                       |
|----------------|------------------------------------------|----------|-----------|----------|--------------------------------|
| RX             | A6ED0303-D344-460A-8075-<br>B9E8EC90D71B | 128 bits | Mandatory | None     | Write without Response         |
| Setting        | A6ED0304-D344-460A-8075-<br>B9E8EC90D71B | 128 bits | Mandatory | None     | Notify, Write without Response |
| Toggle         | A6ED0305-D344-460A-8075-<br>B9E8EC90D71B | 128 bits | Mandatory | None     | Write without Response         |

#### Three transfer modes are available for THS tests:

- Unidirectional transfer from THS Server: THS Server sends TX characteristic value to THS Client by means of Notify.
- Unidirectional transfer from THS Client: THS Client sends RX characteristic value to THS Server by means of Write without Response.
- Bidirectional transfer between THS Server and THS Client: Simultaneous data transfers between each other are allowed.

In the three transfer modes mentioned above, THS Server receives Setting characteristic value from THS Client to set parameters for THS tests, and notifies setting results to THS Client.



### 3 Initial Operation

This chapter introduces how to use a throughput example (THS Server and THS Client) in the GR5xx SDK.



SDK\_Folder is the root directory of the GR5xx SDK in use.

### 3.1 Preparation

Perform the following tasks before running the GR5xx throughout example.

#### Hardware preparation

Table 3-1 Hardware preparation

| Name              | Description                                                 |
|-------------------|-------------------------------------------------------------|
| Development board | Two Starter Kit Boards (SK Boards) of the corresponding SoC |
| Connection cable  | USB Type C cable (Micro USB 2.0 cable for GR551x SoCs)      |
| Android phone     | A mobile phone running on Android 5.0 (KitKat) and later    |

#### Software preparation

Table 3-2 Software preparation

| Name                  | Description                                                                                                                                                      |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Windows               | Windows 7/Windows 10                                                                                                                                             |
| J-Link driver         | A J-Link driver. Available at https://www.segger.com/downloads/jlink/.                                                                                           |
| Keil MDK5             | An integrated development environment (IDE). MDK-ARM Version 5.20 or later is required.                                                                          |
| Neil Wibks            | Available at <a href="https://www.keil.com/download/product/">https://www.keil.com/download/product/</a> .                                                       |
| GRToolbox (Android)   | A Bluetooth LE debugging tool. Available at <a href="https://www.goodix.com/en/software_tool/grtoolbox">https://www.goodix.com/en/software_tool/grtoolbox</a> .  |
| GProgrammer (Windows) | A programming tool. Available at <a href="https://www.goodix.com/en/software_tool/gprogrammer_ble">https://www.goodix.com/en/software_tool/gprogrammer_ble</a> . |
| CDI last (Windows)    | A serial port debugging tool. Available at <a href="https://www.goodix.com/en/download?">https://www.goodix.com/en/download?</a>                                 |
| GRUart (Windows)      | objectId=43&objectType=software.                                                                                                                                 |

## 3.2 Firmware Programming

The source code of the GR5xx throughput example is in:

- SDK\_Folder\projects\ble\ble\_peripheral\ble\_app\_throughput (for THS Server)
- SDK\_Folder\projects\ble\ble\_central\ble\_app\_throughput\_c (for THS Client)

You can download *ble\_app\_throughput.bin* and *ble\_app\_throughput\_c.bin* to the SK Board A (serving as THS Server) and SK Board B (serving as THS Client) respectively through GProgrammer.

For details, see GProgrammer User Manual.



#### Note:

- ble\_app\_throughput.bin is in SDK\_Folder\projects\ble\ble\_peripheral\ble\_app\_throughput\build.
- ble\_app\_throughput\_c.bin is in SDK\_Folder\projects\ble\ble\_central\ble\_app\_throughput\_c\build.

#### 3.3 Test and Verification

In this document, two scenarios are involved in THS tests:

- Scenario 1: Perform a THS test between SK Board A and a mobile phone.
- Scenario 2: Perform a THS test between SK Boards A and B.

#### 3.3.1 Test Between SK Board A and a Mobile Phone

This section introduces how to perform GR5xx THS test and verification between THS Server (SK Board A) and THS Client (an Android phone).

Steps for the test between SK Board A and the mobile phone are described below:

- 1. Enable the Bluetooth.
  - Enable the Bluetooth of the mobile phone and power on SK Board A.
- 2. Scan Goodix THS devices.
  - Run GRToolbox on the mobile phone and tap **Application** > **THS**.
  - Start scanning. An SK Board with the advertising name Goodix\_THS is discovered, as shown in Figure 3-1.





Figure 3-1 Discovering Goodix\_THS

#### Note:

Screenshots of GRToolbox in this document are for reference only, to help users better understand the software operation. In the case of interface differences due to version changes, the interface of GRToolbox in practice shall prevail.

3. Connect Goodix\_THS.

Tap and connect **Goodix\_THS** to enter the THS test interface, as shown in Figure 3-2.





Figure 3-2 THS test interface

#### 4. Set test parameters.

Tap in the upper-right corner of the THS test interface, to enter the test parameter setting interface and configure parameters, as shown in Figure 3-3.

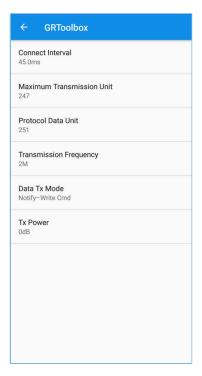



Figure 3-3 Test parameter setting interface



#### Start the THS test.

Tap to start the test. The average value and instant value of Bluetooth LE data throughputs between the mobile phone and the SK Board are displayed in a statistical graph, as shown in Figure 3-4.

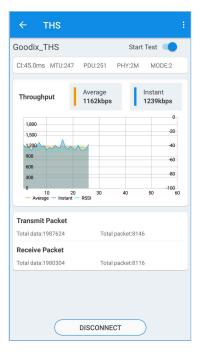



Figure 3-4 Starting the THS test

#### 3.3.2 Test Between THS Server and THS Client

This section introduces GR5xx THS test and verification between THS Server (SK Board A) and THS Client (SK Board B). Steps for GR5xx THS test and verification are described below:

1. Power on SK Board A and SK Board B.

Power on THS Server (SK Board A) to start advertising.

Power on THS Client (SK Board B) to get ready for scanning THS Server (SK Board A). At this time, "Throughput Service Client example started." is printed on GRUart, as shown in Figure 3-5.



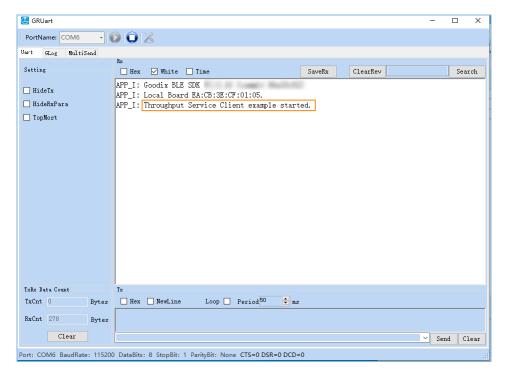



Figure 3-5 GRUart: getting ready for scanning

2. Start scanning and establish connection with SK Board A.

After the SCAN command is sent via GRUart, SK Board B starts scanning (Figure 3-6). After THS Server (SK Board A) is discovered, SK Board B sends a connection request to SK Board A automatically.



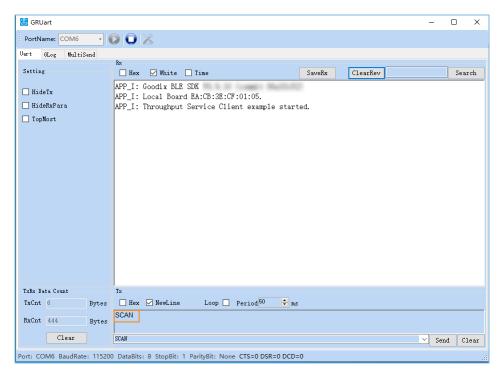



Figure 3-6 GRUart: scanning device

When THS Client (SK Board B) is connected to THS Server (SK Board A), "Throughput Service discovery completely." is printed on GRUart, and setting of all THS parameter commands starts, as shown in Figure 3-7; for command format, refer to "Chapter 5 Setting THS Parameters on GRUart".

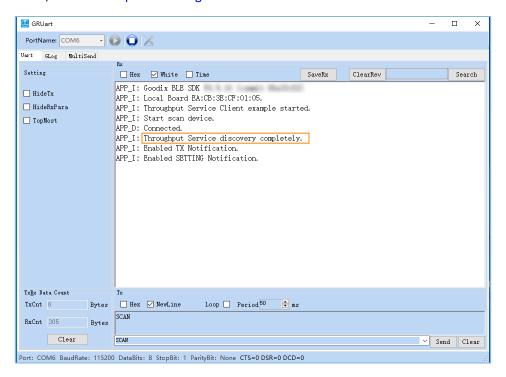



Figure 3-7 Successful connection interface on GRUart



#### Set THS parameters.

Input a corresponding THS parameter setting command (for example, PHY: 0) into GRUart and send the command. The PHY setting interface is shown in Figure 3-8.

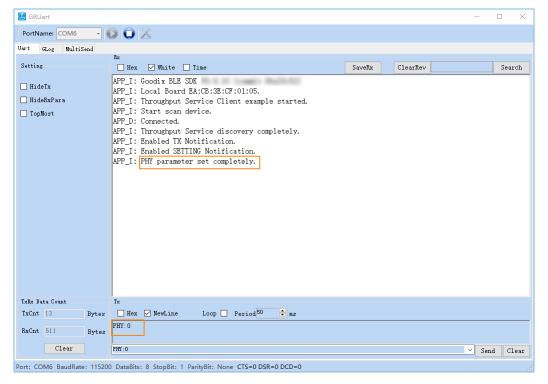



Figure 3-8 PHY setting interface

#### 4. Start the THS test.

After all THS parameters are set, send the <code>TOGGLE\_SET:1</code> command via GRUart to start testing, as shown in Figure 3-9.



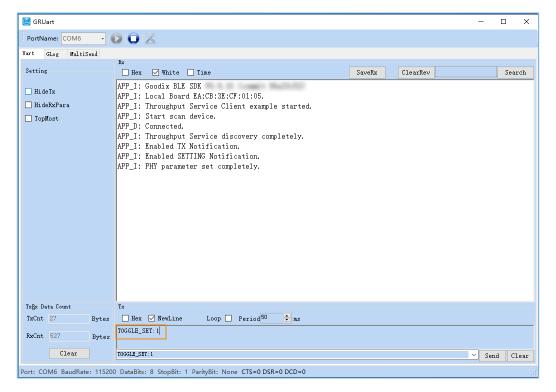



Figure 3-9 Test start interface

The THS test results of SK Board A are displayed on GRUart. An example is shown in Figure 3-10.

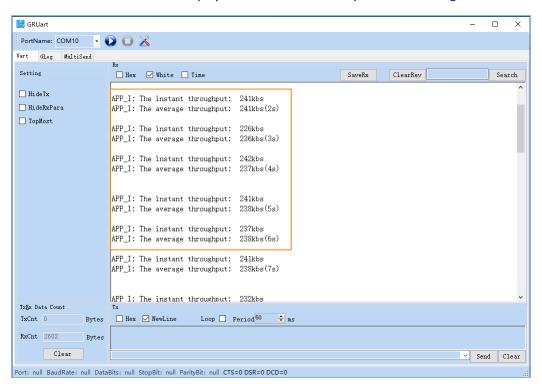



Figure 3-10 THS test results

Parameter descriptions of the THS test results are shown in Table 3-3.



Table 3-3 Parameter description of THS test results

| Parameter          | Description        |
|--------------------|--------------------|
| instant throughput | Instant throughput |
| average throughput | Average throughput |

To update test parameters during the test, send the <code>TOGGLE\_SET: 0</code> command via GRUart to pause the test and then re-send a parameter setting command.



## **4 Application Details**

This chapter introduces the project directory and running procedures of the THS example (including THS Server and THS Client).

### 4.1 Project Directory of THS Server

The source code and project file of the THS Server example are in SDK\_Folder\projects\ble\_be\_periphe ral\ble\_app\_throughput, and project file is in the Keil\_5 folder.

Double-click the project file, *ble\_app\_throughput.uvprojx*, to view the ble\_app\_throughput project directory structure of the THS Server example in Keil. For related files, see Table 4-1.

File Group Description gr\_profiles ths.c Implements Throughput Service. Configures App logs, device address, and power management user\_platform user\_periph\_setup.c mode. main.c Contains the main() function. Implements profile registration and logical processing for THS user\_app user\_app.c Server applications. throughput.c Handles THS events.

Table 4-1 File description of ble\_app\_throughput

## **4.2 Project Directory of THS Client**

The source code and project file of the THS Client example are in SDK\_Folder\projects\ble\_ble\_central\ble\_app\_throughput\_c, and project file is in the Keil\_5 folder.

Double-click the project file, *ble\_app\_throughput\_c.uvprojx*, to view the ble\_app\_throughput\_c project directory structure of the THS Client example in Keil. For related files, see Table 4-2.

| Group         | File                | Description                                                        |
|---------------|---------------------|--------------------------------------------------------------------|
| gr_profiles   | ths_c.c             | Implements Throughput Service Client Profile.                      |
| usor platform | user_periph_setup.c | Configures device serial port, device address, and device buttons. |
| user_platform | user_interrupt.c    | Contains the serial port interrupt handler.                        |
|               | main.c              | Contains the main() function.                                      |
|               | usar ann a          | Implements profile registration and logical processing for THS     |
| user_app      | user_app.c          | Client applications.                                               |
|               | throughput c.c.     | Processes Throughput Service Client events and provides            |
|               | throughput_c.c      | throughput statistics.                                             |

Table 4-2 File description of ble\_app\_throughput\_c



# **4.3 Running Procedures**

Interactions between THS Server and THS Client are shown in Figure 4-1:

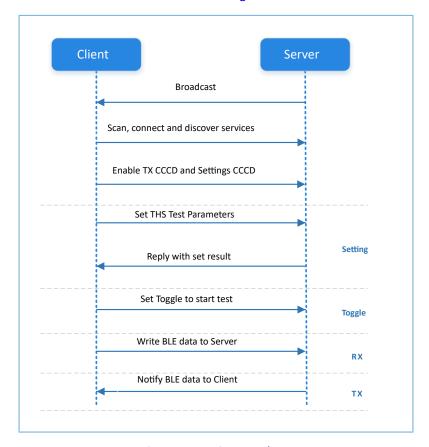



Figure 4-1 Running procedures



# **5 Setting THS Parameters on GRUart**

During the GR5xx THS test, THS Client receives commands input on GRUart to test related parameters. All input commands should end with a newline ( $\r$ ). The specific command formats are defined as follows.

### **5.1 Scanning Device**

Table 5-1 Scanning command

| Command     | SCAN                                    |
|-------------|-----------------------------------------|
| Description | None                                    |
| Note        | None                                    |
| Example     | SCAN                                    |
| Response    | Results from GRUart:                    |
|             | Start scanning device.                  |
|             | Connected.                              |
|             | Throughput Service discovery completes. |
|             | Enabled TX Notification.                |
|             | Enabled SETTING Notification.           |

## **5.2 Updating Connection Parameters**

Table 5-2 Connection parameter update command

| Command     | CI: <conn_interval_min>:<conn_interval_max>:<latency>:<timeout></timeout></latency></conn_interval_max></conn_interval_min> |
|-------------|-----------------------------------------------------------------------------------------------------------------------------|
| Description | <pre><conn_interval_min>: minimum value of connection interval (unit: 1.25 ms)</conn_interval_min></pre>                    |
|             | <pre><conn_interval_max>: maximum value of connection interval (unit: 1.25 ms)</conn_interval_max></pre>                    |
|             | <latency>: connection latency</latency>                                                                                     |
|             | <timeout>: connection timeout (unit: 10 ms)</timeout>                                                                       |
| Note        | If a fixed connection interval is required, set the maximum and the minimum connection intervals to the same                |
|             | value.                                                                                                                      |
|             | For tests on optimal throughput, set the latency value to 0.                                                                |
|             | Timeout > (1 + Latency) x conn_interval x 2                                                                                 |
| Example     | CI:12:12:0:100                                                                                                              |
| Response    | Setting results from GRUart                                                                                                 |

## 5.3 Setting MTU

Table 5-3 MTU setting command

| Command | MTU: <mtu_value></mtu_value> |
|---------|------------------------------|
|---------|------------------------------|



| Description | <mtu_value>: MTU; value range: 23 to 512</mtu_value> |
|-------------|------------------------------------------------------|
| Example     | MTU: 247                                             |
| Response    | Setting results from GRUart                          |

# **5.4 Setting PDU**

Table 5-4 PDU setting command

| Command     | PDU: <payload_octets>:<time></time></payload_octets>         |
|-------------|--------------------------------------------------------------|
| Description | <pre><payload_octets>: payload octets</payload_octets></pre> |
|             | < time >: time for TX                                        |
| Note        | None                                                         |
| Example     | PDU:251:2120                                                 |
| Response    | Setting results from GRUart                                  |

# 5.5 Setting PHY

Table 5-5 PHY setting command

| Command     | PHY: <tx_phy>:<rx_phy>:<phy_opt></phy_opt></rx_phy></tx_phy>                   |
|-------------|--------------------------------------------------------------------------------|
| Description | <tx_phy>: Preferred transmit PHYs</tx_phy>                                     |
|             | • 1: 1M PHY                                                                    |
|             | • 2: 2M PHY                                                                    |
|             | • 4: Coded PHY                                                                 |
|             | <rx_phy>: Preferred receive PHYs</rx_phy>                                      |
|             | • 1: 1M PHY                                                                    |
|             | • 2: 2M PHY                                                                    |
|             | 4: Coded PHY                                                                   |
|             | < phy_opt >: Options for PHY                                                   |
|             | O: Host has no preferred coding when transmitting on the LE Coded PHY.         |
|             | 1: Host prefers that S=2 coding be used when transmitting on the LE Coded PHY. |
|             | 2: Host prefers that S=8 coding be used when transmitting on the LE Coded PHY. |
| Note        | None                                                                           |
| Example     | PHY:1:1:0                                                                      |
| Response    | Setting results from GRUart                                                    |

# **5.6 Setting Test Mode**



#### Table 5-6 Test mode setting command

| Command     | TRANS_MODE: <mode></mode>                         |
|-------------|---------------------------------------------------|
| Description | <mode>: test mode</mode>                          |
|             | 0: Send data from THS Server only (Notify).       |
|             | 1: Send data from THS Client only (Write).        |
|             | 2: Send data from both THS Server and THS Client. |
| Note        | None                                              |
| Example     | TRANS_MODE: 2                                     |
| Response    | Setting results from GRUart                       |

# **5.7 Setting TX Power**

Table 5-7 TX Power setting command

| Command     | TX_PWR: <tx_power_value></tx_power_value>                                                   |
|-------------|---------------------------------------------------------------------------------------------|
| Description | <tx_power_value>: TX power value; options: "-20", "-4", "0", "2", "4", "7"</tx_power_value> |
| Note        | None                                                                                        |
| Example     | TX_PWR:2                                                                                    |
| Response    | Setting results from GRUart                                                                 |

# 5.8 Starting/Stopping Test

Table 5-8 Test start/stop command

| Command     | TOGGLE_SET: <start_or_stop></start_or_stop> |
|-------------|---------------------------------------------|
| Description | < start_or_stop >: Start or stop the test.  |
|             | 0: Stop the test.                           |
|             | 1: Start the test.                          |
| Note        | None                                        |
| Example     | TOGGLE_SET: 1                               |
| Response    | Setting results from GRUart                 |