
GR551x Developer Guide

Version: 1.6

Release Date: 2020-06-30

Shenzhen Goodix Technology Co., Ltd.



Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338830

Website: www.goodix.com

http://www.goodix.com


Preface

Preface
Preface

Purpose

This document introduces the software development kit (SDK) of the Goodix GR551x Bluetooth Low Energy (Bluetooth
LE) System on Chip (SoC) and Keil for program development and debugging, to help you quickly get started with
secondary development of Bluetooth LE applications.

  

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Technical writer

  

Release Notes

This document is the fourth release of GR551x Developer Guide, corresponding to GR551x SoC series.

  

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16
Updated the descriptions in “Section 2.5.3 RAM Power Management” and “Section 4.6.4

Output Debug Logs”.

1.5 2020-05-30

Updated the GR551x series models in “Chapter 1 Introduction” and the descriptions in

“Section 2.3 Memory Mapping”, “Section 2.6 GR551x SDK Directory Structure”, and “Chapter 4

Development and Debugging with GR551x SDK”.

1.6 2020-06-30
Optimized the SCA layout in “Section 2.4.1 SCA”, and updated “Section 2.5.3 RAM Power

Management” and “Section 4.6.4 Output Debug Logs”.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  I



Contents

Contents

Preface.................................................................................................................................................................... I

1 Introduction........................................................................................................................................................ 1

1.1 GR551x SDK......................................................................................................................................................... 1
1.2 BLE Stack..............................................................................................................................................................1

2 GR551x Bluetooth LE Software Platform.............................................................................................................3

2.1 Hardware Architecture........................................................................................................................................ 3
2.2 Software Architecture..........................................................................................................................................4
2.3 Memory Mapping................................................................................................................................................5
2.4 Flash Memory Mapping...................................................................................................................................... 6

2.4.1 SCA.............................................................................................................................................................. 7
2.4.2 NVDS........................................................................................................................................................... 8

2.5 RAM Mapping......................................................................................................................................................9
2.5.1 RAM Layout in XIP Mode......................................................................................................................... 11
2.5.2 RAM Layout in Mirror Mode.................................................................................................................... 11
2.5.3 RAM Power Management........................................................................................................................ 12

2.6 GR551x SDK Directory Structure....................................................................................................................... 13

3 Bootloader........................................................................................................................................................ 16

4 Development and Debugging with GR551x SDK................................................................................................ 18

4.1 Install Keil.......................................................................................................................................................... 18
4.2 Install GR551x SDK............................................................................................................................................ 19
4.3 Build a Bluetooth LE Application.......................................................................................................................19

4.3.1 Prepare ble_app_example........................................................................................................................ 19
4.3.2 Configure a Project................................................................................................................................... 23

4.3.2.1 Configure custom_config.h.............................................................................................................. 23
4.3.2.2 Configure Memory Layout............................................................................................................... 26
4.3.2.3 Configure After Build....................................................................................................................... 28

4.3.3 Add User Code..........................................................................................................................................29
4.3.3.1 Modify the main() Function.............................................................................................................29
4.3.3.2 Implement Bluetooth LE Business Logics.........................................................................................30
4.3.3.3 Schedule BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications............................................................. 31

4.4 Generate .hex Files............................................................................................................................................33
4.5 Download .hex Files to Flash............................................................................................................................ 34
4.6 Debugging..........................................................................................................................................................38

4.6.1 Configure the Debugger........................................................................................................................... 38
4.6.2 Start Debugging........................................................................................................................................ 39
4.6.3 Debug in Mirror Mode............................................................................................................................. 40
4.6.4 Output Debug Logs...................................................................................................................................41

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  II



Contents

4.6.5 Debug with GRToolbox............................................................................................................................. 44

5 Glossary and Abbreviations...............................................................................................................................45

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  III



Introduction

1 Introduction
The Goodix GR551x SoC is a single-mode low-power SoC that supports Bluetooth 5.1. It can be configured as a
Broadcaster, an Observer, a Central, or a Peripheral, and supports the combination of all the above roles, making it an
ideal choice for Internet of Things (IoT) and smart wearable devices.

Based on ARM® Cortex®-M4F CPU core, the GR551x SoC integrates the Bluetooth 5.1 Protocol Stack, a 2.4 GHz RF
transceiver, on-chip programmable flash memory, RAM, and multiple peripherals.

GR551x SoCs are available in multiple packages (see Table 1-1) that meet your diverse project demands.

Table 1-1 Packages of GR551x SoCs

GR551x Series GR5515IGND GR5515RGBD GR5515GGBD GR5513BEND

CPU Cortex®-M4F Cortex®-M4F Cortex®-M4F Cortex®-M4F

RAM 256 KB 256 KB 256 KB 128 KB

Flash 1 MB 1 MB 1 MB 512 KB

Package QFN56 BGA68 BGA55 QFN40

1.1 GR551x SDK

The GR551x SDK provides comprehensive software development support for GR551x SoCs. The GR551x SDK contains
BLE Protocol Stack (BLE Stack) APIs, System APIs, peripheral drivers, a tool for generating and downloading .hex files,
project example code, and related user documents.

The GR551x SDK version mentioned in this document is applicable to all GR551x SoCs.

1.2 BLE Stack

The architecture of BLE Stack is shown in Figure 1-1.

BLE Protocol Stack

Host

Controller

Host Controller Interface (HCI)

Physical Layer (PHY)

Link Layer (LL)

Logical Link Control and Adapon Protocol (L2CAP)

Aribute Protocol (ATT)

Generic Aribute Profile (GATT) Generic Access Profile (GAP)

Security Manager (SM)

Figure 1-1 BLE Stack architecture

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  1



Introduction

The BLE Stack consists of the Controller, the Host-Controller Interface (HCI), and the Host.

Controller

• Physical Layer (PHY) supports 1-Mbps and 2-Mbps adaptive frequency hopping and Gaussian Frequency Shift
Keying (GFSK).

• Link Layer (LL) controls the RF state of devices. Devices are in one of the following five modes, and can switch
between the modes on demand: Standby, Advertising, Scanning, Initiating, and Connection.

HCI

• HCI enables communications between Host and Controller, supported by software interfaces or standard
hardware interfaces, for example, UART, Secure Digital (SD), or USB. HCI commands and events are transferred
between Host and Controller through HCI.

Host

• Logical Link Control and Adaption Protocol (L2CAP) provides channel multiplexing and data segmentation and
reassembly services for upper layers. It also supports logic end-to-end data communications.

• Security Manager (SM) defines pairing and key distribution methods, providing upper-layer protocol stacks and
applications with end-to-end secure connection and data exchange functions.

• Generic Access Profile (GAP) provides upper-layer applications and profiles with interfaces to communicate and
interact with protocol stacks, which fulfills functions such as advertising, scanning, connection initiation, service
discovery, connection parameter update, secure process initiation, and response.

• Attribute Protocol (ATT) defines service data interaction protocols between a server and a device.

• Generic Attribute Profile (GATT) is based on the top of ATT. It defines a series of communications procedures for
upper-layer applications, profiles, and services to exchange service data between GATT Client and GATT Server.

For more information about Bluetooth LE technologies and protocols, visit the Bluetooth SIG official website:
www.bluetooth.com.

Specifications of GAP, SM, L2CAP, and GATT are provided in Bluetooth Core Spec v5.1. Specifications of other profiles/
services at the Bluetooth LE application layer are available on the GATT Specs page. Assigned numbers, IDs, and code
which may be used by Bluetooth LE applications are listed on the Assigned Numbers page.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  2

www.bluetooth.com
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/assigned-numbers


GR551x Bluetooth LE Software Platform

2 GR551x Bluetooth LE Software Platform
The GR551x SDK is designed for GR551x SoCs, to help users develop Bluetooth LE applications. It integrates Bluetooth
5.1 APIs, System APIs, and peripheral driver APIs, with various example projects and instruction documents for
Bluetooth and peripheral applications. Application developers are able to quickly develop and iterate products based
on example projects in the GR551x SDK.

2.1 Hardware Architecture

The GR551x hardware architecture is shown as follows. This section introduces the modules in a GR551x SoC. For
more information, see GR551x Datasheet.

PMU Subsystem

Bluetooth Subsystem

RF Transceiver Communicaon Core

XO

PLL

Mixer

CLK
Gen.

Dig.Front End Bluetooth LE
Modem

Bluetooth LE
MAC Packet Buffer

DC/DC

LP LDO

Sleep Osc.

RTC

Power 
Sequencer

MCU Subsystem

SRAM

ROM

Security 
Cores

Memory/State 
Retenon

Wake up

LP Comp.

Always-On 
Domain

Flash

Cache

Cache Ctrl. Flash & XIP 
Ctrl.

ARM®Cortex®-
M4F

BB ADCLNA

PA

System
WDT.

Dual.
Timer

TimerQSPI

I2S

ADC

GPIO

UART

PWM

SPI

I2C

ISO781
6

Figure 2-1 GR551x hardware architecture

• ARM® Cortex®-M4F: GR551x CPU. BLE Stack and application code run on the CPU.

• RAM: random access memory that provides memory space for program execution

• ROM: read-only memory, solidifying Bootloader and the software part of BLE Stack

• Security Cores: the secure computing engine unit, mainly including TRNG, AES, SHA, and PKC modules, which
allows to check encrypted user application firmware. The encrypted firmware is checked through the secure boot
process in ROM (In Bluetooth Core Spec, the secure computing unit is an independent module in Communication
Core, and is irrelevant to Security Cores).

• Peripherals: GPIO, DMA, I2C, SPI, UART, PWM, Timer, and other hardware

• RF Transceiver: 2.4 GHz RF signal transceiver

• Communication Core: PHY of Bluetooth 5.1 Protocol Stack Controller. It is also the interface between the
software protocol stack and 2.4 GHz RF hardware.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  3



GR551x Bluetooth LE Software Platform

• Power Management Unit (PMU): It supplies power for system modules, and sets reasonable parameters for
modules, including DC/DC, IO-LDO, Dig-LDO, and RF Subsystem, based on configuration parameters and current
running state.

• Flash: flash memory unit packaged on the SoC. It stores user code and data, and supports the Execute in Place
(XIP) Mode for user code.

2.2 Software Architecture

The software architecture of the GR551x SDK is shown in Figure 2-2.

Figure 2-2 GR551x software architecture

• Bootloader

It is a boot program used for GR551x software and hardware environment initialization, and to check and start
applications.

• BLE Stack

It is the implementation core of BLE protocol stacks. It consists of Controller, HCI, and Host protocols (including
ATT, L2CAP, GAP, SM, and GATT), and supports roles of Broadcaster, Observer, Peripheral, and Central.

• Bluetooth LE SDK

It refers to software development kit that provides easy-to-use SDK Bluetooth LE APIs and SDK System APIs.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  4



GR551x Bluetooth LE Software Platform

◦ SDK Bluetooth LE APIs: include L2CAP, GAP, SM, and GATT APIs.

◦ SDK System APIs: provide API definitions for Non-volatile Data Storage (NVDS), Device Firmware Update
(DFU), system power management, and generic system-level access interfaces.

• Application

The SDK provides abundant Bluetooth and peripheral example projects. Each project contains compiled binary
files; users can download these files to GR551x SoCs for operation and test. Android applications in the SDK also
provide corresponding functions as most Bluetooth applications do, to help users with tests.

• Drivers

API definitions and descriptions on peripheral drivers. For more information about drivers, see GR551x HAL and
LL Drivers User Manual.

2.3 Memory Mapping

The memory mapping of a GR551x SoC is shown in Figure 2-3.

Figure 2-3 GR551x memory mapping

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  5



GR551x Bluetooth LE Software Platform

 Note:

• GR5515 SoCs:

RAM: 0x3000_0000 to 0x3003_FFFF or 0x0080_0000 to 0x0083_FFFF, 256 KB in total

Flash: 0x0100_0000 to 0x010F_FFFF or 0x0300_0000 to 0x030F_FFFF, 1 MB in total

• GR5513 SoCs:

RAM: 0x3000_0000 to 0x3001_FFFF or 0x0080_0000 to 0x0081_FFFF, 128 KB in total

Flash: 0x0100_0000 to 0x0107_FFFF or 0x0300_0000 to 0x0307_FFFF, 512 KB in total

2.4 Flash Memory Mapping

GR551x packages an on-chip erasable flash memory, which supports XQSPI bus interface. This flash memory physically
consists of several 4 KB flash sectors; it can be logically divided into storage areas for different purposes based on
application scenarios.

The flash memory layout of a typical GR5515 application scenario is shown in Figure 2-4.

End of Flash

NVDS_START_ADDR

0x0100_2000

0x0100_0000

User App

System Configuraon Area (SCA)

Unused Space

Non-volale Data Storage (NVDS)

Figure 2-4 Flash memory layout

• System Configuration Area (SCA): an area to store system boot parameter configurations

• User App: storage area for application firmware

• Unused Space: a free area for developers. For example, developers can store new application firmware in the
Unused Space temporarily during DFU.

• NVDS: Non-volatile Data Storage area

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  6



GR551x Bluetooth LE Software Platform

 Note:

By default, NVDS occupies the last several sectors of flash memory. You can reasonably configure the start address of
NVDS and the number of occupied sectors according to flash memory layout of products. For more information about
the configuration, see “Section 4.3.2.1 Configure custom_config.h”.

Important: The start address of NVDS shall be aligned with that of the flash sectors.

2.4.1 SCA

SCA is in the first two sectors (8 KB in total; 0x0100_0000 to 0x0100_2000) of flash memory. It stores flags and other
system configuration parameters used during system boot. The SDK toolchain generates an SCA image file based on
the user configuration file custom_config.h (path: SDK_Folder\Src\config), and programs the image info to
SCA. See “Section 4.4 Generate .hex Files”. Figure 2-5 shows the SCA layout.

0x0100_0000

0x0100_1000

0x0100_2000

Boot_Info sector

3556B

SPI Access Mode(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

Run Addr(4B)

Boot Config(4B)

Boot Config(4B)

Run Addr(4B)

Load Addr(4B)

CheckSum(4B)

APP Size(4B)

SPI Access Mode(4B)

Reserved(8B)

Boot_Info
(32B)

Reserved
(32B)

Img_Info_1
(40B)

DFU Config Info 
(44B)

Reserved

Enc:Hmac(32B)    
UnEnc:Free

...

Boot Info(24B)

Paern(2B)

Version(2B)

Comments(12B)

Boot_Info
(0x1000)

Boot_Info
Backup

(0x1000)

400B

ADV Name Info(22B)

DFU Disable Cmd Info(4B)

NVDS Init Info(8B)

UART Info(12B)

Img_Info_10
(40B)

Figure 2-5 SCA layout

• The Boot_Info and the Boot_Info Backup store the same information, and the latter is the backup of the
Boot_Info.

◦ In non-security mode, the Bootloader obtains boot information from Boot_Info by default.

◦ In security mode, the Bootloader checks Boot_Info first; if the check fails, the Bootloader checks Boot_Info
Backup and obtains boot information from it.

• The firmware boot information is stored in the Boot_Info (32 B) area. The Bootloader checks and jumps to the
entry address of the firmware based on the boot information.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  7



GR551x Bluetooth LE Software Platform

◦ The Boot Config area stores the system boot configuration information.

◦ The SPI Access Mode area stores the SPI access mode configuration which is the fixed configuration of the
system and cannot be modified.

◦ The Run Addr area stores the firmware run address, corresponding to APP_CODE_RUN_ADDR in the
custom_config.h.

◦ The Load Addr area stores the firmware storage address, corresponding to APP_CODE_LOAD_ADDR in the
custom_config.h.

◦ The CheckSum area stores the firmware checksum which is computed automatically by the SDK toolchain
after firmware is generated.

◦ The APP Size area stores the firmware size which is computed automatically by the SDK toolchain after
firmware is generated.

• Up to 10 pieces of firmware information (image info) can be stored in Img_Info areas. Firmware information is
stored in Img_Info areas when you use GProgrammer to download firmware or update firmware in DFU Mode.

◦ The Comments area stores the descriptive information about firmware and supports up to 12 characters.
The SDK toolchain uses the firmware name as Comments after firmware is generated.

◦ The Boot_Info (24 B) area stores the firmware boot information which is the same as the low 24-byte
information in the Boot_Info (32 B) area mentioned above.

◦ The Version area stores the firmware version, corresponding to VERSION in the custom_config.h.

◦ The Pattern area stores a fixed value: 0x4744.

• The DFU Config Info area stores configurations of DFU module in ROM. You can call corresponding APIs to change
the data stored in this area to configure DFU module.

◦ The UART Info area stores UART configurations of DFU module, including status bit, baud rate, and GPIO
configurations.

◦ The ADV Name Info area stores advertising configurations of DFU module, including status bit, advertising
name, and advertising length.

◦ The NVDS Init Info area stores initialization configurations of NVDS system in DFU module, including status
bit, NVDS area size, and start address.

◦ The DFU Disable Cmd Info area stores DFU disable command configurations of DFU module, including
status bit and Disable DFU Cmd (2 B, set as Bitmask). You can set the Disable DFU Cmd value to disable a
DFU command.

• The HMAC check value is stored in the HMAC area. This area is valid only in security mode. For more information
about the security mode, see GR551x Firmware Encryption Application Note.

2.4.2 NVDS

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  8



GR551x Bluetooth LE Software Platform

NVDS is a lightweight logical data storage system based on flash Hardware Abstract Layer (flash HAL). It has the
following characteristics:

• Each storage item (TAG) has a unique TAG ID for identification. User applications can read and change data
according to TAG IDs, regardless of physical storage addresses.

• It is optimized based on medium characteristics of flash memory and supports data check, word alignment,
defragmentation, and erase balance.

• It is an ideal choice to store a small amount of small data blocks, for example, application configuration
parameters, states, and user information.

• The default size is a sector (4 KB).

• One TAG supports up to 1024 bytes of data.

NVDS provides the following five simple APIs to manipulate non-volatile data in flash.

Table 2-1 NVDS APIs

Function Prototype Description

uint8_t nvds_init(uint32_t start_addr, uint8_t sectors) Initialize the flash sectors used by NVDS.

uint8_t nvds_get(NvdsTag_t tag, uint16_t *p_len, uint8_t *p_buf) Read data according to TAG IDs from NVDS.

uint8_t nvds_put(NvdsTag_t tag, uint16_t len, const uint8_t *p_buf)
Write data to NVDS and mark the data with TAG IDs. If no TAG

exists, create one.

uint8_t nvds_del(NvdsTag_t tag) Remove the corresponding data of a TAG ID in NVDS.

uint16_t nvds_tag_length(NvdsTag_t tag) Obtain the data length of a specified TAG.

For more information about NVDS APIs, see GR551x API Reference.

 Note:

BLE Stack also stores some parameters in NVDS. Therefore, it is required to allocate a flash storage area to NVDS. By
default, the GR551x SDK uses the last several sectors of flash memory for NVDS. BLE Stack and applications share the
same NVDS storage area. However, TAG ID namespace is divided into different categories. You can only use the TAG ID
name category assigned to applications.

• Applications have to use NV_TAG_APP(idx) to obtain the TAG ID of application data. The TAG ID is used as an
NVDS API parameter.

• Applications cannot use idx as the NVDS API parameter directly. The idx value ranges from 0x0001 to 0x3FFF.

Before running an application for the first time, you can use GProgrammer to write the initial TAG value used by
BLE Stack and the application to NVDS. If you specify an NVDS area start address, instead of using the default NVDS
area in the GR551x SDK, make sure the start address configured in GProgrammer is the same as that defined in the
custom_config.h. For more information about configuration of the NVDS area start address in the custom_config.h,
see “Section 4.3.2.1 Configure custom_config.h”.

2.5 RAM Mapping

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  9



GR551x Bluetooth LE Software Platform

The RAM of a GR5515 SoC is 256 KB in size with the start address of 0x3000_0000. It consists of 11 RAM Blocks. For
the first 4 RAM Blocks, each is 8 KB; for the others, each is 32 KB. Each RAM Block can be powered on/off by software
independently.

 Note:

The GR5515 SoC provides an aliasing memory with the start address of 0x0080_0000 for RAM with the start address
of 0x3000_0000, as shown in Figure 2-3. If the run address of code is within the range of the aliasing memory address,
code can run faster in RAM. By default, the aliasing memory is enabled in the GR551x SDK.

The 256 KB RAM layout is shown in Figure 2-6:

0x3003_FFFF

RAM_8K_0

RAM_8K_1

RAM_8K_2

RAM_8K_3

RAM_32K_0

……

RAM_32K_6

0x3001_8000

0x3001_0000

0x3000_8000

0x3000_6000

0x3000_4000

0x3000_2000

0x3000_0000

Figure 2-6 256 KB RAM layout

Running modes for applications include XIP and Mirror modes. For more information about configurations, see
“APP_CODE_RUN_ADDR” in “Section 4.3.2.1 Configure custom_config.h”. RAM layouts of the two modes are different.

Table 2-2 Running modes for applications

Running Mode Description

XIP Mode

It refers to Execute in Place Mode. User applications are stored in on-chip flash, and applications use the

same space for running and loading. When the system is powered on, it fetches and executes commands

from flash directly through the Cache Controller.

Mirror Mode

In Mirror Mode, user applications are stored in on-chip flash, and the running space of applications is RAM.

During application boot, applications are loaded into RAM from external flash after check is completed, and

the system jumps to RAM for operation.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  10



GR551x Bluetooth LE Software Platform

 Note:

Continuous access to flash is required in XIP Mode. Therefore, power consumption in this mode is a little higher than
that in Mirror Mode.

2.5.1 RAM Layout in XIP Mode

The typical RAM layout in XIP Mode is shown in Figure 2-7. You are able to modify the layout based on product needs.

ROM Reserved RAM
Including .bss and .data

(Retenon)

App reserved RAM
Including .bss and .data

RAM_CODE

Unused RAM Space

Call Stack
End of RAM

Size=CSTACK_HEAP_SIZE

Size=APP_RAM_SIZE

0x3000_4000

Size=16KB

0x3000_0000

Figure 2-7 RAM layout in XIP Mode

The layout in XIP Mode allows application code to be run directly in the code loading area, so that more RAM space
is available for applications. It is required to turn off the XIP Mode during flash data update. As a result, the CPU
is unable to fetch commands from flash. Therefore, the run address of flash driver code shall be directed to RAM
during compiling and linking. The scatter file used by the GR551x SDK example projects defines a RAM_CODE area to
run code whose run address is in RAM. In Sleep Mode, the RAM Block occupied by the RAM_CODE area shall be in
RETENTION Mode.

 Note:

You cannot remove the RAM_CODE segment from the scatter file. For more information about the scatter file, see
“Section 4.3.2.2 Configure Memory Layout”.

2.5.2 RAM Layout in Mirror Mode

The typical RAM layout in Mirror Mode is shown in Figure 2-8. You are able to modify the layout based on product
needs.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  11



GR551x Bluetooth LE Software Platform

Figure 2-8 RAM layout in Mirror Mode

The layout in Mirror Mode allows application code to be run in RAM. When the SoC is powered on, it goes into the
cold boot process. The Bootloader copies application code from flash to the RAM segment “App Code Execution
Region”. When the SoC is awoken from Sleep Mode, it goes into the warm boot process. To shorten the warm boot
time, the Bootloader does not copy the application code again to the RAM segment “App Code Execution Region”.

2.5.3 RAM Power Management

Each RAM Block has three power modes: POWER OFF, RETENTION, and FULL.

• The FULL Mode corresponds to the Active Mode of the system; MCU is permitted to read from and write to RAM
Blocks.

• RETENTION Mode is mainly used in Sleep Mode of the system. Data in RAM Blocks in this power mode does not
get lost and is ready for use by the system when it switches from Sleep Mode to Active Mode.

• RAM Blocks in POWER OFF Mode are powered down, and data stored in these blocks gets lost. Users shall store
the data in advance.

By default, the PMU in the GR551x enables all RAM power sources when the system starts. The GR551x SDK also
provides a complete set of RAM power management APIs. You can configure the power of RAM Blocks based on
application needs.

The configuration rules are provided as follows:

• When the system is in Active Mode, unused RAM Blocks are set to POWER OFF Mode, and RAM Blocks to be
used are set to FULL Mode.

• When the system enters Sleep Mode, unused RAM Blocks remain in POWER OFF Mode, and RAM Blocks to be
used are set to RETENTION Mode.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  12



GR551x Bluetooth LE Software Platform

Configurations in practice are described below:

• In Bluetooth LE applications, two RAM Blocks, RAM_8K_0 and RAM_8K_1, are reserved for Bootloader and BLE
Stack only, not available for applications. When the system is in Active Mode, these two RAM Blocks shall be in
FULL Mode; when the system is in Sleep Mode, they shall be in RETENTION Mode. Non-Bluetooth LE applications
can use these two RAM Blocks.

• Purposes of RAM_8K_2 and subsequent RAM Blocks are defined by applications. Generally, user data and the
code segments to be executed in RAM are defined in continuous segments starting from RAM_8K_2; top of
function call stacks are defined in upper address part of RAM. The power mode of these RAM Blocks can be
enabled, or controlled by applications.

 Note:

1. Only if a RAM Block is in FULL Mode, an MCU is permitted to access it.

2. To manage the RAM power sources and use a RAM Block which is not included in the memory layout information
of applications, you need to call the mem_pwr_mgmt_mode_set_from(uint32_t start_addr, uint32_t size)
function during application initialization, to power the RAM Block on.

3. Details about RAM power management APIs are in SDK_Folder\components\sdk\platform_sdk.h.

SDK_Folder is the root directory of GR551x SDK.

2.6 GR551x SDK Directory Structure

The folder directory structure of the GR551x SDK is shown in Figure 2-9.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  13



GR551x Bluetooth LE Software Platform

Figure 2-9 GR551x SDK directory structure

Detailed descriptions of folders in the GR551x SDK are shown in Table 2-3.

Table 2-3 GR551x SDK folders

Folder Description

build\binaries It contains tools used for the build process.

build\config

It is the project configuration directory that stores the custom_config.h template file.

Contents in this file are used to configure projects, and to provide related input parameters

for the SDK toolchain.

build\scripts It contains batch files and script files for building, downloading, and debugging.

componets\app_drivers It contains driver API source code, which are easy to use for application developers.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  14



GR551x Bluetooth LE Software Platform

Folder Description

components\boards It contains header files corresponding to the development board.

components\drivers_ext It contains drivers of third-party components on the development board.

components\libraries It contains libraries provided in the GR551x SDK.

components\patch It contains ROM Patch files which provide incremental updates for BLE Stack in ROM.

components\profiles
It contains source files of GATT Services/Service Clients implementation examples provided

in the GR551x SDK.

components\sdk It contains API header files provided in the GR551x SDK.

components\sdk\linker It contains symbol table files and library files provided in the GR551x SDK for the linker.

documentation It contains the GR551x API references.

drivers\inc It contains HAL and LL header files of the GR551x peripheral drivers.

drivers\src It contains HAL source code of the GR551x peripheral drivers.

external\fat_fs It contains source code of FatFs, which is a third-party program.

external\freertos It contains source code of FreeRTOS, which is a third-party program.

external\segger_rtt It contains source code of SEGGER RTT, which is a third-party program.

external\wechat It contains source code of WeChat, which is a third-party program.

projects\ble
It contains Bluetooth LE application project examples, such as Heart Rate Sensor and

Proximity Reporter.

projects\peripheral It contains peripheral project examples of a GR551x SoC.

projects\peripheral_app It contains project examples of peripheral applications of a GR551x SoC.

toolchain\cmsis It contains toolchain files of CMSIS.

toolchain\gr551x It contains toolchain documents of the compilation platform.

tools It contains development and debugging software of the GR551x.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  15



Bootloader

3 Bootloader
The GR551x supports two code running modes: XIP and Mirror. When the system is powered on, the Bootloader first
reads the system boot configuration information from SCA, then performs application firmware integrity check and
system initialization configuration accordingly, and finally jumps to the code running space to run code. The boot
procedures may vary in different running modes.

• In XIP Mode, the Bootloader first initializes Cache and XIP controllers after finishing application firmware check,
and then jumps to the code run address in flash to run code.

• In Mirror Mode, after finishing application firmware check, the Bootloader loads the code in flash to
corresponding RAM running space based on system configurations, resets flash interfaces, and jumps to RAM to
run code.

The application boot procedures of the GR551x SDK are shown in Figure 3-1.

Init Flash

Mirror Mode?

Reset_Handler

Read boot informaon
&

Check Integrity of
Applicaon Image

Is Applicaon
 image integral?

Copy Applicaon Image to 
RAM from Flash

Init instrucon cache

Boot Start

Start up DFU service

Yes Yes

No No

Jump_to_app(start_addr)

Figure 3-1 Application boot procedures of the GR551x SDK

1. When the device is powered on, CPU jumps to 0x0000_0000 and executes the reset_handler in ROM to enter the
Bootloader.

2. Bootloader initializes flash.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  16



Bootloader

3. Bootloader reads boot information from SCA in flash and checks application firmware integrity.

 Note:

The GR551x enhances security by encrypting and signing application firmware.

• Security mode: If the security mode is enabled, the Bootloader reads boot information from SCA and performs
HMAC check; after successful checking, the Bootloader decrypts SCA boot information and then implements
the verification signature process in the security boot process, to guarantee firmware integrity and prevent
tampering or disguise; if the signature verification is successful, the automatic decryption function is enabled. For
more information, see GR551x Firmware Encryption Application Note.

• Non-security mode: If the security mode is not enabled, the Bootloader uses SCA boot information to check CRC
integrity check for application firmware.

4. If the integrity check fails, the Bootloader starts the BLE DFU Service. You can update application firmware in
flash through this service and the App on the mobile phone.

5. If the integrity check passes, the Bootloader determines a running mode.

• In XIP Mode, the Bootloader jumps to the application firmware in flash to start implementation after XIP
configuration is completed.

• In Mirror Mode, the Bootloader copies the application firmware in flash to a specified segment in RAM, and
then runs the application firmware in RAM.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  17



Development and Debugging with GR551x SDK

4 Development and Debugging with GR551x SDK
This chapter introduces how to build, compile, download, and debug Bluetooth LE applications with the GR551x SDK
in Keil.

4.1 Install Keil

Keil MDK-ARM IDE (Keil) is an Integrated Development Environment (IDE) provided by ARM® for Cortex® and ARM
devices. You can download and install the Keil installation package from the Keil official website https://www.keil.com/
demo/eval/arm.htm. For the GR551x SDK, Keil V5.20 or a later version shall be installed.

 Note:

For more information about how to use Keil MDK-ARM IDE, see online manuals provided by ARM: http://
www.keil.com/support/man_arm.htm.

The main interface of Keil is shown in Figure 4-1.

Figure 4-1 Keil interface

Frequently used function buttons of Keil are shown in Table 4-1.

Table 4-1 Frequently used function buttons of Keil

Keil Icon Description

Options for target

Start/Stop Debug Session

Download

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  18

https://www.keil.com/demo/eval/arm.htm
https://www.keil.com/demo/eval/arm.htm
http://www.keil.com/support/man_arm.htm
http://www.keil.com/support/man_arm.htm


Development and Debugging with GR551x SDK

Keil Icon Description

Build

4.2 Install GR551x SDK

The GR551x SDK is ready for use after the GR551x SDK software package is extracted. No manual installation is
required.

 Note:

• SDK_Folder is the root directory of GR551x SDK.

• Keil_Folder is the root directory of Keil.

4.3 Build a Bluetooth LE Application

This section introduces how to build a Bluetooth LE application.

4.3.1 Prepare ble_app_example

Open SDK_Folder\projects\ble\ble_peripheral\, copy ble_app_template to the current directory,
and rename it as ble_app_example. Rename the base name of .uvoptx and .uvprojx files in ble_app_example
\Keil_5 as ble_app_example.

Figure 4-2 ble_app_example folder

Double-click ble_app_example.uvprojx to open the project example in Keil. Click , and select Output in Options for
Target ‘GR551x_SK’; enter “ble_app_example” in Name of Executable.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  19



Development and Debugging with GR551x SDK

Figure 4-3 Modifications to Name of Executable

All groups of the ble_app_example project are available in the Project pane of Keil.

Figure 4-4 Project ble_app_example

Groups of the ble_app_example project are mainly in two categories: SDK groups and User groups.

• SDK groups

The SDK groups include gr_startup, gr_arch, gr_stack_lib, gr_drivers, gr_app_drivers, gr_libraries, gr_profiles, and
external.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  20



Development and Debugging with GR551x SDK

Figure 4-5 SDK groups

Source files in the SDK groups are not required to be modified. Group descriptions are provided below:

Table 4-2 SDK groups

SDK Group Name Description

gr_startup It contains the system boot file.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  21



Development and Debugging with GR551x SDK

SDK Group Name Description

gr_arch
It contains initialization configuration files and system interrupt implementation files for System Core

and PMU.

gr_stack_lib It contains the GR551x SDK .lib file.

gr_drivers It contains drive source files of SoC peripherals. You can add hardware drives on demand.

gr_app_drivers
It contains driver API source files, which are easy to use for application developers. You can add related

application drivers on demand.

gr_libraries
It contains open source files of common assistant software modules and peripheral drivers provided by

in the SDK.

gr_profiles
It contains source files of GATT Services/Service Clients. You can add necessary GATT source files for

projects.

external
It contains source files for third-party programs, such as FreeRTOS and SEGGER RTT. You can add third-

party programs on demand.

• User groups

User groups include user_callback, user_platform, and user_app.

Figure 4-6 User groups

Functions for source files in User groups need to be implemented by developers. Group descriptions are
provided below:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  22



Development and Debugging with GR551x SDK

Table 4-3 User groups

User Group Name Description

user_callback
It contains BLE Stack callback functions, which are implemented in applications. For more information

about callbacks, see Table 4-5.

user_platform
It implements software and hardware resource setting and application initialization; you need to

execute corresponding APIs on demand.

user_app

It contains main() function entries, and other source files created by developers, which are used to

configure runtime parameters of BLE Stack and execute event handlers of GATT Services/Service

Clients.

4.3.2 Configure a Project

You should configure corresponding project options according to product characteristics, including NVDS, code
running mode, memory layout, After Build and other configuration items.

4.3.2.1 Configure custom_config.h

The custom_config.h is used to configure parameters of application projects. A custom_config.h template is provided
in SDK_Folder\build\config\. The custom_config.h of each application example project is in Src\config
under project directory.

Table 4-4 Parameters in the custom_config.h

Macro Description

SYS_FAULT_TRACE_ENABLE

It is used to enable/disable Callstack Trace Info printing. If printing is enabled, the Callstack Trace Info

is printed through serial ports when a HardFault occurs.

0: Disable Callstack Trace Info printing.

1: Enable Callstack Trace Info printing.

APP_DRIVER_USE_ENABLE

It is used to enable/disable the App Drivers module.

0: Disable the App Drivers module.

1: Enable the App Drivers module.

APP_LOG_ENABLE

It is used to enable/disable the APP LOG module.

0: Disable the APP LOG module.

1: Enable the APP LOG module.

SK_GUI_ENABLE

It is used to enable/disable the GUI module on GR5515 Starter Kit Board.

0: Disable the GUI module.

1: Enable the GUI module.

DTM_TEST_ENABLE
It is used to enable/disable DTM Test.

0: Disable DTM Test.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  23



Development and Debugging with GR551x SDK

Macro Description

1: Enable DTM Test.

DFU_ENABLE

It is used to enable/disable DFU.

0: Disable DFU.

1: Enable DFU.

PMU_CALIBRATION_ENABLE

It is used to enable/disable PMU CALIBRATION. When PMU CALIBRATION is enabled, the system

monitors temperatures and voltages automatically with adaptive adjustment. It shall be enabled in

high/low temperature scenarios. It is recommended to enable this parameter by default.

0: Disable PMU CALIBRATION.

1: Enable PMU CALIBRATION.

FLASH_PROTECT_PRIORITY

During flash write or erase, applications can block the interrupts with priority level lower than or

equal to a set value.

When FLASH_PROTECT_PRIORITY is set to N, interrupt requests with a priority level not higher than

N are suspended. After erase is completed, flash responds to the suspended interrupt requests. By

default, flash does not respond to any interrupt request during erase. Developers can set a value on

demand.

NVDS_NUM_SECTOR It represents the number of flash sectors for NVDS.

CSTACK_HEAP_SIZE

You can adjust the sizes of Call Stack and Heap for applications according to practical usage of

applications. The value shall not be less than 6 KB. The default is 32 KB.

After compilation of ble_app_example, a Maximum Stack Usage is provided in

Keil_5\Objects\ble_app_example.htm for reference.

APP_RAM_SIZE

It represents the RAM size occupied by all global variables of applications. To allow disabling/

enabling non-retention RAM Blocks in Sleep Mode, the RAM size shall be set to make the boundary

of the RAM segment align with that of the RAM Block.

APP_MAX_CODE_SIZE
It represents the size of code segments occupied by applications in flash. You can set the value

according to the actual code size of applications.

APP_CODE_LOAD_ADDR*
It represents the start address of the application storage area. This address shall be within the flash

address range.

APP_CODE_RUN_ADDR*

It represents the start address of the application running space.

If the value is the same as APP_CODE_LOAD_ADDR, applications run in XIP Mode.

If the value is within the RAM address range, applications run in Mirror Mode.

SYSTEM_CLOCK*

It represents the system clock frequency. Optional values are provided as follows:

0: 64 MHz

1: 48 MHz

2: 16 MHz (XO)

3: 24 MHz

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  24



Development and Debugging with GR551x SDK

Macro Description

4: 16 MHz

5: 32MHz (PLL)

CFG_LF_ACCURARY_PPM
It represents the Bluetooth LE low frequency sleep clock accuracy. The value shall range from 1 to

500 (unit: ppm).

CFG_LPCLK_INTERNAL_EN

It is used to enable/disable the OSC clock inside an SoC as the Bluetooth LE low-frequency sleep

clock. If the OSC clock is enabled, CFG_LF_ACCURARY_PPM will be set to 500 automatically.

0: Disable.

1: Enable.

BOOT_LONG_TIME*

It is used to set necessary 1-second delay (during SoC boot before implementing the second half

Bootloader).

0: No delay.

1: Delay for 1 second.

BOOT_CHECK_IMAGE

It determines whether to check the image during cold boot in XIP mode.

0: Do not check.

1: Check.

VERSION*
It represents the version number of application firmware; length: 2 bytes; it is stored in hexadecimal

format.

DAP_BOOT_ENABLE

It is used to enable/disable DAP Boot Mode.

0: Disable DAP Boot Mode.

1: Enable DAP Boot Mode.

CFG_MAX_BOND_DEV_NUM
It represents the maximum number of bonded devices supported by applications. You should set the

value on demand. A larger value means more RAM space to be occupied.

CFM_MAX_PRF_NB
It represents the maximum number of GATT Profiles/Services included in applications. Set the value

on demand: A larger value means to occupy more RAM space.

CFG_MAX_CONNECTIONS

It represents the maximum number of connected devices supported by applications, and the

number shall not be greater than 10. You can set the value based on needs.

A larger value means more RAM space to be occupied by BLE Stack Heaps. The size of BLE Stack

Heaps is defined by the following four macros in flash_scatter_config.h, which cannot be changed by

developers:

ENV_HEAP_SIZE

ATT_DB_HEAP_SIZE

KE_MSG_HEAP_SIZE

NON_RET_HEAP_SIZE

CFG_MESH_SUPPORT
Support Mesh or not.

0: No

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  25



Development and Debugging with GR551x SDK

Macro Description

1: Yes

*: The ble_tools.exe in the SDK toolchain reads the macro value to generate an SCA image file. The Bootloader reads
the value from SCA and uses it as a boot parameter.

Notes in the custom_config.h comply with Configuration Wizard Annotations of Keil. Therefore, you can use the
graphic Keil Configuration Wizard to configure project parameters of applications. It is highly recommended to use the
Wizard to prevent inputting invalid parameter values.

Figure 4-7 Configuration Wizard for custom_config.h

4.3.2.2 Configure Memory Layout

Keil defines memory segments for the linker in .sct files. The GR551x SDK provides an example
flash_scatter_common.sct for application developers. The macros used by this .sct file are defined in the
flash_scatter_config.h.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  26



Development and Debugging with GR551x SDK

 Note:

In Keil, __attribute__(( section("name"))) can be used to place a function or a variable at a separate memory segment,
and the “name” depends on your choice. A scatter (.sct) file specifies the location for a named segment. For example,
place Zero-Initialized (ZI) data of applications at the segment named “__attribute__((section(".bss.app")))”.

You can follow the steps below to configure the memory layout:

1. Click  (Options for Target) on the Keil toolbar and open the Options for Target ‘GR551x_SK’ dialog box. Select
the Linker tab.

2. On the Scatter File bar, click ... to browse and select the flash_scatter_common.sct file in SDK_Folder
\toolchain\gr551x\source\arm; or copy the scatter (.sct) file and its .h file to the ble_app_example
project directory and then select the scatter file.

 Note:

“#! armcc -E -I ..\Src\config\ --cpu Cortex-M4” in the flash_scatter_common.sct specifies an Include path, which is the
path of the custom_config.h of an application project. A wrong path results in a linker error.

3. Click Edit... to open the .sct file, and modify corresponding code based on product memory layout.

Figure 4-8 Configuration of scatter file

4. Click OK to save the settings.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  27



Development and Debugging with GR551x SDK

4.3.2.3 Configure After Build

After Build in Keil can specify an executable program or batch file to run after a project is built. By default, the
ble_app_template project adds the after_build.bat file to After Build. You do not need to configure After Build
manually for the ble_app_example project based on ble_app_template. For more information about functions of
after_build.bat provided in the GR551x SDK, see “Section 4.4 Generate .hex Files”.

If you build a project, follow the steps below to configure After Build:

1. Click  (Options for Target) on the Keil toolbar and open the Options for Target ‘GR551x_SK’ dialog box. Select
the User tab.

2. From the options expanded from After Build/Rebuild, check Run #1, and then click  to browse and select
the after_build.bat file in SDK_Folder\build\scripts; or copy the after_build.bat file in SDK_Folder
\build\scripts to the ble_app_example project directory and select the file.

 Note:

Some relative paths are provided in the after_build.bat file, for example, the path of the SDK tools directory. If the
batch file is no longer in SDK_Folder\build\scripts, modify these relative paths to avoid any After Build
error.

3. Click OK to save the settings.

Figure 4-9 Configuration of After Build

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  28



Development and Debugging with GR551x SDK

4.3.3 Add User Code

You can modify corresponding code in the ble_app_example on demand.

4.3.3.1 Modify the main() Function

Code of a typical main.c file is provided as follows:

/**@brief Stack global variables for Bluetooth protocol stack. */
STACK_HEAP_INIT(heaps_table);
…
int main (void)
{
    /** Initialize user peripherals. */
    app_periph_init();                

    /** Initialize BLE Stack. */
    ble_stack_init(&&m_app_ble_callback, &heaps_table);
 
    // Main Loop
    while (1)
    {
       /*
        * Add Application code here, e.g. GUI Update.
        */
        app_log_flush();
        pwr_mgmt_schedule();
    }
}

• STACK_HEAP_INIT(heaps_table) defines four global arrays as Heaps for BLE Stack. Do not modify the definition;
otherwise, BLE Stack cannot work. For more information about Heap size, see CFG_MAX_CONNECTIONS in
“Section 4.3.2.1 Configure custom_config.h”.

• You can initialize peripherals in app_periph_init(). In development and debugging phases, the SYS_SET_BD_ADDR
in this function can be used to set a temporary Public Address. The user_periph_setup.c in which this function is
contained includes the following main code:

/**@brief Bluetooth device address. */
static const uint8_t s_bd_addr[SYS_BD_ADDR_LEN] = {0x11, 0x11, 0x11, 0x11,0x11, 0x11};
…
void app_periph_init(void)
{
   SYS_SET_BD_ADDR(s_bd_addr);
   bsp_uart_init();
   app_log_assert_init();
   pwr_mgmt_mode_set(PMR_MGMT_SLEEP_MODE);
}

• You should add main loop code of applications to “while(1) { }”, for example, code to handle external input and
update GUI.

• When using the APP LOG module, call the app_log_flush() in the main loop. This is to ensure logs are output
completely before the SoC enters Sleep Mode. For more information about the APP LOG module, see “Section
4.6.4 Output Debug Logs”.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  29



Development and Debugging with GR551x SDK

• Call the pwr_mgmt_shcedule() to implement automatic power management to reduce system power
consumption.

4.3.3.2 Implement Bluetooth LE Business Logics

Related Bluetooth LE business logics of applications are driven by a number of Bluetooth LE SDK callbacks which are
defined in the GR551x SDK. Applications need to register these callbacks in the GR551x SDK to obtain operation results
or state change notifications of BLE Stack. Bluetooth LE SDK callbacks are called in the interrupt context of Bluetooth
LE SDK IRQ. Therefore, do not perform long-running operations in callbacks, for example, blocking function call and
infinite loop; otherwise, the system is blocked, causing BLE Stack and the SDK Bluetooth LE module unable to run in a
normal timing.

Bluetooth LE SDK callbacks are categorized into different files by GAP, Security Manager, L2CAP, GATT Common, and
GATT Client. All callback functions supported by the GR551x SDK are listed in Table 4-5.

Table 4-5 Bluetooth LE SDK callback functions

File Name Callback Struct Callback Function

main.c app_callback_t app_ble_init_cmp_callback

app_gap_param_set_cb

app_gap_psm_manager_cb

app_gap_phy_update_cb

app_gap_dev_info_get_cb

app_gap_adv_start_cb

app_gap_adv_stop_cb

app_gap_scan_req_ind_cb

app_gap_adv_data_update_cb

app_gap_scan_start_cb

app_gap_scan_stop_cb

app_gap_adv_report_ind_cb

app_gap_sync_establish_cb

app_gap_stop_sync_cb

app_gap_sync_lost_cb

app_gap_connect_cb

app_gap_disconnect_cb

app_gap_connect_cancel_cb

app_gap_auto_connection_timeout_cb

app_gap_peer_name_ind_cb

app_gap_connection_update_cb

user_gap_callback.c gap_cb_fun_t

app_gap_connection_update_req_cb

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  30



Development and Debugging with GR551x SDK

File Name Callback Struct Callback Function

app_gap_connection_info_get_cb

app_gap_peer_info_get_cb

app_gap_le_pkt_size_info_cb

app_rslv_addr_read_cb

app_l2cap_lecb_conn_req_cb

app_l2cap_lecb_conn_cb

app_l2cap_lecb_add_credits_ind_cb

app_l2cap_lecb_disconn_cb

app_l2cap_lecb_sdu_recv_cb

app_l2cap_lecb_sdu_send_cb

user_l2cap_callback.c l2cap_lecb_cb_fun_t

app_l2cap_lecb_credit_add_cmp_cb

app_sec_enc_req_cb

app_sec_enc_ind_cbuser_sm_callback.c sec_cb_fun_t

app_sec_keypress_notify_cb

app_gatt_mtu_exchange_cb
user_gatt_common_callback.c gatt_common_cb_func_t

app_gatt_prf_register_cb

app_gattc_srvc_disc_cb

app_gattc_inc_srvc_disc_cb

app_gattc_char_disc_cb

app_gattc_char_desc_disc_cb

app_gattc_read_cb

app_gattc_write_cb

app_gattc_ntf_ind_cb

app_gattc_srvc_browse_cb

user_gattc_callback.c gattc_cb_fun_t

app_gattc_cache_update_cb

You need to implement necessary Bluetooth LE SDK callbacks according to functional requirements of your products.
For example, if a product does not support Security Manager, you do not need to implement corresponding callbacks;
if the product supports GATT Server only, you do not need to implement the callbacks corresponding to GATT Client.
Only those callback functions required for products are to be implemented.

For more information about the usage of Bluetooth LE APIs and callback APIs, see the source code of Bluetooth LE
examples in GR551x Bluetooth Low Energy Stack User Guide,

SDK_Folder\documentation\GR551x_API_Reference, and SDK_Folder\projects\ble.

4.3.3.3 Schedule BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  31



Development and Debugging with GR551x SDK

BLE Stack is the implementation core of BLE protocol stacks. It directly operates the hardware mentioned in Bluetooth
5.1 Core (see “Section 2.2 Software Architecture”). Therefore, BLE_Stack_IRQ has the second-highest priority after
SVCall IRQ, which ensures that BLE Stack runs strictly in a time sequence specified in Bluetooth Core Spec.

 Note:

The system_priority_init() in SDK_Folder\toolchain\gr551x\source\system_gr55xx.c is used to set
default interrupt priority of modules in the system.

A state change of BLE Stack triggers BLE_SDK_IRQ interrupt with lower priority. In this interrupt handler, the Bluetooth
LE SDK callbacks (to be executed in applications) are called to send state change notifications of BLE Stack and related
business data to applications. You should avoid performing long-running operations in these callbacks, and shall
move such operations to the main loop or user thread for processing. You can use the module in SDK_Folder
\components\app_queue, or your own application framework, to transfer events from Bluetooth LE SDK
callbacks to the main loop. For more information about processing in the user thread, see GR551x FreeRTOS Example
Application.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  32



Development and Debugging with GR551x SDK

BLE Stack

BLE_Stack_IRQ

SDK 
Bluetooth LE  

BLE_SDK_IRQ

Applicaon 
Callback

Applicaon 
Queue

Applicaon 
Main Loop

Bluetooth LE SDK 
Callback

app_queue_push

app_queue_init

app_queue_pop

Handle event

Figure 4-10 Non-OS system schedule

4.4 Generate .hex Files

After a Bluetooth LE application is built, Keil automatically runs the after_build.bat. The after_build.bat calls the
ble_tools.exe to read configuration parameters in the user configuration file custom_config.h, and generates an SCA
image file which merges with the information in the application firmware from Keil to generate a .hex file.

After building a Bluetooth LE application, you can directly click Build on the Keil toolbar to build a project. After
the project is built, ble_app_example_fw.bin, ble_app_example_fw.hex, and load_app.hex are generated in
Keil_5\build in the project directory.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  33



Development and Debugging with GR551x SDK

 Note:

• Contents in load_app.hex and ble_app_example_fw.hex are the same.

• The load_app.hex is used for firmware download with the same download script. For more information, see the
download.ini file mentioned in “Section 4.5 Download .hex Files to Flash”.

4.5 Download .hex Files to Flash

After .hex files are generated, you need to download these files to flash. Specific steps are provided below:

1. Configure Keil flash programming algorithm.

(1). Copy the GR551x_8MB_Flash.FLM in SDK_Folder\build\binaries to Keil_Folder\ARM
\Flash.

(2). Click  (Options for Target) on the Keil toolbar, open the Options for Target ‘GR551x_SK’ dialog box, and
select Debug tab. Click Settings on the right side of Use: J-LINK/J-TRACE Cortex.

Figure 4-11 Debug tab

(3). In the Cortex JLink/JTrace Target Driver Setup window, select Flash Download. In the Download Function
pane, you can set the erase type and check optional items: Program, Verify, and Reset and Run. Default
configurations of Keil are shown below:

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  34



Development and Debugging with GR551x SDK

Figure 4-12 Choosing Download Function

(4). Click Add to add the GR551x 8MB Flash.FLM to the Programming Algorithm.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  35



Development and Debugging with GR551x SDK

Figure 4-13 Adding the GR551x 8 MB flash programming algorithm

(5). Configure RAM for Algorithm, which defines address space to load and implement the programming
algorithm. Enter the start address of RAM in GR551x in the Start input field: 0x30000000. Enter “0xF000” in
the Size input field.

Figure 4-14 Settings of RAM for Algorithm

(6). Click OK to save the settings.

2. Configure the Configure Flash Menu Command.

(1). Click  (Options for Target) on the Keil toolbar, open the Options for Target ‘GR551x_SK’ dialog box, and
select Utilities tab.

(2). On the Init File bar in the Configure Flash Menu Command pane, click ... to browse and select the
download.ini file in SDK_Folder\build\scripts; or copy the download.ini file to the project
directory and select it.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  36



Development and Debugging with GR551x SDK

Figure 4-15 Initialization file for programming

 Note:

By default, Use Target Driver for Flash Programming and Use Debug Driver are checked.

Do not check Update Target before Debugging.

3. Download the .hex file.

After completing configuration, click  (Download) on the Keil toolbar to download the .hex file to flash. After
download is completed, the following results are displayed in the Build Output window of Keil.

Figure 4-16 Download results

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  37



Development and Debugging with GR551x SDK

4.6 Debugging

Keil provides a debugger for online code debugging. The debugger supports setting six hardware breakpoints and
multiple software breakpoints. It also provides developers with diverse debug commands.

4.6.1 Configure the Debugger

Configure the debugger before debugging. Click  (Options for Target) on the Keil toolbar to open the Options for
Target ‘GR551x_SK’ dialog box, and then select Debug tab. In the window, software simulation debugging displays
on the left, and online hardware debugging displays on the right. Bluetooth LE example projects adopt the online
hardware debugging. Related default configurations of the debugger are shown as follows:

Figure 4-17 Debugger configuration

The default initialization file sram.ini is in SDK_Folder\build\scripts. You can use this file directly, or copy it
to the project directory.

 Note:

SDK_Folder is the root directory of GR551x SDK.

The initialization file sram.ini contains a set of debug commands, which are executed during debugging. On the
Initialization File bar, click Edit... on the right side, to open the sram.ini file. Example code of sram.ini is provided as
follows:

/**
*****************************************************************
* GR551x object loading script through debugger interface
* (e.g.Jlink, *etc).

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  38



Development and Debugging with GR551x SDK

* The goal of this script is to load the Keils's object file to the
* GR551x RAM
* assuring that the GR551x has been previously cleaned up.
*****************************************************************
*/ 
// Debugger reset(check Keil debugger settings)
// Preselected reset type(found in Options->Debug->Settings)is 
// Normal(0);
// -Normal:Reset core & peripherals via SYSRESETREQ & VECTRESET bit
// RESET 
// Load object file
LOAD %L 
// Load stack pointer
SP = _RDWORD(0x00000000)  
// Load program counter
$ = _RDWORD(0x00000004)
// Write 0 to vector table register, remap vector
_WDWORD(0xE000ED08, 0x00000000) 

 Note:

Keil supports executing debugger commands set by developers in the following order:

1. When Load Application at Startup (Options for Target ‘GR551x_SK’ > Debug > Load Application at Startup) is
enabled, the debugger first loads the file under Name of Executable (Options for Target ‘GR551x_SK’ > Output >
Name of Executable).

2. Execute the command in the file specified in Options for Target ‘GR551x_SK’ > Debug > Initialization File.

3. When options under Options for Target ‘GR551x_SK’ > Debug > Restore Debug Session Settings are checked,
restore corresponding Breakpoints, Watch Windows, Memory Display, and other settings.

4. When Options for Target ‘GR551x_SK’ > Debug > Run to main() is checked, or the command g,main is
discovered in the Initialization File, the debugger automatically starts executing CPU commands, until running to
the main() function.

4.6.2 Start Debugging

After completing debugger configuration, click  (Start/Stop Debug Session) on the Keil toolbar, to start debugging.

 Note:

Make sure that both options under Connect & Reset Options are set to Normal, as shown in Figure 4-18. This is to
ensure when you click Reset on the Keil toolbar after enabling Start Debug Session, the program can run normally.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  39



Development and Debugging with GR551x SDK

Figure 4-18 Setting Connect & Reset Options to Normal

For debugging in XIP Mode, no other matters need attention. However, there are some additional notes for debugging
in Mirror Mode. See “Section 4.6.3 Debug in Mirror Mode”.

4.6.3 Debug in Mirror Mode

In Mirror Mode, you shall set breakpoints after the application firmware is copied to RAM.

 Note:

If breakpoints are set within the RAM address range, Keil uses software breakpoints to save hardware resources
(replace the original commands with BKPT instructions). After you set breakpoints, the Bootloader copies the
application firmware to an address where breakpoints are set. The BKPT instructions of the address then are
overwritten by the application firmware, and applications cannot stop when running to the address. For more
information, see the ARM Keil official document Breakpoints are not hit when debugging in RAM.

You should set breakpoints before executing the main() function of applications. Follow the steps below to set
breakpoints:

1. 1. Add __BKPT(X) to the first line of the main() function. Example code is provided below:

int main(void)
{
    __BKPT(0);
    app_periph_init();                /*<init user periph .*/

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  40

http://www.keil.com/support/docs/3678.htm


Development and Debugging with GR551x SDK

…

2. Click Build on the Keil toolbar to compile and link code.

3. Click  (Start/Stop Debug Session) on the Keil toolbar to start debugging. The application stops at __BKPT(0)
when it starts debugging.

4. Set new breakpoints in the application.

5. Press F10 (not F5) to step over the next code line, so that you can continue debugging code in a normal way.

 Note:

Pressing F10 allows to execute the next code line only; press F5 allows to execute all the rest code lines. Keil only
responds to F10 when it hits __BKPT.

4.6.4 Output Debug Logs

The GR551x SDK supports outputting debug logs of applications from hardware ports in a customized output mode.
Hardware ports include UART, J-Link RTT, and ARM Instrumentation Trace Macrocell (ARM ITM). The GR551x SDK
provides an APP LOG module to facilitate log output. You can use the following macros to configure output mode and
hardware ports.

Table 4-6 Configuration parameters of APP LOG module

Macro Description Path

APP_LOG_DEVICE_TYPE

It selects the hardware port used for

log output.

1: Output logs through UART.

2: Output logs through J-Link RTT.

3: Output logs through ARM ITM.

SDK_Folder\components\libraries

\app_log\app_log.h

APP_LOG_COLOR_ENABLE
It enables/disables the coloring

format of log output texts.

SDK_Folder\components\libraries

\app_log\app_log.h

APP_LOG_TAG_ENABLE
It enables/disables adding tags in log

output texts.

SDK_Folder\components\libraries

\app_log\app_log.h

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  41



Development and Debugging with GR551x SDK

 Note:

• The Blocking Mode blocks task scheduling of BLE Stack. If applications output excessive debug logs at one time,
the time sequence to execute BLE Stack tasks may be destroyed, resulting in such problems as delayed response
or disconnection. However, this mode ensures that all debug logs are output completely.

• In Interrupt Mode, first, cache the debug logs to be output; then, use the UART interrupt sending mode to
output cached debug logs in fragmented units through multiple output. When UART is outputting debug logs in
interrupt sending mode, this program can run normally and does not interfere with the time sequence to execute
BLE Stack tasks. However, if the size of debug logs to be output exceeds the cache size, some debug logs will get
lost.

After configuration, you need to set log parameter by calling app_log_init() during peripheral initialization and to
initialize the APP LOG module by registering log output APIs and Flush APIs. The APP LOG module supports using
the printf() (a C standard library function) and APP LOG APIs to output debug logs. If you use APP LOG APIs, you can
optimize logs by setting log level, log format, filter type, or other parameters.

The APP LOG module provides some APIs for developers to set the log level and the log format. If you use printf() only,
you can set the log level and the log format to NULL.

The code of initializing the APP LOG module is provided in app_log_assert_init() in user_periph_setup.c. If you output
logs by hardware UART before calling the function, you need to call void bsp_uart_init(void) to initialize the hardware
UART. By default, void bsp_uart_init(void) outputs logs in Interrupt Mode. The API code is provided below:

static void app_log_assert_init(void)
{
    app_log_init_t log_init;

    log_init.filter.level = APP_LOG_LVL_DEBUG;
    log_init.fmt_set[APP_LOG_LVL_ERROR] = APP_LOG_FMT_ALL & (~APP_LOG_FMT_TAG);
    log_init.fmt_set[APP_LOG_LVL_WARNING] = APP_LOG_FMT_LVL;
    log_init.fmt_set[APP_LOG_LVL_INFO] = APP_LOG_FMT_LVL;
    log_init.fmt_set[APP_LOG_LVL_DEBUG] = APP_LOG_FMT_LVL;

    app_log_init(&log_init, bsp_uart_send, bsp_uart_flush);

    fault_trace_db_init();
}

void bsp_uart_init(void)
{
#if APP_DRIVER_USE_ENABLE

    app_uart_tx_buf_t uart_buffer;
    app_uart_params_t uart_param;

    uart_buffer.tx_buf       = s_uart_tx_buffer;
    uart_buffer.tx_buf_size  = UART_TX_BUFF_SIZE;

    uart_param.id                   = APP_UART_ID;
    uart_param.init.baud_rate       = APP_UART_BAUDRATE;
    uart_param.init.data_bits       = UART_DATABITS_8;
    uart_param.init.stop_bits       = UART_STOPBITS_1;
    uart_param.init.parity          = UART_PARITY_NONE;
    uart_param.init.hw_flow_ctrl    = UART_HWCONTROL_NONE;

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  42



Development and Debugging with GR551x SDK

    uart_param.init.rx_timeout_mode = UART_RECEIVER_TIMEOUT_ENABLE;
    uart_param.pin_cfg.rx.type      = APP_UART_RX_IO_TYPE;
    uart_param.pin_cfg.rx.pin       = APP_UART_RX_PIN;
    uart_param.pin_cfg.rx.mux       = APP_UART_RX_PINMUX;
    uart_param.pin_cfg.rx.pull      = APP_UART_RX_PULL;
    uart_param.pin_cfg.tx.type      = APP_UART_TX_IO_TYPE;
    uart_param.pin_cfg.tx.pin       = APP_UART_TX_PIN;
    uart_param.pin_cfg.tx.mux       = APP_UART_TX_PINMUX;
    uart_param.pin_cfg.tx.pull      = APP_UART_TX_PULL;
    uart_param.use_mode.type        = APP_UART_TYPE_INTERRUPT;

    app_uart_init(&uart_param, app_uart_evt_handler, &uart_buffer);

#else

    gpio_init_t gpio_config = GPIO_DEFAULT_CONFIG;

    gpio_config.mode = GPIO_MODE_MUX;
    gpio_config.pin  = SERIAL_PORT_TX_PIN;
    gpio_config.mux  = SERIAL_PORT_TX_PINMUX;
    hal_gpio_init(SERIAL_PORT_PORT, &gpio_config);

    gpio_config.pin  = SERIAL_PORT_RX_PIN;
    gpio_config.mux  = SERIAL_PORT_RX_PINMUX;
    hal_gpio_init(SERIAL_PORT_PORT, &gpio_config);

    s_uart_handle.p_instance           = SERIAL_PORT_GRP;
    s_uart_handle.init.baud_rate       = SERIAL_PORT_BAUDRATE;
    s_uart_handle.init.data_bits       = UART_DATABITS_8;
    s_uart_handle.init.stop_bits       = UART_STOPBITS_1;
    s_uart_handle.init.parity          = UART_PARITY_NONE;
    s_uart_handle.init.hw_flow_ctrl    = UART_HWCONTROL_NONE;
    s_uart_handle.init.rx_timeout_mode = UART_RECEIVER_TIMEOUT_ENABLE;

    hal_uart_deinit(&s_uart_handle);
    hal_uart_init(&s_uart_handle);
#endif
}

void bsp_uart_send(uint8_t *p_data, uint16_t length)
{
#if APP_DRIVER_USE_ENABLE
    app_uart_transmit_async(APP_UART_ID, p_data, length);
#else
    hal_uart_transmit(&s_uart_handle, p_data, length, 5000);
#endif
}
void bsp_uart_flush(void)
{
#if APP_DRIVER_USE_ENABLE
    app_uart_flush(APP_UART_ID);
#endif
}

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  43



Development and Debugging with GR551x SDK

 Note:

• bsp_uart_init implements hardware port initialization of app_uart and hal_uart APIs. app_uart_init initializes
the UART hardware port in Interrupt Mode; hal_uart_init only implements UART hardware port initialization in
bsp_uart_init. For details about calling APIs in Interrupt Mode or Blocking Mode, see “Section 2.23 HAL UART
Generic Driver” in GR551x HAL and LL Drivers User Manual. Users can overwrite this API.

• bsp_uart_send implements two output APIs: app_uart asynchronous (app_uart_transmit_async API) and
hal_uart synchronous (hal_uart_transmit API). Users can choose an appropriate log output method on demand.
Users can overwrite this API.

• bsp_uart_flush is a UART flush API to output the unsent data cached in the memory in Interrupt Mode. Users can
overwrite this API.

After completing initialization of the APP LOG module, you can use any of the following four APIs to output debug
logs:

• APP_LOG_ERROR()

• APP_LOG_WARINING()

• APP_LOG_INFO()

• APP_LOG_DEBUG()

In interrupt output mode, call app_log_flush() function to output all the debug logs cached, to ensure that all debug
logs are output before the SoC is reset or the system enters the Sleep Mode.

4.6.5 Debug with GRToolbox

The GR551x SDK provides an Android App, GRToolbox, to debug GR551x Bluetooth LE applications, which is in
SDK_folder\tools\android\GRToolbox.apk. GRToolbox integrates the following functions:

• General Bluetooth LE scanning and connecting; characteristics read/write

• Demos for standard profiles, including Heart Rate and Blood Pressure

• Goodix-customized applications

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  44



Glossary and Abbreviations

5 Glossary and Abbreviations
Table 5-1 Glossary and abbreviations

Acronym Description

ATT Attribute Protocol

Bluetooth LE Bluetooth Low Energy

DAP Debug Access Port

DFU Device Firmware Update

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstract Layer

HCI Host-Controller Interface

IoT Internet of Things

L2CAP Logical Link Control and Adaption Protocol

LL Link Layer

NVDS Non-volatile Data Storage

OTA Over The Air

PMU Power Management Unit

PHY Physical Layer

RF Radio Frequency

SCA System Configuration Area

SDK Software Development Kit

SM Security Manager

SoC System on Chip

XIP Execute in Place

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd.  45


	Preface
	Contents
	1 Introduction
	1.1 GR551x SDK
	1.2 BLE Stack

	2 GR551x Bluetooth LE Software Platform
	2.1 Hardware Architecture
	2.2 Software Architecture
	2.3 Memory Mapping
	2.4 Flash Memory Mapping
	2.4.1 SCA
	2.4.2 NVDS

	2.5 RAM Mapping
	2.5.1 RAM Layout in XIP Mode
	2.5.2 RAM Layout in Mirror Mode
	2.5.3 RAM Power Management

	2.6 GR551x SDK Directory Structure

	3 Bootloader
	4 Development and Debugging with GR551x SDK
	4.1 Install Keil
	4.2 Install GR551x SDK
	4.3 Build a Bluetooth LE Application
	4.3.1 Prepare ble_app_example
	4.3.2 Configure a Project
	4.3.2.1 Configure custom_config.h
	4.3.2.2 Configure Memory Layout
	4.3.2.3 Configure After Build

	4.3.3 Add User Code
	4.3.3.1 Modify the main() Function
	4.3.3.2 Implement Bluetooth LE Business Logics
	4.3.3.3 Schedule BLE_Stack_IRQ, BLE_SDK_IRQ, and Applications


	4.4 Generate .hex Files
	4.5 Download .hex Files to Flash
	4.6 Debugging
	4.6.1 Configure the Debugger
	4.6.2 Start Debugging
	4.6.3 Debug in Mirror Mode
	4.6.4 Output Debug Logs
	4.6.5 Debug with GRToolbox


	5 Glossary and Abbreviations

