

TFA9892_SDS

12 V Boosted Audio System with Adaptive Sound Maximizer and Speaker Protection

Version: 2.0

Release Date: 2020-01-21

Shenzhen Goodix Technology Co., Ltd.

Contents

1	General description	. 1				
2	Features and benefits2					
3	Applications	.3				
4	Quick reference data	. 4				
5	Ordering information	.5				
6	Block diagram	.6				
7	inning information	.7				
	7.1 Pinning	. 7				
8	unctional description	11				
9	imiting values	12				
10	Thermal characteristics	13				
11	Characteristics	14				
	11.1 DC characteristics	14				
	11.2 AC characteristics	15				
	11.3 TDM/I ² S timing characteristics	17				
	11.4 I ² C timing characteristics	18				
12	Application information	20				
	12.1 Application diagrams	20				
13	Package outline	23				
14	Soldering of WLCSP packages	24				
	14.1 Introduction to soldering WLCSP packages	24				
	14.2 Board mounting	24				
	14.3 Reflow soldering	24				
	14.3.1 Stand off	25				
	14.3.2 Quality of solder joint	25				
	14.3.3 Rework	25				
	14.3.4 Cleaning	26				
15	Legal and contact information	27				
16	Revision history	28				

1 General description

The TFA9892 is a high efficiency class-D audio amplifier with a sophisticated speaker boost and protection algorithm. It can deliver 13.2 W peak output power into an 8 Ω speaker at a supply voltage of 4.0 V. The internal boost converter raises the supply voltage to 12 V, providing ample headroom for major improvements in sound quality.

A safe working environment is provided for the speaker under all operating conditions. The TFA9892 maximizes acoustic output while ensuring diaphragm displacement and voice coil temperature do not exceed their rated limits. This function is based on a speaker box model that operates in all loudspeaker environments (e.g. free air, closed box or vented box). Furthermore, advanced signal processing ensures the quality of the audio signal is never degraded by unwanted clipping or distortion in the amplifier or speaker. An integrated Multiband Dynamic Range Compressor (MDRC) allows the speaker to operate at the highest possible power rating without suffering physical damage.

Unlike competing solutions, the adaptive sound maximizer algorithm uses feedback to accurately calculate both the temperature and the excursion, allowing the TFA9892 to adapt to changes in the acoustic environment.

Internal intelligent DC-to-DC conversion boosts the supply rail to provide additional headroom and power output. The supply voltage is only raised when necessary. This maximizes the output power of the class-D audio amplifier while limiting quiescent power consumption in combination with a Pulse Frequency Modulation (PFM) scheme.

The device can be configured to drive either a hands-free speaker (4 Ω to 8 Ω) for audio playback, or a receiver speaker (32 Ω) for handset playback, allowing it to be embedded in platforms that support either or both options. The maximum output power, gain, and noise levels are lower in the Handset Call use case than in the Hands-free Call use case.

The TFA9892 also incorporates advanced battery protection. By limiting the supply current when the battery voltage is low, it prevents the audio system from drawing excessive load currents from the battery, which could cause a system undervoltage. The advanced processor minimizes the impact of a falling battery voltage on the audio quality by preventing distortion as the battery discharges.

Because it has a digital input interface, the TFA9892 features low RF susceptibility. The second order closed loop architecture used in a class-D audio amplifier provides excellent audio performance and high supply voltage ripple rejection. The TDM/I²S audio interface provides a wide range of settings for multiple slots and Digital I/O. The settings are communicated via an I²C-bus interface.

The device also provides the speaker with robust protection against ESD damage. In a typical application, no additional components are needed to withstand a 15 kV discharge on the speaker.

The TFA9892 is available in a 49-bump WLCSP (Wafer Level Chip-Size Package) with a 400 μm pitch.

2 Features and benefits

- Output power: 6.6 W into 8 Ω at 4.0 V supply voltage (THD = 1 %)
- Wide range of speakers: 4 Ω to 8 Ω for hands-free mode and 16 Ω , 32 Ω for handset one
- Sophisticated speaker-boost and protection algorithm that maximizes speaker performance while protecting the speaker:
 - Fully embedded software, no additional license fee or porting required
 - Total integrated solution that includes DSP, ClassD amplifier, DC-to-DC converter
- Adaptive excursion control guarantees that the speaker membrane excursion never exceeds its rated limit
- Multiband dynamic range compressor (DRC) allows independent control of up to three frequency bands
- Real-time temperature protection direct measurement ensures that voice coil temperature never exceeds its rated limit
- Environmentally aware automatically adapts speaker parameters to acoustic and thermal changes including compensation for speaker-box leakage
- Four TDM/I²S inputs output (I/O) to support two audio sources or one PDM input and inter-chip communications
- Speaker current and voltage monitoring via TDM for Acoustic Echo Cancellation (AEC) at the host
- Option to route TDM input direct to TDM output to allow a second TDM output slave device to be used in combination with the TFA9892
- Sample frequencies f_s from 16 kHz to 48 kHz supported in TDM/I2S mode; speaker-boost and protection algorithm sample rate up to 48 kHz.
- 3 bit clock/word select ratios supported (32x, 48x, 64x) in TDM/I2S mode
- I²C-bus control interface (400 kHz)
- 12 V DC-to-DC converter using PFM mode
- Wide supply voltage range (fully operational from 2.7 V to 5.5 V)
- Fully short-circuit proof across the load and to the supply lines
- Low RF susceptibility
- Input clock jitter insensitive interface
- Thermally protected
- 15 kV system-level ESD protection without external components
- 'Pop noise' free at all mode transitions

3 Applications

- Mobile phones
- Tablets
- Portable Navigation Devices (PND)
- Notebooks/Netbooks
- MP3 players and portable media players
- Small audio systems

4 Quick reference data

Symbol Parameter Conditions Unit Min Тур Max V_{BAT} 2.7 _ 5.5 V battery supply voltage on pin VBAT V V_{DDD} digital supply voltage on pin VDDD 1.65 1.8 1.95 on pin V_{BAT} and in DC-to-DC converter coil; Operating modes with load; DC-to-2.45 mΑ -_ DC converter in Adaptive Boost mode (no I_{BAT} battery supply current output signal, V_{BAT} = 3.6 V, V_{DDD} = 1.8 V) Power-down mode _ 1 5 μΑ on pin VDDD; Operating mode; no audio stream at the input; DSP enabled; 20 _ _ mΑ SpeakerBoost activated Operating mode; no audio content; DSP 4.5 mΑ _ bypassed IDDD digital supply current on pin VDDD; Power-down mode no 15 μΑ _ _ external CLK or Data provided on pin VDDD; Power-down mode; internal oscillator enabled; no external CLK or Data 50 μΑ -_ provided w THD+N = 1 %; $R_L = 8 \Omega$; $V_{BAT} = 4.0 V$ 6.6 P_{o(AV)} average output power _

Table 4-1: Quick reference data

5 Ordering information

Table 5-1: Ordering information

	Package							
Name C		Description	Version					
TFA9892AUK/N1	WLCSP49	wafer level chip-scale package; 49 bumps; 3.13 × 3.63 × 0.5 mm	SOT1444-8					

6 Block diagram

Figure 6-1: Block diagram

7 Pinning information

7.1 Pinning

Figure 7-1: Bump configuration

	1	2	3	4	5	6	7
A	FS1	DIO1	DIO4	INT	GNDD	OUTB	VDDP
В	BCK1	GNDD	DIO3	RST	GNDP	GNDP	VDDP
С	DIO/SPD MI	GNDD	TEST3	TEST2	GNDD	OUTA	VDDP
D	FS2	GNDD	TEST4	TEST1	GNDD	OUTA	OUTA
Е	BCK2/PDM CLK	SPDMO	TEST5	TEST6	GNDB	INB	VBST
F	SDA	ADS1	ADS2	GNDD	GNDB	INB	VBST
G	SCL	VBAT	VDDD	GNDD	GNDB	INB	VBST

aaa-027680

1. Transparent top view

Figure 7-2: Bump mapping

Table 7-1: Pinning

Symbol	Pin	Туре	Description
FS1	A1	I	digital audio Frame Sync for DIO1
DIO1	A2	I/O	digital audio interface DIO1
DIO4	A3	I/O	digital audio data in / out DIO4
INT	A4	0	interrupt output; open if unused
GNDD	A5	Р	digital ground
OUTB	A6	0	inverting output
VDDP	A7	Р	power supply voltage
BCK1	B1	I	digital audio bit clock DIO1
GNDD	B2	Р	digital ground
DIO3	B3	I	digital audio data in/out DIO3
RST	B4	I	reset input

Symbol	Pin	Туре	Description
GNDP	B5	Р	power ground
GNDP	B6	Р	power ground
VDDP	B7	Р	power supply voltage
DIO2/ SPDMI	C1	I/O	digital audio data in/out DIO2 / SPDM data input
GNDD	C2	Р	digital ground
TEST3	С3	0	test signal input 3; for test purposes only, connect to PCB ground
TEST2	C4	0	test signal input 2; for test purposes only, connect to PCB ground
GNDD	C5	Р	digital ground
OUTA	C6	0	non-inverting output
VDDP	C7	Р	power supply voltage
FS2	D1	I	digital audio word select for DIO2
GNDD	D2	Р	digital ground
TEST4	D3	0	test signal input 4; for test purposes only, connect to PCB ground
TEST1	D4	0	test signal input 1; for test purposes only, connect to PCB ground
GNDD	D5	Р	digital ground
OUTA	D6	-	non-inverting output ^[1]
OUTA	D7	-	non-inverting output ^[1]
BCK2/ PDMCLK	E1	I	digital audio bit clock DIO2 or PDM clock input
SPDMO	E2	0	PDM output; output open if unused
TEST5	E3	0	test signal input 5; for test purposes only, connect to PCB ground
TEST6	E4	0	test signal input 6; for test purposes only, connect to PCB ground
GNDB	E5	Р	boosted ground
INB	E6	Р	DC-to-DC boost converter input
VBST	E7	0	boosted supply voltage output
SDA	F1	I/O	I ² C-bus data input/output
ADS1	F2	I	address select input 1
ADS2	F3	I	address select input 2
GNDD	F4	Р	digital ground

Symbol	Pin	Туре	Description
GNDB	F5	Р	boosted ground
INB	F6	Р	DC-to-DC boost converter input
VBST	F7	0	boosted supply voltage output
SCL	G1	I	I ² C-bus clock input
VBAT	G2	Р	battery supply voltage sense input
VDDD	G3	Р	digital supply voltage
GNDD	G4	Р	digital ground
GNDB	G5	Р	boosted ground
INB	G6	Р	DC-to-DC boost converter input
VBST	G7	0	boosted supply voltage output

[1] Is used to simplify routing to OUTA

8 Functional description

The TFA9892 is a highly efficient mono Bridge Tied Load (BTL) class-D audio amplifier with a sophisticated SpeakerBoost protection algorithm. *Figure 6-1* is a block diagram of the TFA9892.

A SpeakerBoost protection algorithm, running on a CoolFlux Digital Signal Processor (DSP) core, maximizes the acoustical output of the speaker while limiting membrane excursion and voice coil temperature to a safe level. The mechanical protection implemented guarantees that speaker membrane excursion never exceeds its rated limit, to an accuracy of 10 %. Thermal protection guarantees that the voice coil temperature never exceeds its rated limit, to an accuracy of ±10 °C. Furthermore, advanced signal processing ensures the audio quality remains acceptable at all times.

The protection algorithm implements an adaptive loudspeaker model that is used to predict the extent of membrane excursion. The model is continuously updated to ensure that the protection scheme remains effective even when speaker parameter values change or the acoustic enclosure is modified.

Output sound pressure levels are boosted within given mechanical, thermal and quality limits. An optional Bandwidth extension mode extends the low frequency response up to a predefined limit before maximizing the output level. This mode is suitable for listening to high quality music in quiet environments.

The frequency response of the TFA9892 can be modified via ten fully programmable cascaded second-order biquad filters. The first two biquads are processed with 48-bit double precision; biquads 3 to 10 are processed with 24-bit single precision.

At low battery voltage levels, the gain is automatically reduced to limit battery current. The output volume can be controlled by the SpeakerBoost protection algorithm or by the host application (external). In the latter case, the boost features of the SpeakerBoost protection algorithm must be disabled to avoid neutralizing external volume control.

The SpeakerBoost protection algorithm output is converted into two pulse width modulated (PWM) signals which are then injected into the class-D audio amplifier. The 3-level PWM scheme supports filterless speaker drive.

An adaptive DC-to-DC converter boosts the battery supply voltage in line with the output of the SpeakerBoost protection algorithm. It switches to Follower mode ($V_{BST} = V_{BAT}$; no boost) when the audio output voltage is lower than the battery voltage. Next to adaptive DC to DC a PFM mode is selected when the requested output current is low. The adaptive boost and PFM mode ensures a high efficiency ClassHD Amplifier.

It contains four TDM/I2S input/output (DIO) ports. These ports can be selected as an input or an output on demand. i.e. DIO1 and DIO2, can be selected as the audio input stream. DIO3 is provided to support stereo applications, while DIO4 can be used to provide stereo AEC as well. DIO1, DIO3 and DIO4 are clocked by FS1 and BCK1, while DIO2 is clocked by FS2 and BCK2; see *Figure 6-1*).

DIO 3, 4 can be as well configured to transmit the DSP output signal, amplifier output current and voltage information, or amplifier gain information. The gain information can be used to facilitate communication between two devices in stereo applications.

A 'pass-through' option allows one of the DIO1, 2, 3 as input to be connected directly to the DIO4 output. The passthrough option is provided to allow an output slave device (e.g. a CODEC), connected in parallel with the TFA9892, to be routed directly to the audio host via DIO4 output.

11

9 Limiting values

Table 9-1: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
		on pin VBAT		-0.3	+6	V
		on pins VBST, VDDP		-0.3	+12.4	V
V _x	voltage on pin x	on pin INB, OUTA, OUTB	[1]	-0.3	+13.4	v
		on pin VDDD		-0.3	+2.5	V
		on SCL, SDA, DIO1, DIO2, DIO3, DIO4		-0.3	+2.5	V
Tj	junction temperature			-40	+150	°C
T _{stg}	storage temperature			-55	+150	°C
T _{amb}	ambient temperature			-40	+85	°C
	electrostatic discharge voltage	according to Human Body Model (HBM)		-2	+2	kV
V _{ESD}		according to Charge Device Model (CDM)		-500	+500	v

 Using a Goodix demo board with a 1 mm wire/PCB track length on pin INB, AC pulses up to 18 V and -9 V can be observed without causing any damage as these spikes only partly penetrate the device (which is protected by internal clamp circuits).

10 Thermal characteristics

Table 10-1: Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	4-layer application board	35	K/W

11 Characteristics

11.1 DC characteristics

Table 11-1: DC characteristics

All parameters are guaranteed for V_{BAT} = 3.6 V; V_{DDD} = 1.8 V; V_{DDP} = V_{BST} = 12 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 40 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit		
V _{BAT}	battery supply voltage	on pin VBAT		2.7	-	5.5	V		
I _{BAT}	battery supply current	on pin VBAT and in DC-to-DC converter coil; Operating modes with load; DC-to-DC converter in Adaptive Boost mode (no output signal, V _{BAT} = 3.6 V; V _{DDD} = 1.8 V)		-	2.45	-	mA		
		Power-down mode		-	1	5	μA		
V _{DDP}	power supply voltage	on pin VDDP		2.7	-	12.2	V		
V _{DDD}	digital supply voltage	on pin VDDD; Brown out detector (BOD) disabled.	[2]	1.65	1.8	1.95	v		
		on pin VDDD; Operating mode; no audio stream at the input; DSP enabled; SpeakerBoost activated		-	20	-	mA		
I _{DDD}	digital supply current	Operating mode; no audio content; DSP bypassed		-	4.5	-	mA		
		Power-down mode		-	15	-	μΑ		
		Power-down mode; internal oscillator enabled		-	50	-	μA		
Pins DIO1,2	2,3,4, BCK1, FS1, BCK2, FS2, AD	S1, ADS2, SCL, SDA		^					
V _{IH}	HIGH-level input voltage			$0.7V_{DDD}$	-	V _{DDD}	V		
V _{IL}	LOW-level input voltage			-	-	0.3V _{DDD}	V		
C _{in}	input capacitance		[3]	-	-	3	pF		
I _{LI}	input leakage current	1.8 V on input pin		-	-	0.1	μA		
Pins DIO1,2	Pins DIO1,2,3,4, SPDMI, INT, push-pull output stages								
V _{OH}	HIGH-level output voltage	I _{OH} = 4 mA		-	-	V _{DDD} - 0.4	v		

Rev.2.0 (2020-01-21)

GMDiX

Symbol	Parameter	Conditions		Min	Тур	Max	Unit		
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	400	mV		
Pins SDA, o	pen drain outputs, external 10	k Ω resistor to V_{DDD}							
V _{OH}	HIGH-level output voltage	I _{OH} = 4 mA		-	-	V _{DDD} - 0.4	v		
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	400	mV		
Pins OUTA,	Pins OUTA, OUTB								
R _{DSon}	drain-source on-state resistance	Amplifier Active, NMOS + PMOS V _{DDP} = 12 V		-	600	-	mΩ		
Protection									
$T_{act(th_prot)}$	thermal protection activation temperature			130	-	150	°C		
V _{uvp(VBAT)}	undervoltage protection voltage on pin VBAT			2.3	-	2.5	v		
I _{O(ocp)}	overcurrent protection output current			2	-	-	A		
DC-to-DC converter									
V _{BST}	maximum voltage on pin VBST	Maximum boost voltage setting		11.8	12	12.2	v		

[1] L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance (speaker).

[2] If BOD is enabled min VDDD range goes to 1.7 V

[3] This parameter is not tested during production; the value is guaranteed by design and checked during product validation.

11.2 AC characteristics

Table 11-2: AC characteristics

All parameters are guaranteed for V_{BAT} = 3.6 V; V_{DDD} = 1.8 V; V_{DDP} = V_{BST} = 12 V, adaptive boost mode; L_{BST} = 1 μ H^[1]; R_L = 8 $\Omega^{[1]}$; L_L = 40 μ H^[1]; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit			
Amplifier output power										
		Hands-free speaker THD+N = 1 %; V _{BAT} = 4 V								
P _{o(AV)}	average output power	R _L = 8 Ω; V _{BST} = 12 V			6.6		w			
		$R_L = 6 \Omega; V_{BST} = 10 V$			6.6		w			

TFA9892_SDS	Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.	DS-VAA-00009-EN
Product Datasheet	Rev.2.0 (2020-01-21)	1

Symbol	Parameter	rameter Conditions		Min	Тур	Max	Unit
		$R_L = 4 Ω; V_{BST} = 8.5 V$			6.7		w
		Hands-free speaker THD+N = 10 %; V _{BAT} = 4 V					
		R _L = 8 Ω; V _{BST} = 12 V			8		w
		Handset speaker THD+N = 1 %; V_{BST} = 12 V; V_{BAT} = 4 V			2		w
Amplifier o	output; pins OUTA and OUTB		-				
 V _{O(offset)}	output offset voltage	absolute value		-	-	0.5	mV
Amplifier p	performance	·					,
η _{po}	output power efficiency	P _{o(RMS)} = 2.5 W; including DC-to-DC converter; 100 Hz audio signal	[2]	-	80	-	%
THD+N	total harmonic distortion-plus- noise	$P_{o(RMS)}$ = 100 mW; R _L = 8 Ω; L _L = 44 µH	[1]	-	-	0.1	%
V _{n(o)}	output noise voltage	A-weighted; no output signal; CoolFlux DSP bypassed; Handset mode; BCK clock jitter < 1 ns (PLL locked on BCK)		-	16	-	μV
DR	dynamic range	V _O = 10 V (peak); A-weighted		-	115	-	dB
S/N	signal-to-noise ratio	V _O = 10 V (peak); A-weighted		-	100	-	dB
PSRR	power supply rejection ratio	V _{ripple} = 200 mV (RMS); f _{ripple} = 217 Hz		-	75	-	dB
f _{sw}	switching frequency	directly coupled to the TDM FS input frequency		256	-	384	kHz
G _(I2S-VO)	I ² S to V _O gain	Coolflux DSP bypassed, measured at input level -12 dBFS; TDMSPKG = 0 dB		-	21	-	dB
V _{POP}	pop noise voltage	At mode transition and gain change				2	mV
RL	load resistance			4	8	32	Ω
CL	load capacitance			-	-	200	рF
Amplifier p	oower-up, power-down and propa	gation delays					
	turn-on delay time	PLL locked on BCK $f_s = 16$ to 48 kHz		-	-	2	ms
^t d(on)	turn-on delay time	PLL locked on FS $f_s = 48 \text{ kHz}$		-	-	6	ms

Rev.2.0 (2020-01-21)

G@DiX

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{d(off)}	turn-off delay time			-	-	10	μs
t _{d(mute_off)}	mute off delay time			-	1	-	ms
t _{d(soft_mute)}	soft mute delay time	Coolflux DSP enabled	[3]	-	120	-	ms
		CoolFlux DSP bypassed f _s = 48 kHz		-	-	600	μs
t _{PD}	propagation delay	SpeakerBoost protection mode, $t_{LookAhead}$ = 10 ms, f _s = 48 kHz		-	-	12	ms
Current-se	nsing performance	·					,
S/N	signal-to-noise ratio	I _O = 1.2 A (peak); A-weighted		-	75	-	dB
∆I _{sense}	current sense mismatch	I _O = 0.5 A (peak)		-3	-	+3	%
В	bandwidth		[2]	-	8	-	kHz
L	load inductance	$R_L \le 32 \Omega$		30	-	-	μН
CL	load capacitance	to ground	[4]	-	200	-	рF

[1] L_{BST} = boost converter inductor; R_L = load resistance; L_L = load inductance (speaker).

[2] This parameter is not tested during production; the value is guaranteed by design and checked during product validation.

[3] The pilot tone is removed at the zero crossing after a soft mute, which takes on average 10 ms (20 ms max.) at a sample rate of 48 kHz and 15 ms (30 ms max.) at a sample

rate of 16 kHz. [4] If a higher value is used, LPM should be disabled.

11.3 TDM/I²S timing characteristics

Table 11-3: TDM I²S bus interface characteristics; see *Figure 11-1*

All parameters are guaranteed for V_{BAT} = 3.6 V; V_{DDD} = 1.8 V; V_{DDP} = V_{BST} = 12 V, adaptive boost mode; L_{BST} = 1 μ H^[1]; R_L = 8 $\Omega^{[1]}$; L_L = 40 μ H^[1]; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _s	sampling frequency	on pin FS	[2]	16	-	48	kHz
f _{clk}	clock frequency	on pin BCK	[2]	32f _s	-	512f _s	Hz
t _{su}	set-up time	FS edge to BCK HIGH	[3]	10	-	-	ns
		DATA edge to BCK HIGH		10	-	-	ns
t _h	hold time	BCK HIGH to FS edge		10	-	-	ns
		BCK HIGH to DATA edge		10	-	-	ns
tj	external clock jitter	PLL locked on BCK	[4]	-	-	2	ns

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		PLL locked on FS	[5]	-	-	20	ns

[1] L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance.

[2] The I²S bit clock input (BCK) is used as a clock input for the DSP, as well as for the amplifier and the DC-to-DC converter. Note that both the BCK and FS signals need to be present for the clock to operate correctly.

[3] This parameter is not tested during production; the value is guaranteed by design and checked during product validation.

[4] When the PLL is locked on BCK, amplifier output noise can deteriorate when clock jitter > 1 ns.

[5] The system is less sensitive to jitter when the PLL is locked on FS.

Figure 11-1: TDM/I²S timing

11.4 I²C timing characteristics

Table 11-4: I²C-bus interface characteristics; see *Figure 11-2*

All parameters are guaranteed for V_{BAT} = 3.6 V; V_{DDD} = 1.8 V; V_{DDP} = V_{BST} = 12 V, adaptive boost mode; L_{BST} = 1 $\mu H^{[1]}$; R_L = 8 $\Omega^{[1]}$; L_L = 40 $\mu H^{[1]}$; f_i = 1 kHz; f_s = 48 kHz; T_{amb} = 25 °C; default settings, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency			-	-	400	kHz
t _{LOW}	LOW period of the SCL clock			1.3	-	-	μs
t _{HIGH}	HIGH period of the SCL clock			0.6	-	-	μs
t _r	rise time	SDA and SCL signals	[2]	20 + 0.1 C _b	-	-	ns
t _f	fall time	SDA and SCL signals	[2]	20 + 0.1 C _b	-	-	ns
t _{hd;sta}	hold time (repeated) START condition		[3]	0.6	-	-	μs
t _{su;sta}	set-up time for a repeated START condition			0.6	-	-	μs

GODIX

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{SU;STO}	set-up time for STOP condition			0.6	-	-	μs
t _{BUF}	bus free time between a STOP and START condition			1.3	-	-	μs
t _{su;dat}	data set-up time			100	-	-	ns
t _{HD;DAT}	data hold time			0	-	-	μs
t _{SP}	pulse width of spikes that must be suppressed by the input filter		[4]	0	-	50	ns
C _b	capacitive load for each bus line			-	-	400	pF

[1] L_{BST} = boost converter inductance; R_L = load resistance; L_L = load inductance.

[2] C_b is the total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.

[3] After this period, the first clock pulse is generated.[4] To be suppressed by the input filter.

19

12 Application information

12.1 Application diagrams

Figure 12-1: Typical mono application

Application information

Figure 12-2: Typical stereo application

GODiX

Figure 12-3: Stereo application using single coil

13 Package outline

Figure 13-1: Package outline TFA9892AUK/N1 (WLCSP49)

14 Soldering of WLCSP packages

14.1 Introduction to soldering WLCSP packages

This text provides a very brief insight into a complex technology. More information about handling, packing, shipping and soldering of moisture/reflow sensitive surface-mount devices can be found in IPC/JEDEC J-STD-033 and IPC/JEDEC J-STD-020.

Wave soldering is not suitable for this package.

All Goodix WLCSP packages are lead-free.

14.2 Board mounting

Board mounting of a WLCSP requires several steps:

- 1. Solder paste printing on the PCB
- 2. Component placement with a pick and place machine
- **3.** The reflow soldering itself

14.3 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see *Figure 14-1*) than a SnPb process, thus reducing the process window
- Solder paste printing issues, such as smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature), and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic) while being low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with *Table 14-1*.

	Package reflow temperature (°C)						
Package thickness (mm)	Volume (mm ³)						
	< 350	350 to 2 000	> 2 000				
< 1.6	260	260	260				
1.6 to 2.5	260	250	245				
> 2.5	250	245	245				

Table 14-1: Lead-free process (from J-STD-020D)

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

24

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 14-1.

Figure 14-1: Temperature profiles for large and small components

For further information on temperature profiles, refer to IPC/JEDEC J-STD-033 and IPC/JEDEC J-STD-020.

14.3.1 Stand off

The stand off between the substrate and the chip is determined by:

- The amount of printed solder on the substrate
- The size of the solder land on the substrate
- The bump height on the chip

The higher the stand off, the better the stresses are released due to TEC (Thermal Expansion Coefficient) differences between substrate and chip.

14.3.2 Quality of solder joint

A flip-chip joint is considered to be a good joint when the entire solder land has been wetted by the solder from the bump. The surface of the joint should be smooth and the shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps after reflow can occur during the reflow process in bumps with high ratio of bump diameter to bump height, i.e. low bumps with large diameter. No failures have been found to be related to these voids. Solder joint inspection after reflow can be done with X-ray to monitor defects such as bridging, open circuits and voids.

14.3.3 Rework

In general, rework is not recommended. By rework we mean the process of removing the chip from the substrate and replacing it with a new chip. If a chip is removed from the substrate, most solder balls of the chip will be damaged. In that case it is recommended not to re-use the chip again.

Device removal can be done when the substrate is heated until it is certain that all solder joints are molten. The chip can then be carefully removed from the substrate without damaging the tracks and solder lands on the substrate. Removing the device must be done using plastic tweezers, because metal tweezers can damage the silicon. The surface of the substrate should be carefully cleaned and all solder and flux residues and/or underfill removed. When a new chip is placed on the substrate, use the flux process instead of solder on the solder lands. Apply flux on the bumps at the chip side as well as on the solder pads on the substrate. Place and align the new chip while viewing with a microscope. To reflow the solder, use the solder profile shown in IPC/JEDEC J-STD-033 and IPC/JEDEC J-STD-020.

14.3.4 Cleaning

Cleaning can be done after reflow soldering.

15 Legal and contact information

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co., Ltd is prohibited.

Trademarks and Permissions

GODIX and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as "Goodix") makes no representation or guarantee for this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any other means.

Shenzhen Goodix Technology Co., Ltd.

Headquarters: Floor 13, Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China TEL: +86-755-33338828 FAX: +86-755-33338830 Website: www.goodix.com

16 Revision history

Document ID	Release date	Data sheet status Change notice		Supersedes
TFA9892_SDS v 2.0	20200121	Product short data sheet	-	TFA9892_SDS v.1
Modifications:	Updated docu	ument format based on Good	ix template	
TFA9892_SDS v.1	<tbd></tbd>	Product short data sheet	-	-

Table 16-1: Revision history