
GR551x FreeRTOS Example Application

Version: 1.6

Release Date: 2020-06-30

Shenzhen Goodix Technology Co., Ltd.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. All rights reserved.

Any excerption, backup, modification, translation, transmission or commercial use of this document or any portion of
this document, in any form or by any means, without the prior written consent of Shenzhen Goodix Technology Co.,
Ltd is prohibited.

Trademarks and Permissions

 and other Goodix trademarks are trademarks of Shenzhen Goodix Technology Co., Ltd. All other
trademarks and trade names mentioned in this document are the property of their respective holders.

Disclaimer

Information contained in this document is intended for your convenience only and is subject to change without prior
notice. It is your responsibility to ensure its application complies with technical specifications.

Shenzhen Goodix Technology Co., Ltd. (hereafter referred to as “Goodix”) makes no representation or guarantee for
this information, express or implied, oral or written, statutory or otherwise, including but not limited to representation
or guarantee for its application, quality, performance, merchantability or fitness for a particular purpose. Goodix shall
assume no responsibility for this information and relevant consequences arising out of the use of such information.

Without written consent of Goodix, it is prohibited to use Goodix products as critical components in any life support
system. Under the protection of Goodix intellectual property rights, no license may be transferred implicitly or by any
other means.

Shenzhen Goodix Technology Co., Ltd.
Headquarters: 2F. & 13F., Tower B, Tengfei Industrial Building, Futian Free Trade Zone, Shenzhen, China

TEL: +86-755-33338828           FAX: +86-755-33338830

Website: www.goodix.com

http://www.goodix.com

Preface

Preface
Preface

Purpose

This document introduces how to use and modify a FreeRTOS example in a GR551x SDK, to help users quickly get
started with secondary development.

Audience

This document is intended for:

• GR551x user

• GR551x developer

• GR551x tester

• Hobbyist developer

• Technical writer

Release Notes

This document is the fourth release of GR551x FreeRTOS Example Application, corresponding to GR551x SoC series.

Revision History

Version Date Description

1.0 2019-12-08 Initial release

1.3 2020-03-16 Updated the release time in the footers.

1.5 2020-05-30 Updated the project directory figure in “Section 4.1 Project Directory”.

1.6 2020-06-30 Updated the document version based on SDK changes.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. I

Contents

Contents

Preface.. I

1 Introduction.. 1

2 Introduction to FreeRTOS Source Directory...2

3 Initial Operation..3

3.1 Preparation.. 3
3.2 Hardware Connection..3
3.3 Firmware Download.. 4
3.4 Test and Verification..4

3.4.1 Verification of FreeRTOS Features.. 4
3.4.2 Verification of Bluetooth Function... 5

4 Application Details.. 6

4.1 Project Directory..6
4.2 Configuration... 7

4.2.1 Memory Management Policy Configuration...7
4.2.2 Kernel Configuration... 8

4.3 Application Code... 9
4.3.1 Task Creation and Initialization...9
4.3.2 Bluetooth LE Scheduling... 10

5 FAQs..14

5.1 Why Is There No Output Information from GRUart?..14
5.2 Why does the Mobile Phone Discover No Bluetooth Advertising?.. 14

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. II

Introduction

1 Introduction
FreeRTOS is an excellent embedded real-time operating system for microcontrollers. Being light-weighted, distributed
freely under MIT open-source License, and built with an emphasis on portability, tailorability, and flexible scheduling
policy, it requires low RAM/ROM consumption and supports management of task, time, semaphore, message queue,
and memory.

This document introduces the FreeRTOS porting example in the GR551x SDK, including usage of the example and
descriptions of key source code.

Before you use and modify a FreeRTOS example, it is recommended to refer to the following documents and
information.

Table 1-1 Reference documents

Name Description

GR551x Developer Guide Introduces the software/hardware and quick start guide of GR551x SoCs.

Keil User Guide Offers detailed Keil operational instructions. Available at www.keil.com/support/man/docs/uv4/.

FreeRTOS Documentation
Provides guidance on using FreeRTOS. Available at www.freertos.org/Documentation/

RTOS_book.html.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 1

www.keil.com/support/man/docs/uv4/
www.freertos.org/Documentation/RTOS_book.html
www.freertos.org/Documentation/RTOS_book.html

Introduction to FreeRTOS Source Directory

2 Introduction to FreeRTOS Source Directory
FreeRTOS source code is in SDK_Folder\external\freertos, which contains the include folder, the portable
folder, and the .c source files.

 Note:

SDK_Folder is the root directory of GR551x SDK.

Figure 2-1 The freertos folder in GR551x SDK

• The include folder: It contains all FreeRTOS APIs, related structures, and macro definitions.

• The portable folder: It contains FreeRTOS code to be ported to GR551x SoCs with modifications.

• The .c source files: Implement core service code of FreeRTOS.

For more information about FreeRTOS, visit the FreeRTOS official website: www.freertos.org.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 2

www.freertos.org

Initial Operation

3 Initial Operation
This chapter introduces how to rapidly verify the FreeRTOS example in the GR551x SDK.

3.1 Preparation

Perform the following tasks before verifying a FreeRTOS example.

• Hardware preparation

Table 3-1 Hardware preparation

Name Description

J-Link debug probe
JTAG emulator launched by SEGGER. For more information, visit

www.segger.com/products/debug-probes/j-link/.

Development board GR5515 Starter Kit Board (GR5515 SK Board)

Connection cable Micro USB 2.0 serial cable

• Software preparation

Table 3-2 Software preparation

Name Description

Windows Windows 7/Windows 10

Keil MDK5 An integrated development environment (IDE). Available at www.keil.com/download/product/.

LightBlue (iOS) An iOS Bluetooth Low Energy (Bluetooth LE) debugging tool. Available at the App Store.

GRToolbox (Android)
A Bluetooth LE debugging tool for GR551x. Available in

SDK_Folder\tools\GRToolbox.

GRUart (Windows) A GR551x serial port debugging tool. Available in SDK_Folder\tools\GRUart.

GProgrammer (Windows) A GR551x programming tool. Available in SDK_Folder\tools\GProgrammer.

3.2 Hardware Connection

Connect a GR5515 SK Board to a PC with a Micro USB 2.0 cable.

Micro USB Cable

Figure 3-1 Hardware connection

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 3

www.segger.com/products/debug-probes/j-link/
www.keil.com/download/product/

Initial Operation

3.3 Firmware Download

Download the firmware file ble_app_template_freertos_fw.bin of the FreeRTOS example to the GR5515 SK Board. For
details, see GProgrammer User Manual.

 Note:

The ble_app_template_freertos_fw.bin file is in

SDK_Folder\projects\ble\ble_peripheral\ble_app_template_freertos\build\.

3.4 Test and Verification

Verify the FreeRTOS example by checking output information from GRUart.

3.4.1 Verification of FreeRTOS Features

To verify FreeRTOS task scheduling, follow the steps below:

1. Start GRUart, and configure the serial ports according to parameters in the table below.

Table 3-3 Configuring serial port parameters on GRUart

PortName BaudRate DataBits Parity StopBits Flow Control

Select on demand 115200 8 None 1 Uncheck

Figure 3-2 GRUart serial port configuration interface

2. Open the configured serial port, and check the trace results. If GRUart prints log information like “goodix print
test task = ${N}” every other second in the Receive Data pane, the FreeRTOS system runs successfully.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 4

Initial Operation

Figure 3-3 Operating results

3.4.2 Verification of Bluetooth Function

Verify the Bluetooth function of the FreeRTOS example with GRToolbox (Android).

 Note:

For iOS devices, choose LightBlue for the verification.

Run GRToolbox and scan Bluetooth devices nearby. If Goodix_Tem_OS is in the device list, the FreeRTOS application
runs normally.

Figure 3-4 Discovering Goodix_Tem_OS

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 5

Application Details

4 Application Details
Users can customize the FreeRTOS application by modifying configurations of the ble_app_template_freertos
example. For example:

• Modify the FreeRTOS configurations.

• Modify the example program configurations.

4.1 Project Directory

The source code and project file of the FreeRTOS example are in

SDK_Folder\projects\ble\ble_peripheral\ble_app_template_freertos, and project file is in
the Keil_5 folder.

Double-click the project file ble_app_template_freertos.uvprojx, to view the ble_app_template_freertos project
directory structure of the FreeRTOS example in Keil, as shown in the figure below.

Figure 4-1 ble_app_template_freertos project directory

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 6

Application Details

For related files, see the table below.

Table 4-1 File description of ble_app_template_freertos

Group File Description

port_pm.c
This file contains the FreeRTOS power

management interface.

port.c
This file contains FreeRTOS code to be

ported to GR551x SoCs with modifications.
external

heap_4.c
This file contains the FreeRTOS memory

management policy.

main.c
This file contains core code of the FreeRTOS

tests.user_app

user_app.c This file defines Bluetooth advertising.

 Note:

If you cannot expand port.c, open the ble_app_template_freertos example project in Keil, and then press F7 to
compile the project, so that the .c file can display the referenced header files.

FreeRTOSConfig.h: It is a header file referenced by FreeRTOS source code, to configure FreeRTOS kernel.

4.2 Configuration

Users can customize the FreeRTOS memory management policy and the FreeRTOS kernel based on product
requirements.

4.2.1 Memory Management Policy Configuration

The project adopts heap_4.c as the memory management policy. Users can replace the heap_4.c with other ones on
demand.

FreeRTOS supports five memory management policies, which are implemented through heap_1.c, heap_2.c, heap_3.c,
heap_4.c, and heap_5.c respectively. Information about each file is provided as follows:

Table 4-2 FreeRTOS memory management policy

Memory Management Policy Source File Memory Management Characteristics

heap_1.c

• It is easy to be implemented with less code.

• It supports memory application only, and does not permit memory to be released
once the memory has been allocated.

heap_2.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Do not merge adjacent free blocks, which may cause memory fragmentation.

• Repeated applications and releases of memory cause memory fragmentation.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 7

Application Details

Memory Management Policy Source File Memory Management Characteristics

heap_3.c

• Wrap malloc() and free() functions for thread safety.

• Need to configure the heap size in the startup assembling file startup_gr55xx.s.

• It requires checking the Use MicroLIB in the Options for Target ‘GR5515_SK’ pane
of Keil; otherwise, this policy cannot work.

heap_4.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Merge adjacent free memory blocks.

• Repeated applications and releases of memory cause memory fragmentation.

heap_5.c

• Apply the optimum matching algorithm.

• Allow releasing allocated memory blocks.

• Merge adjacent free memory blocks.

• Allow spanning memory heaps across multiple non-adjacent memory blocks.

• Need to initialize memory heaps successively.

4.2.2 Kernel Configuration

FreeRTOS kernel is configured by the macro definitions in the FreeRTOSConfig.h, including configuration of the main
clock frequency and the highest priority level of a task. Users can modify these macro definitions to customize a new
kernel. Common macro definitions of FreeRTOS are shown in the table below:

Table 4-3 FreeRTOS common macro definitions

Macro Definition Configuration

configUSE_IDLE_HOOK
1: Enable the HOOK function of idle tasks.

0: Disable the HOOK function of idle tasks.

configUSE_TICK_HOOK
1: Enable the Hook function of the TICK interrupt.

0: Disable the Hook function of the TICK interrupt.

configCPU_CLOCK_HZ
Define the main frequency of CPU (unit: Hz); the default value of

the current platform is 64000000.

configTICK_RATE_HZ
Define the clock tick count of the system (unit: Hz); the default

value of the current platform is 1000.

configMAX_PRIORITIES

Define the maximum priorities for users.

If the maximum number is defined to 5, the priority levels available

for users are 0, 1, 2, 3 and 4, excluding 5.

configMINIMAL_STACK_SIZE

Define the default minimum stack size for system tasks (unit: word);

the default value of the current platform is 512 words (2,048 bytes

in total).

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 8

Application Details

Macro Definition Configuration

configTOTAL_HEAP_SIZE

Refer to the memory pool capacity for memory management (unit:

KB); the default value of the current platform is 32 KB.

If dynamic APIs are used, the FreeRTOS kernel requests memory

from the memory pool. The total memory shall be allocated on

demand to avoid abnormal system operation.

configPRIO_BITS
Refer to bits occupied by the priority level set for the current

platform (default value: 4).

configLIBRARY_LOWEST_INTERRUPT_PRIORITY
Refer to the lowest priority level supported by the current platform

(default value: 15).

configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY

Define the highest priority level of interrupts under the FreeRTOS

management. A smaller number indicates a higher priority level.

If the number is set to 5, tasks at a priority level below 5 are beyond

the control of FreeRTOS. In interrupt masking, interrupts at priority

levels below 5 are not masked.

For more information about macro configurations, visit https://www.freertos.org/a00110.html.

4.3 Application Code

This section describes how to use code to create and initialize tasks.

4.3.1 Task Creation and Initialization

Path: ble_app_template_freertos\Src\user\main.c

Function: int main(void);

This is the main entry of applications. It enables peripheral initialization, BLE Protocol Stack initialization, FreeRTOS
task creation, and FreeRTOS scheduling and startup.

int main(void)
{
 /*< Initialize user peripherals. */
 app_periph_init();

 /*< Initialize BLE Stack. */
 ble_stack_init(&s_app_ble_callback, &heaps_table);

 /*< Create some demo tasks via freertos. */
 xTaskCreate(vStartTasks, "create_task", 512, NULL, 0, NULL);

 /*< FreeRTOS runs all tasks. */
 vTaskStartScheduler();

 /*< Never perform here */
 for (;;);
}

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 9

https://www.freertos.org/a00110.html

Application Details

Path: ble_app_template_freertos\Src\user\main.c

Function: vStartTasks();

“Print_test_task” is created in this function. This task is responsible for printing information.

static void vStartTasks(void *arg)
{
 xTaskCreate(print_test_task, "print_task", APP_TASK_STACK_SIZE,
 NULL, configMAX_PRIORITIES - 1, NULL);
 xTaskCreate(dfu_schedule_task, "dfu_schedule_task", DFU_TASK_STACK_SIZE,
 NULL, configMAX_PRIORITIES - 2, NULL);
 vTaskDelete(NULL);
}

Path: ble_app_template_freertos\Src\user\main.c

Function: print_test_task();

This function implements cyclic printing at a 1-second latency. The vTaskDelay function is in units of millisecond.

static void print_test_task(void *arg)
{
 uint8_t index = 0;
 while (1)
 {
 APP_LOG_INFO("goodix print test task=%d\r\n", index++);
 app_log_flush();
 vTaskDelay(1000);
 }
}

4.3.2 Bluetooth LE Scheduling

This section introduces how BLE Protocol Stack and Bluetooth LE applications schedule tasks in FreeRTOS.

After entering the main() function, complete the following steps before performing FreeRTOS task scheduling:

1. Initialize hardware peripherals.

2. Implement required BLE_SDK_Callback interfaces for Bluetooth LE applications, and use these interfaces to
initialize corresponding member variables in app_callback_t.

3. Apply for the memory block (heaps_table) required to run the BLE Protocol Stack.

4. Initialize BLE Protocol Stack.

After initialization, BLE Protocol Stack enables two interrupts: BLE_IRQ and BLE_SDK_IRQ.

• Notify the Bluetooth LE Event of BLE Protocol Stack to Bluetooth LE applications.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 10

Application Details

BLE_SDK_CALLBACKBLE_SDK_IRQ USER_PROC

Do Event Process

CallBack

BLE_IRQ

Semaphore
Post

Semaphore Pend

Set event &
Pend SDK IRQ

Do User Process

Figure 4-2 BLE Protocol Stack notifying Bluetooth LE applications of a Bluetooth LE Event

As shown in the figure above, when Bluetooth LE Baseband receives a data package, it triggers BLE_IRQ interrupt.
BLE_IRQ_Handler generates a Bluetooth LE Event and sets the BLE_SDK_IRQ interrupt to Pending state. During
BLE_SDK_IRQ_Handler execution, the Bluetooth LE Event is processed and Bluetooth LE applications are notified of
part of the Bluetooth LE Event through the BLE_SDK_Callback function.

Recommendations for implementing BLE_SDK_Callback function:

1. The BLE_SDK_Callback function is called in the interrupt handling function (BLE_SDK_IRQ_Handler). Thus it is
recommended not to perform long-running operation in the callback function; otherwise, implementation of
user tasks may be delayed.

2. If any data or state information in the callback function requires timely processing by Bluetooth LE applications,
it is recommended to use the semaphore mechanism to complete service logic processing in user tasks. This
means you should wait for the semaphore (Pend) in user tasks, and release the semaphore (Post) in the callback
function.

3. If the callback function contains a large amount of data, and requires long-time processing or ordered processing,
developers are recommended to use the message queue to cache data and then transfer the data to other tasks
for processing.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 11

Application Details

4. In the BLE_SDK_Callback function, call FreeRTOS APIs that end in “FromISR” if required, and forbid waiting for
semaphore in the BLE_SDK_Callback function.

• Send requests from Bluetooth LE application layer to BLE Protocol Stack.

BLE_SDK_CALLBACK

GATT Write

BLE_SDK_IRQ BLE_SDK BLE_IRQ BASEBAND

Send Data

ACK from The Peer

USER_PROC

Set Event
&

Pend BLE_SDK_IRQ

Semaphore
Pend

Semaphore Post

GATT Callback

BLE_IRQ_Handler

BLE_SDK_IRQ_Handler

USER_PROC is
suspended

USER_PROC is
resumed for

Write Done

Figure 4-3 Processing of requests from Bluetooth LE applications to BLE Protocol Stack

As shown in the figure above, Bluetooth LE applications uses GATT APIs to write data to the peer device. This action
requires interactions with the peer device, and the operating results cannot be obtained immediately. Bluetooth LE
applications need to wait for the processing results from BLE Protocol Stack. Developers can use semaphore to convert
an asynchronous function call to a synchronous function call according to service logic demands from Bluetooth LE
applications:

1. Suspend the task by using the semaphore (Pend) interface after GATT APIs are called by user tasks.

2. BLE Protocol Stack waits for ACK from the peer device after sending the data from Bluetooth LE applications.

3. Bluetooth LE Baseband triggers the BLE_IRQ interrupt after receiving ACK from the peer device.

4. BLE_IRQ_Handler generates a Bluetooth LE Event and sets the BLE_SDK_IRQ interrupt to Pending state.

5. The Bluetooth LE Event is processed, and the BLE_SDK_Callback function is called during BLE_SDK_IRQ_Handler
execution.

6. Implement the semaphore (Post) interface in the BLE_SDK_Callback function to release the blocked semaphore.

By then, implementation of user tasks resumes and data writes are done.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 12

Application Details

Generally, developers only need to focus on functions at the application layer, and how to implement callback
functions to enable interaction with users. BLE Protocol Stack is transparent to developers. For GR551x SDK
programming model, see GR551x Developer Guide.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 13

FAQs

5 FAQs
This chapter describes possible problems, reasons, and solutions during verification and application of the FreeRTOS
example.

5.1 Why Is There No Output Information from GRUart?

• Description

There is no output information from GRUart when the on-board program is running.

• Analysis

Serial ports are set incorrectly. For example, if the baud rate is wrong, the serial port tool cannot correctly display
the data received.

• Solution

Check whether the serial cable is connected correctly, whether the COM port number is correct, and whether
the baud rate is set correctly according to Table 3-3. It is recommended to first use the SDK default firmware to
detect the development environment.

5.2 Why does the Mobile Phone Discover No Bluetooth Advertising?

• Description

A mobile phone cannot discover advertising when the on-board program is running.

• Analysis

The firmware cannot run normally, resulting in no Bluetooth advertising.

• Solution

Try to reset or re-download the default firmware, and check the antennas.

Copyright © 2020 Shenzhen Goodix Technology Co., Ltd. 14

	Preface
	Contents
	1 Introduction
	2 Introduction to FreeRTOS Source Directory
	3 Initial Operation
	3.1 Preparation
	3.2 Hardware Connection
	3.3 Firmware Download
	3.4 Test and Verification
	3.4.1 Verification of FreeRTOS Features
	3.4.2 Verification of Bluetooth Function

	4 Application Details
	4.1 Project Directory
	4.2 Configuration
	4.2.1 Memory Management Policy Configuration
	4.2.2 Kernel Configuration

	4.3 Application Code
	4.3.1 Task Creation and Initialization
	4.3.2 Bluetooth LE Scheduling

	5 FAQs
	5.1 Why Is There No Output Information from GRUart?
	5.2 Why does the Mobile Phone Discover No Bluetooth Advertising?

