

GR551x Device Synchronization Profile示例手册

版本: 1.2

发布日期: 2021-08-09

深圳市汇顶科技股份有限公司

版权所有 © 2021 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的 适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址: 深圳市福田保税区腾飞工业大厦B座2层、13层

电话: +86-755-33338828 传真: +86-755-33338099

网址: <u>www.goodix.com</u>

前言

编写目的

本文档介绍了如何使用和验证GR551x SDK中的Device Synchronization Profile示例,旨在帮助用户快速进行 二次开发。

读者对象

本文适用于以下读者:

- GR551x用户
- GR551x开发人员
- GR551x测试人员
- 开发爱好者
- 文档工程师

版本说明

本文档为第3次发布,对应的产品系列为GR551x。

修订记录

版本	日期	修订内容
1.0	2021-02-05	首次发布
1.1	2021-06-22	更新event period的取值范围和相关的GRToolbox界面
1.2	2021-08-09	更新"准备工作"章节

GODiX

目录

前言	I
1 简介	1
2 Profile概述	2
2.1 设备角色	2
2.2 广播数据	3
2.3 设备同步服务	
2.3.1 Device Sync Role特性	4
2.3.2 Device Sync Event Count特性	4
2.3.3 Device Sync Event Period特性	4
2.3.4 Device Sync Status特性	4
2.3.5 Device Sync Control Point特性	5
3 初次运行	6
3.1 准备工作	6
3.2 固件烧录	6
3.3 测试验证	7
4 应用详解	15
4.1 运行流程	15
4.2 关键代码	16
4.2.1 接收来自DS Host的指令	16
4.2.2 开始同步指令	16
4.2.3 取消同步指令	17
5 常见问题	
5.1 设备之间未自动进行时序漂移校准	18
6 附录	19

G@DiX

1 简介

Goodix自定义Device Synchronization Profile(以下简称DSP)示例通过手机端APP(GRToolbox)设置参数,可实现设备间时序的同步,即通过一个时序源使一组设备在同步状态下工作。

本文将介绍如何使用和验证GR551x SDK中的Goodix自定义DSP示例。

在进行操作前,可参考以下文档。

表 1-1 文档参考

名称	描述
GR551x开发者指南	GR551x软硬件介绍、快速使用及资源总览
Bluetooth Core Spec	Bluetooth官方标准核心规范
J-Link用户指南	J-Link使用说明: www.segger.com/downloads/jlink/UM08001_JLink.pdf
Keil用户指南	Keil详细操作说明: www.keil.com/support/man/docs/uv4/
GR551x BLE Stack用户指南	介绍GR551x低功耗蓝牙协议栈各层的基本功能

2 Profile概述

本章主要介绍DSP定义的设备角色和设备同步服务(Device Synchronization Service, DSS)。

2.1 设备角色

DSP定义的设备角色包括DS Host和DS Device。

DS Host

DS Host主要用于设置DS Device的参数,控制DS Device的行为,一般为手机APP,如GRToolbox。它承担GAP Central角色,负责扫描、连接DS Device。在建立连接后,它可以接收由DS Device发送的时序同步信息,并通过命令配置DS Device的行为,如设置DS Device的角色、创建时序源、开启时序源同步和删除时序源等。

DS Device

DS Device在DS Host的配置下执行时序同步相关操作。DS Device在执行这些操作时,除了和DS Host建 立连接以接收控制命令外,还需与其他DS Device互相连接以同步时序信息。

DS Device在互相连接以同步时序信息时,又可分为两种时序同步设备角色:Sync Source Role和Sync Device Role。Sync Source同时承担GAP Central和GAP Peripheral两个角色,负责提供时序源,可同步多个与其连接的Sync Device的时序;Sync Device则只承担GAP Peripheral角色,等待被Sync Source同步。

以GRToolbox作为DS Host为例,应用场景如图 2-1所示。

DS Host与DS Device交互过程中,涉及相关概念解释如下:

- Device Sync Event Count:时序同步事件计数。Sync Source在完成设置设备角色、创建时序源的操作 后,每隔一段时间会产生一个时序同步事件。时序同步事件的计数从0开始。当开启了自动时序漂移 校准时,它可以用来确定Sync Source和Sync Device何时进行校准。
- Device Sync Event Period:时序同步事件周期,即时序同步事件之间的间隔,单位为312.5 µs。当Sync Device被同步后,会跟随Sync Source定期产生时序同步事件。该参数不宜设置过小或过大(该参数的取值范围请参考附录),当该参数设置过小时,两个时序同步事件的间隔不足以供设备间建立连

接;当该参数设置过大时,即使经过校准,Sync Device和Sync Source的时序同步事件间的误差也会过大。

 Auto Drift Calibration Period: 自动时序漂移校准周期。为了减少因设备时序漂移产生的误差,可以在 开始同步时开启自动时序漂移校准(参考附录),设置自动时序漂移校准周期,其值为时序同步事件的个数。在每一个自动时序漂移校准周期内,Sync Source和Sync Device会进行一次时序漂移校准。 该参数的值为时序同步事件的个数,所以设置该值时需考虑时序同步事件周期的大小,当时序同 步事件周期过小时,该参数不宜设置过小,否则在一个自动时序漂移校准周期内Sync Source和Sync Device可能还未执行完时序同步的流程;当时序同步时间周期过大时,该参数不宜设置过大,否则在 校准前,Sync Source和Sync Device的时序同步事件间的误差就已过大而影响时序同步的效果。

为了验证时序同步的结果,在每个时序同步事件到来时,DS Device上用于验证时序同步事件到来的引脚的电平都会翻转两次,使用逻辑分析仪观察该引脚的电平时,即可看到每个时序同步事件以脉冲的形式呈现。当Sync Source创建完时序源,可观察到每隔一个时序同步事件周期都会出现一个脉冲。

当Sync Device和Sync Source开始同步或校准后,两设备分别发起广播或扫描以建立连接;连接成功后Sync Device开始接收来自于Sync Source的时序同步信息,并通过这些信息来确定或调整时序同步的时间点,这个过程中Sync Device没有时序同步事件产生,也就没有脉冲产生。

在Sync Source和Sync Device都开启了自动时序漂移校准,且自动时序漂移校准周期为10的情况下,时序同步流程细节详见图 2-2。

图 2-2 时序同步

2.2 广播数据

DSP定义了两种广播,广播名分别为Goodix_DSS_CFG、Goodix_DSS_SYNC。

- Goodix_DSS_CFG:供DS Host和DS Device进行连接。
- Goodix_DSS_SYNC: 供DS Device之间进行连接,以进行时序同步。

设备会根据当前场景决定开启哪种广播。

2.3 设备同步服务

DSP中定义的设备同步服务(DSS)也由Goodix自定义,用于发送与同步设备时序相关的数据和指令,以及接收回应;其专属128位UUID为A6ED0A01-D344-460A-8075-B9E8EC90D71B。

对DSS的Characteristics的详细描述参考表 2-1。

Characteristic	UUID	Туре	Support	Security	Properties
Device Sync Role	A6ED0A02-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Read
Device Sync Event Count	A6ED0A03-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Read, Notify
Device Sync Event Period	A6ED0A04-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Read
Device Sync Status	A6ED0A05-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Read
Device Sync Control Point	A6ED0A06-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Write, Indicate

表 2-1 DSS的Characteristics

2.3.1 Device Sync Role特性

当Device Sync Role特性被读取时,它将返回当前DS Device的设备角色。Device Sync Role特性的值由DS Host在设置设备角色的过程中被定义(参考附录)。默认情况下,该特性的值被设置为"Invalid Role"。

2.3.2 Device Sync Event Count特性

当该特性被读取或开启通知时,它将返回Device Sync Event Count值,该值表示时序同步事件计数。

2.3.3 Device Sync Event Period特性

当Device Sync Event Period特性被读取时,将返回一个Device Sync Event Period值,该值表示时序同步事件 周期,单位为312.5 μs。

- 若当前DS Device的角色为Sync Source Role,该特性的值在DS Host执行创建时序源的过程中被定义 (参考附录);
- 若角色为Sync Device Role,则该特性的值在DS Host执行同步的过程中,被Sync Source同步为Sync Source的时序同步周期值。

2.3.4 Device Sync Status特性

该特性被读取时,将返回一个Status值,表示当前时序同步状态。时序同步状态包括Config Ready(0x00)、In Adv(0x01)、In Scan(0x02)和In Initiating(0x03),如图 2-3所示。

2.3.5 Device Sync Control Point特性

DS Host通过Device Sync Control Point特性控制DS Device执行某些特定操作。

Device Sync Control Point特性的格式为:操作码+参数。相关定义详见附录。

3 初次运行

本章主要介绍如何运行和验证GR551x DSP示例。

🛄 说明:

SDK_Folder为GR551x SDK的根目录。

3.1 准备工作

运行DSP示例之前,需要完成以下准备工作。

• 硬件准备

表 3-1 硬件准备

名称	描述
开发板	GR5515 Starter Kit开发板(以下简称开发板)3块
数据线	Micro USB 2.0数据线
Android手机	Android 5.0(KitKat)及以上版本(3部)

软件准备

表 3-2 软件准备

名称	描述	
Windows	Windows 7/Windows 10操作系统	
J-Link Driver	J-Link驱动程序,下载网址: <u>www.segger.com/downloads/jlink/</u>	
Keil MDK5	IDE工具,支持MDK-ARM 5.20 及以上版本,下载网址: <u>www.keil.com/download/</u> product/	
GRToolbox (Android)	BLE调试工具,位于SDK_Folder\tools\GRToolbox	
GRUart (Windows)	串口调试工具,位于SDK_Folder\tools\GRUart	
	Drogramming工具 位于CDK Folder\toole\CDrogrammer	

3.2 固件烧录

DSP示例工程的源码位于SDK_Folder\projects\ble\ble_multi_role\ble_app_dss。

用户可通过GProgrammer将*ble_app_dss_fw.bin*固件烧录至三块开发板,其中一块开发板作为DS Device中的Sync Source(命名为"开发板A"),其余两块开发板则作为DS Device中的Sync Device(分别命名为"开发板B"和"开发板C")。GProgrammer烧录固件的具体操作方法,请参考《GProgrammer用户手册》。

下载固件至开发板前,还需执行以下操作:

• 因该工程对程序的运行速度要求较高,故本工程推荐运行于Mirror模式,需在custom_config.h中修改 "APP_CODE_RUN_ADDR"值,在本示例中修改为 "0x00820000"。

• 如果修改了ble_app_dss示例工程的源代码,需重新编译示例工程后将生成的ble_app_dss_fw.bin固件 下载至开发板。编译示例工程的具体操作可参考《GR551x开发者指南》。

🛄 说明:

- *ble_app_dss_fw.bin*位于: SDK_Folder\projects\ble\ble_multi_role\ble_app_dss\build。
- **GProgrammer**位于SDK_Folder\tools\GProgrammer。
- 不同设备应设置为不同的广播地址。

3.3 测试验证

运行DSP示例需使用至少两块开发板,此次测试和验证则使用三块开发板。同时,为控制3个DS Device,还需3部运行GRToolbox的手机。测试所需软硬件准备好,即可进行DSP示例的测试验证,具体步骤如 下:

1. 开启DS Device广播,使用GRToolbox扫描DS Device设备。

分别按下三块DS Device的"OK"键开启广播,同时打开三部手机的GRToolbox,点击"应用 > DSS",可看到DSS的控制界面如图 3-1所示。

🛄 说明:

本文中GRToolbox的截图仅供用户了解操作步骤,实际界面请参考最新版本GRToolbox。

点击下方"连接"选项扫描设备,每个GRToolbox都能扫描到三台广播名为"Goodix_DSS_CFG"的设备(该广播名可在*user_app.c*中配置),如图 3-2所示。

图 3-2 发现 "Goodix_DSS_CFG"

2. 点击"Goodix_DSS_CFG"并连接。

每个GRToolbox与一个广播名为"Goodix_DSS_CFG"的DS Device建立连接,连接后界面如图 3-3所示。该页面提供如下功能:

- "设备角色":设置和读取角色
- "时序同步事件计数": 读取或开启时序同步事件计数的通知
- "时序同步事件周期": 读取时序同步事件周期
- "时序同步状态": 读取时序同步状态
- "进入低功耗":进入低功耗
- "开始同步":开始同步
- "创建时序源"和"删除时序源":创建时序源和删除时序源。
- 其中,只有Sync Source能执行"创建时序源"的操作。

图 3-3 建立连接

3. 设置设备角色。

打开与开发板A相连的GRToolbox,点击"设备角色"右侧的"W"键,将其角色设置为"Sync Source Role",并使用同样的方式将其余两个设备的角色设置为"Sync Device Role",如图 3-4所示。通过 点击"设备角色"右侧的"R"键依次读取当前设备角色,结果如图 3-5所示。

16:05 P 🕴 🕸 📾
← DSS :
Goodix_DSS_CFG
设备角色
请选择
Sync Source Role
Sync Device Role
断开连接

图 **3-4** 设置角色

图 3-5 读取角色

4. 创建时序源。

打开与Sync Source相连的GRToolbox,点击"创建时序源"选项创建时序源。在此次演示中设置Device Sync Event Period值为"3000",即每隔0.9375s,时序同步事件计数值加1。此时若选择读取时序同步事件周期,则可以看到其值为"3000->937500.0us",如图 3-6所示;若选择读取或开启时序同步事件计数的通知,则可在GRToolbox上看到对应值在累加。同时在GRUart界面上也可看到时序同步事件计数值的变化,如图 3-7所示。

图 3-6 创建时序源

GRUart_v1.1_0						_		×
	-Receive Data							
Serial Port Setting	Format:	● ASCII	⊖ Hex	Show 3	Time 🗹	Font	Size	9
PortName COM50 JLink C ~	Background:) White	🔘 Black	Disco	nnect		Sea	arch
BaudRate 115200 ~	[2021-03-05 01:44 [2021-03-05 01:48 [2021-03-05 01:48	4:37 232]AP 5:00 473]AP 5:00 476]AP	?_D: Start Adver ?_I: Connected(C ? D: Advertising	tising)) with the p	eer 74:24	:28:EB	:FC:E8	^
DataBits 8 🗸	[2021-03-05 01:45 [2021-03-05 01:45 [2021-03-05 01:45	5:03 162]AP 5:52 225]AP	2.D: Set Role: 1 2.D: Create Sync 2.D: Create Sync	, Source.			-	
Parity None 🗸	[2021-03-05 01:48 [2021-03-05 01:48 [2021-03-05 01:48	5:53 143]AP 5:54 110]AP 5:55 024]AP	2.D: Synchronize 2.D: Synchronize 2.D: Synchronize	e count: 0. e count: 1. e count: 2.				
StopBits 1	[2021-03-05 01:45 [2021-03-05 01:45	5:55 988]AP 5:56 903]	2_D: Synchronize	e count: 3.				
Flow Control RTS DTR	APP_D: Synchroniz [2021-03-05 01:46 [2021-03-05 01:46 [2021-03-05 01:46 [2021-03-05 01:46 [2021-03-05 01:46 [2021-03-05 01:46	re count: 4 5:57 868]AP 5:58 786]AP 5:59 713]AP 5:00 639]AP 5:01 605]AP 5:03 128]AP 5:03 602]AP	P_D: Synchronize P_D: Synchronize P_D: Synchronize P_D: Synchronize P_D: Synchronize P_D: Synchronize	e count: 5. e count: 6. e count: 7. e count: 8. e count: 9. e count: 10. e count: 11	2021-03-0 Save	15 01:40 Resu	6:03 4 me (90] Clear
TxRx Data Size	Send data							
	Single Multi							
Tx Count 0 Bytes	Format: 💿 ASC	II 🔾 Hey	Loop 🗹	Period [100 ms	\checkmark	NewLi	.ne
Rx Count 871574 Bytes								
Clear	file peth			D	Courd 1	Dev		
Port Opened	TTE hatu			browse	sena	raus	e (iear .:

图 3-7 时序同步事件计数累加

- 5. 开始同步。
 - (1) 打开与Sync Source相连的GRToolbox,点击"开始同步"选项打开选项卡。

在此次演示中, "Auto Drift Calibration"和 "Auto Low Power Enter"均打开, "Auto Drift Cali Period"被设置为10,即在每10个时序同步事件中自动进行一次时序漂移校准, "Auto Sync Device Num"则被设为2,即Sync Source最多可以同步两台Sync Device,如图 3-8所示。

图 3-8 设置同步参数

- (2) 分别打开与两个Sync Device相连的GRToolbox,点击"开始同步"选项打开选项卡,参照Sync Source设置的参数进行设置(推荐设置完全相同的参数值),其中"Auto Low Power Enter"可 以和Sync Source设置为不同,可打开或关闭; "Auto Sync Device Num"则可以忽略不填。
- (3) 当全部设备的选项均设置完毕后, Sync Source和Sync Device之间开始进行时序同步。

Sync Source对Sync Device依次执行同步操作,如果开启了"Auto Low Power Enter",则两台Sync Device在被同步后立即进入低功耗模式,断开与GRToolbox的连接。而Sync Source则在同步完两台Sync Device后才进入低功耗模式,与所有设备断开连接。同时,如图 3-9所示,可看到三台设备在同步打印时序同步事件计数值。

图 3-9 设备串口信息

此时用户可通过逻辑分析仪观察DS Device(即开发板B和开发板C)上用于验证时序同步事件到来的引脚GPIO_4的电平,结果如图 3-10所示。

图 3-10 IO电平翻转信息

Sync Source和Sync Device进行自动时序漂移校准前的最后一个时序同步事件间的时间差(T1)是最大的,该差值受Device Sync Event Period和Auto Drift Cali Period两个参数的影响,这两个值越大,该差值就越大。Sync Source和Sync Device进行自动时序漂移校准后的第一个时序同步事件间的时间差(T2) 是最小的,允许的最大值为Device Sync Event Period*312.5 µs*芯片晶振误差,在此次演示中芯片晶振误差为500 ppm。

使用逻辑分析仪测量Sync Source和Sync Device的T1和T2,测量marker的位置可参考图 3-10和图 3-11,测量结果如表 3-3 所示。

图 3-11 测量marker所在位置

表 3-3 时序同步事件时间差

设备名称	T1	Τ2
开发板B	4.563 μs	500 ns
开发板C	56.445 μs	10.811 µs

由上表可以看出,当Device Sync Event Period值为3000,Auto Drift Cali Period值为10时,在刚进行完自 动时序漂移校准后,Sync Device和Sync Source间时序同步事件的时间差分别为500 ns和10.811 µs,均 小于46.875 µs,即小于3000*312.5 µs*500 ppm。

6. 取消同步。

- 在第5步Sync Source执行"开始同步"操作后,若长期未扫描到Sync Device,可点击"取消同步"选项取消同步操作;
- Sync Device在开始同步后,若长期未与Sync Source建立连接,也可通过点击"取消同步"选项 取消同步操作。
- 7. 删除时序源。

打开与Sync Source相连的GRToolbox,点击"删除时序源"选项即可删除时序源,停止时序同步。

8. 进入低功耗模式。

如果DS Device在第5步"开始同步"时没有打开"Auto Low Power Enter", DS Device完成时序同步后 不会进入低功耗模式,此时可以通过手动选择"进入低功耗"选项使设备进入低功耗模式,操作结 果和第5步"开始同步"时打开"Auto Low Power Enter"时相同。

GODiX

4 应用详解

本章将介绍DSP示例的运行流程和关键代码。

4.1 运行流程

DSP示例开始运行后,将依次执行外设初始化、BLE协议栈初始化、DSS初始化等操作。

DS Host(如GRToolbox)扫描到DS Device的广播并与其建立连接后,实现的流程如图 4-1所示,为了便于 演示,该图仅列举了Sync Source同步一个Sync Device的场景。

图 4-1 实现流程图

4.2 关键代码

下文介绍了DS Host、DS Device(Sync Source)和DS Device(Sync Device)交互过程中的关键代码。

4.2.1 接收来自DS Host的指令

当DS Device接收到来自DS Host的控制指令数据时,会解析出相应的事件上报至应用层,并执行相应的指令。

```
路径: 工程目录下的user_app\user_app.c
```

```
名称: dss_evt_handler();
```

```
static void dss evt handler(dss evt t *p evt)
{
    .....
    if (DSS EVT SYNC_SELF_OR_PEER == p_evt->evt_type)
    {
          s is enter lp mode = p evt->is enter lp mode;
          if (DSS ROLE SYNC DEVICE == s role)
          {
              error code |= ble gap adv param set(DSS SYNC ADV IDX, BLE GAP OWN ADDR STATIC,
 &s_gap_adv_param);
           error code |= ble gap adv data set(DSS SYNC ADV IDX, BLE GAP ADV DATA TYPE DATA,
 s adv data sync, sizeof(s adv data sync));
              error_code |= ble_gap_adv_start(DSS_SYNC_ADV_IDX, &s_gap_adv_time_param);
              s is in adv = true;
          }
          .....
    }
    .....
}
```

4.2.2 开始同步指令

DSS解析该指令并以"DSS_EVT_SYNC_SELF_OR_PEER"事件上报至应用层。

- 若当前设备为Sync Source,则通过dss_evt_handler()开启扫描,当其扫描到广播时调用app_adv_report_handler()过滤Sync Device设备;当Sync Source扫描到目标设备时停止扫描,并在app_scan_stop_handler()中与该设备建立连接(上述函数均位于*user_app.c*中)。当建立连接后,Sync Source即可通过*dss.c*中的dss_sync_src_distribute()进行同步。
- 若当前设备为Sync Device,则通过dss_evt_handler()开启广播,当其与Sync Source设备建立连接时,可在*user_app.c*中的app_adv_stop_handler()中调用dss_sync_src_distribute()进行同步。

以Sync Source设备为例,开始同步的关键代码如下:

```
路径: 工程目录下的user_app\user_app.c
```

名称: app_connected_handler();

G@DiX

4.2.3 取消同步指令

DSS解析该指令并以"DSS_EVT_SYNC_CANCEL"事件上报至应用层。

- 若当前设备为Sync Source,则判断当前设备是否处于扫描态,若处于扫描态则停止扫描,并将开始 同步时设置的参数复位;
- 若当前设备为Sync Device,则判断当前设备是否处于广播态,若为广播态则停止广播,并将开始同步时设置的参数复位。

以Sync Source为例,取消同步的关键代码如下:

```
路径: 工程目录下的user_app\user_app.c
```

```
名称: dss_evt_handler();
```

```
static void dss evt_handler(dss_evt_t *p_evt)
{
    if (DSS EVT SYNC CANCEL == p evt->evt type)
    {
        .....
        if (DSS ROLE SYNC SOURCE == s role)
        {
            if (s_is_in_scan)
            {
                if (ble gap scan stop())
                 {
                     rsp_id = DSS_RSP_ID_CANCEL_SYNC_FAIL;
                 }
                 else
                 {
                     dss reset params(s cfg conn idx);
                 }
            }
        }
    }
    .....
}
```

GODIX

5 常见问题

本章描述在使用及验证DSP示例时,可能出现的问题、原因及处理方法。

5.1 设备之间未自动进行时序漂移校准

问题描述

执行"开始同步"操作时,设备均开启了自动进行时序漂移校准,但Sync Source和Sync Device运行到 各自的自动时序漂移校准周期时,未进行时序漂移校准,且返回timeout的响应信息。

• 问题分析

可能因Sync Source和Sync Device执行"开始同步"操作时,设置的自动时序漂移校准周期不同,导致 设备只能在运行到它们所设置的自动时序漂移校准周期的最大值时,才会进行时序漂移校准。

• 处理方法

在执行"开始同步"操作时,Sync Source和Sync Device设置的自动时序漂移校准周期应相同。

G@DiX

6 附录

DSS的Device Sync Control Point特性的格式为:操作码+参数。相关定义详见下表。

操作码	参数	描述
0x00	N/A	Invalid
0x01	<device role(uint8)="" sync=""> 0x00: Invalid Role (default) 0x01: Sync Source Role 0x02: Sync Device Role </device>	启动设置DS Device设备角色的规程。 参数为用户设置的设备角色Device Sync Role。 设置成功后该参数可以通过Device Sync Role特性读取。
0x02	<device (uint16)="" event="" period="" sync=""> • 该参数单位为312.5 μs • 取值范围为0x0140 ~ 0x0CB0</device>	启动Sync Source创建时序源的规程。 参数为用户设置的时序同步事件周期Device Sync Event Period。 设置成功后该参数可通过Device Sync Event Period特性读取。 该规程仅适用于Sync Source Role。
0x03	 <auto (uint8="" bit0)="" calibration="" drift=""></auto> 0: 禁用该功能 1: 启用该功能 <auto (uint8="" bit1)="" enter="" low="" power=""></auto> 0: 禁用该功能 1: 启用该功能 <auto (uint32)="" calibration="" drift="" period=""></auto> 该参数值为时序同步事件的个数 <auto (uint8)="" device="" num="" sync=""></auto> 该参数取值范围为1~30 	启动DS Device进行时序同步的规程。 参数可由用户自行设置,包括: • 自动进行时序漂移校准标志(Auto Drift Calibration) • 自动进入低功耗模式标志(Auto Low Power Enter) • 自动时序漂移校准周期(Auto Drift Calibration Period) • 最大同步设备数(Auto Sync Device Num) 说明: Auto Drift Calibration Period仅在Auto Drift Calibration开启时生 效,且Sync Source和Sync Device设置的该值要相同。
0x04	NULL	启动DS Device取消时序同步的规程。
0x05	NULL	启动DS Device进入低功耗模式的规程。
0x06	NULL	启动DS Device删除时序源、停止时序同步的规程。
OxFF	<request (uint8)="" code="" op="">& <response value (UINT8)></response </request>	用于标识对该Control Point的响应。

表 6-1 Device Sync Control Point规程定义