

GR5526 Starter Kit用户指南

版本: 1.0

发布日期: 2023-01-10

深圳市汇顶科技股份有限公司

版权所有 © 2023 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的 适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址:深圳市福田保税区腾飞工业大厦B座12-13层

电话: +86-755-33338828 邮编: 518000

网址: <u>www.goodix.com</u>

前言

编写目的

本文介绍了GR5526 Starter Kit的组成、硬件特性、开发板的硬件布局及配置,以及射频及电流功耗测试等,旨在帮助用户快速了解GR5526 Starter Kit开发板,并使用GR5526芯片开发低功耗蓝牙产品应用。

读者对象

本文适用于以下读者:

- GR5526用户
- GR5526开发人员
- GR5526测试人员
- •
 文档工程师

版本说明

本文档为第1次发布,对应的产品系列为GR5526。

修订记录

版本	日期	修订内容
1.0	2023-01-10	首次发布

GODiX

前言	I
1 简介	1
1.1 特性	1
2 快速入门	3
2.1 准备工作	
2.2 软件安装	
2.3 硬件连接及配置	
2.4 运行示例	6
2.5 手机连接测试	6
3 硬件布局与配置	7
3.1 系统框图	7
3.2 硬件布局	7
3.3 接口MCU	8
3.3.1 J-Link接口	8
3.3.2 CDC虚拟类串口	8
3.3.3 固件下载接口	9
3.4 电源供电	9
3.4.1 供电方式选择	9
3.4.2 充电管理电路	10
3.4.3 升压电路	
3.4.4 电池电量检测	11
3.5 按键与LED指示灯	
3.6 板载QSPI Flash/PSRAM	11
3.7 Display&TP接口	13
3.8 Audio模块与板载MIC	
3.9 AoA/AoD多天线接口	15
4 性能测试	16
4.1 射频性能测试	
4.2 电流功耗测试	
5 尺寸规格	20
6 常见问题	21
6.1 J-Link连接失败,GR5526 SK板无法连接/烧录	21
7 术语与缩略语	22

1 简介

GR5526 Starter Kit(以下简称GR5526 SK)为GR5526 系列芯片(支持Bluetooth 5.3)配套的开发套件,包含GR5526 Starter Kit开发板、设计文件以及用户手册,可帮助用户快速搭建产品原型、验证产品功能/性能等,从而缩短产品研发周期及新产品上市时间。

GR5526 Starter Kit开发板(以下简称GR5526 SK板)的硬件实物图如下所示:

图 1-1 GR5526 SK板硬件实物图

🛄 说明:

GR5526 SK板默认已烧录显示的应用固件,外接显示子板可观察演示图形。用户也可将GR5526 SDK提供的其他 应用示例工程编译生成固件,再下载至开发板进行调试/测试。

了解和使用GR5526 SK之前,可参考以下文档:

表 1-1 文档参考

名称	描述
GR5526开发者指南	GR5526软硬件介绍、快速使用及资源总览
J-Link用户指南	J-Link使用说明: <u>http://www.segger.com/downloads/jlink/UM08001_JLink.pdf</u>
GR5526-SK-BASIC-RevC	GR5526 SK板原理图
GProgrammer用户手册	GProgrammer软件的操作使用说明,包括GR5526的固件下载、固件加密等

1.1 特性

- 支持Bluetooth 5.3的单模低功耗蓝牙SoC
- 多功能按键和LED指示灯
- 支持调试功能的SEGGER J-Link OB
- UART转USB接口

GODiX

- Type-C USB接口
- 1.39英寸圆形454*454像素点AMOLED触控彩色显示屏
- 板载I2S Audio模块
- 板载2路PDM数字麦克风
- 板载QSPI Flash、PSRAM,并预留外接Flash、PSRAM接口
- 板载AoA/AoD多天线接口
- 板载可调升压电路
- 电池电量检测
- 预留标准2.54 mm插针IO接口

2 快速入门

本章以在GR5526 SK板上运行一个GR5526应用示例为例,简单介绍GR5526 SK的使用。

🛄 说明:

GR5526示例工程位于SDK Folder\projects,其中"SDK_Folder"为GR5526 SDK包的根目录。

2.1 准备工作

• 硬件准备

表 2-1 硬件准备

名称	描述
连接线	USB Type-C数据线,用于连接PC与开发板。
开发板	GR5526 SK板,用于运行应用示例。
PC	用于运行Keil软件或为GR5526 SK板供电。
手机	用于运行GRToolbox App。

软件准备

•

表 2-2 软件准备

名称	描述		
操作系统	Windows 7及以上版本,或Ubuntu 16.04及后续LTS版本(32-bit或64-bit)。		
J-Link Driver	J-Link驱动程序,下载网址: <u>http://www.segger.com/downloads/jlink/</u> 。		
GR5526 SDK包	GR5526软件开发支持包,包含丰富的示例工程、驱动文件等。		
Keil MDK5	IDE工具,支持MDK-ARM 5.20 及以上版本,下载网址: <u>http://www.keil.com/download/</u> product/。		
GRToolbox	 Bluetooth LE(Low Energy)调试工具(App),提供Andriod与iOS版本。 Andriod: 安装文件位于SDK_Folder\tools\GRToolbox,或可从应用商店下载。 iOS: 可从App Store下载。 		

2.2 软件安装

连接硬件之前,用户需完成以下软件的安装:

• 安装GR5526 SDK

GR5526 SDK提供了丰富的应用示例,包括外设示例、Bluetooth LE示例等。SDK包为.*zip*文件,直接解 压即可使用,无需手动安装。

• 安装IDE

在PC上安装IDE(Keil软件),以编译示例工程,生成应用固件。下载Keil安装文件后,按照安装向导 逐步安装即可。

GODIX

安装GRToolbox App

将GRToolbox App安装文件下载至手机,再按照安装向导安装即可。App安装完成后,可点击手机桌面的启动图标 ⁽²⁾,打开GRToolbox。

• 安装J-Link驱动

为保证J-Link调试功能的正常使用,需在PC上安装J-Link驱动程序。J-Link驱动安装成功后,可从"开始"菜单中查找到"SEGGER"目录,如图 2-1所示。

图 2-1 SEGGER目录

2.3 硬件连接及配置

为保证GR5526 SK板的正常运行,需完成SK板与PC的硬件连接,并设置SK板的供电方式。 GR5526 支持J-Link 与UART两种连接/烧录方式,选择其中一种方式即可。

• 使用J-Link方式连接

图 2-2 使用J-Link方式的硬件连接示意图

1. 连接GR5526 SK板与PC。

使用Typc-C数据线连接GR5526 SK板的Typc-C接口J5与PC。

2. 设置GR5526 SK板供电方式。

将GR5526 SK板上的电源开关S11拨至右端("VCC"位置),采用USB供电方式。

🛄 说明:

GR5526 SK板还支持锂电池供电方式。将电源开关S11拨至左端("Li-BAT"位置),即设置锂电池供电。

3. 连接板载J-Link I/O接口。

使用跳线帽将GR5526 SK板J65的Pin1与Pin3连接,Pin2与Pin4连接,以连通GR5526芯片的J-Link I/ O接口(GPIO 0和GPIO 1),从而进行J-Link烧录和调试。

4. 上电GR5526 SK板。

将电源开关S10拨至右端("5V/VBAT"位置),即可打开电源,上电GR5526 SK板;将电源开关S10拨至左端("NC"位置),则关闭电源。

5. 检测J-Link。

GR5526 SK板上电后,LED指示灯D1开始闪烁(表示PC开始检测J-Link接口),且闪烁几次后变成 常亮(表示检测成功)。

D1常亮后,可打开PC的设备管理器,查看"设备管理器>端口(COM和LPT)"列表中是否 有"JLink"。若发现"JLink",则GR5526 SK板与PC连接成功;若未发现,则需检查J-Link驱动 是否正确安装。

使用UART方式连接

图 2-3 使用UART方式的硬件连接示意图

1. 连接GR5526 SK板与PC。

使用Typc-C数据线连接GR5526 SK板的Typc-C接口J29与PC。

- 设置GR5526 SK板供电方式。
 将GR5526 SK板上的电源开关S11拨至右端("VCC"位置),采用USB供电方式。
- 3. 连接板载UART I/O接口。

使用跳线帽将GR5526 SK板J65的Pin3与Pin5连接,Pin4与Pin6连接,以连通GR5526芯片的UART I/ O接口(GPIO_0和GPIO_1,J-Link I/O与UART I/O复用GPIO_0和GPIO_1),从而进行UART烧录和 调试。

4. 上电GR5526 SK板。

将电源开关S10拨至右端("5V/VBAT"位置),即可打开电源,上电GR5526 SK板;将电源开关S10拨至左端("NC"位置),则关闭电源。

5. 检测是否连接成功。

在PC上使用GProgrammer软件,选择UART方式进行连接烧录。烧录之前,先按下"RESET"键 (S9)复位GR5526 SK板,立刻连接并烧录,如烧录成功则表示连接成功。

2.4 运行示例

硬件连接及配置完成后,可按以下步骤运行一个应用示例:

- 1. 进入GR5526示例工程目录: SDK_Folder\projects。
- 2. 在Keil中打开一个GR5526示例工程,如心率应用示例(SDK_Folder\projects\ble\ble_perip heral\ble app hrs)
- 3. 编译示例工程,并生成应用固件文件(bin文件或hex文件)。
- 4. 下载应用固件文件至GR5526 SK板。
- 5. 在GR5526 SK板上按一下"RESET"键(S9),运行示例程序。

🛄 说明:

- 示例工程目录默认包含固件文件,用户也可直接使用GProgrammer下载固件至SK板。
- 详细的示例工程编译以及固件下载等操作,请参考《GR5526开发者指南》。

2.5 手机连接测试

用户还可使用GRToolbox App扫描连接GR5526 SK板,进行调试/测试。

🛄 说明:

详细的示例工程测试/验证等,可参考对应的应用示例手册。

3 硬件布局与配置

本章主要介绍GR5526 SK板的硬件布局以及详细的硬件配置。

3.1 系统框图

GR5526 SK板以GR5526蓝牙SoC为主控MCU,集成了接口MCU、电源供电模块、Type-C接口、J-Link/UART调 试模块、按键与LED指示灯、Flash、PSRAM,数字麦克风MIC、Headphone(Speaker)接口、Display&TP接 口、AoA/AoD多天线接口、蓝牙天线以及射频SMA接口等,其系统框图如下所示:

图 3-1 GR5526 SK板系统框图

3.2 硬件布局

图 3-2和图 3-3分别为GR5526 SK板的硬件布局顶视图与底视图。

图 3-2 GR5526 SK板硬件布局(顶视图)

图 3-3 GR5526 SK板硬件布局(底视图)

3.3 接口MCU

GR5526 SK板上集成了一个STM32F接口MCU(U3),可将USB接口转换为J-Link接口或CDC(Communication Device Class)类虚拟串口,以支持J-Link/UART调试。

3.3.1 J-Link接口

接口MCU上运行了一个J-Link OB固件,可支持J-Link调试。用户只需在PC(Host)上安装J-Link驱动,再连接PC与GR5526 SK板,即可在线调试或仿真,而无需使用额外的调试仿真器。

3.3.2 CDC虚拟类串口

J-Link OB固件中还集成了CDC串口协议,可实现USB转UART,从而支持UART调试。

GR5526芯片与接口MCU的UART接口对应关系,如下表所示。

表 3-1 UART接口对应关系

GR5526芯片	接口MCU
UART (Default GPIO)	UART
TX (GPIO4)	RX
RX (GPIO5)	тх

3.3.3 固件下载接口

通过GR5526 SK板上的J4,可下载SEGGER J-Link OB固件。

🛄 说明:

GR5526 SK板出厂时,已下载J-Link OB固件。用户可直接使用,无需再自行下载。

3.4 电源供电

3.4.1 供电方式选择

GR5526 SK板支持两种供电方式: USB供电与锂电池供电。

通过设置电源开关S11,可选择供电方式:

- USB供电:将GR5526 SK板上的电源开关S11拨至右端("VCC"位置),采用USB供电方式。
- 锂电池供电:将GR5526 SK板上的电源开关S11拨至左端("Li-BAT"位置),采用锂电池供电方式。

图 3-4 供电接口

• USB供电

使用USB供电时,通过J5、J15或J29连接外部电源,经过GR5526 SK板载LDO调整电压后,再输出1.8 V ~ 3.3 V的供电电压(默认输出3.3 V),为GR5526 SK板供电。

• 锂电池供电

使用锂电池供电时,通过J21连接外部锂电池,再经过GR5526 SK板载LDO调整电压后,输出3.3 V供电电压,为GR5526 SK板供电。

用户还可通过TP51、TP52连接外部锂电池,或直接通过纽扣电池(BT1),为GR5526芯片供电。

图 3-5 锂电池/USB供电切换

3.4.2 充电管理电路

GR5526 SK板集成如下所示的充电电路,可通过USB供电接口(J5、J15、J29)对锂电池充电以及对主板供电。

图 3-6 充电管理电路

3.4.3 升压电路

GR5526 SK板集成如下图所示的升压电路,可通过J66接口对外供电,支持丰富的外设扩展。根据不同的外设电压需求,可通过反馈电路对输出电压进行调节。

图 3-7 升压电路

G@DiX

3.4.4 电池电量检测

GR5526 SK板支持电池电量检测。通过配置EN_BATM,可开启/关闭电池电量检测功能。无需检测时,请关闭检测功能,以减少电池分压检测电阻漏电。

图 3-8 电池电量检测电路

3.5 按键与LED指示灯

GR5526 SK板上有3个按键和3个LED指示灯,并连接至GR5526芯片的IO引脚。

述

组件	丝印符号	连接的GR5526 IO引脚	描述
Button1	S9	CHIP_EN	RESET键,用于复位芯片。
Button2	К1	AON_GPIO1	K1键。
Button3	К2	AON_GPIO0	K2键。
LED1	D1	-	J-Link状态指示灯,连接接口MCU,用于指示J-Link状
			态。上电时闪烁; PC端J-Link驱动准备就绪后常亮。
LED2	D2	MSIO4	LED2可由不同的PWM模式驱动。
LED3	D3	MSIO6	LED3可由不同的PWM模式驱动。

🛄 说明:

为保证按键/LED功能的正常使用,上表中的GR5526 IO引脚需配置为输出上拉。

3.6 板载QSPI Flash/PSRAM

GR5526 SK板集成了128 Mb的QSPI Flash与PSRAM,可扩展Flash和存储应用数据。

默认情况下,VCC3P3V为板载LDO的3.3 V电压输出,VDDIO为板载LDO的1.8 V电压输出,VIO_OUT为芯片的1.8 V电压输出。GR5526芯片的VDDIO1域连接了片内低压(1.8 V)PSRAM,VDDIO0域连接了片内宽压(1.8 V~3.3 V)Flash。因此,VDDIO1引脚可直接连接VIO_OUT,而VD0则通过开关S1选择连

接VCC3P3V或VIO_OUT(如图 3-9所示)。对于板载的Flash和PSRAM, Flash支持1.8 V ~ 3.3 V的电压供电, PSRAM仅支持1.8 V的电压供电。

图 3-9 GR5526 VDDIO供电

板载Flash默认通过VDDIO供电。通过配置TP12 ~ TP14的连接状态,可切换供电电压。为了方便调试不同型号的Flash器件,可直接在SOIC8位置焊接器件或通过外插接口安装器件进行替换。通过外插接口调试Flash器件时,需按照图 3-10中U9的引脚定义设计外插模块,并断开TP18 ~ TP23、短接TP24 ~ TP29。

图 3-10 扩展QSPI Flash原理图

板载PSRAM默认通过VDDIO供电。通过配置TP33、TP34的连接状态,可切换供电电压。为了方便调试 不同型号的PSRAM器件,可直接在SOIC8位置焊接器件或通过外插接口安装器件进行替换。通过外插接口调 试PSRAM器件时,需按照图 3-11中U10的引脚定义设计外插模块,并断开TP53 ~ TP58、短接TP35 ~ TP40。

图 3-11 扩展QSPI PSRAM原理图

3.7 Display&TP接口

GR5526 SK板预留了一个Display&TP接口(J22、J25),以连接Display&TP子板,可方便用户开发/调试具备显示功能的产品,如智能手表、手环等。

GR5526 SK默认搭载的Display&TP子板,集成了一块1.05*1.39英寸圆形454*454像素点AMOLED触控彩色显示屏以及触摸屏(TP)。其中,AMOLED部分采用QSPI接口,TP部分采用I2C接口。并且,Display&TP子板设计为可插拔的装配方式,以便于用户将其替换为同类型连接接口的不同尺寸屏,从而满足不同的应用需求。

图 3-12 AMOLED/Audio复用接口网络

Display&TP接口的引脚定义如下:

表 3-3 Display&TP接口引脚定义

PIN	NET	描述
1	+5V	电源+5 V
2	TE_LCD/AON_GPIO5	输出帧头脉冲信号
3	VCC3P3V	电源+3.3 V
4	RESET_LCD/AON_GPIO6	AMOLED复位信号(0:使能;1:禁用)
5	VCC3P3V	电源+3.3 V
6	DC_LCD/AON_GPIO7	-
7	GND	电源地
8	QSPI_M2_IO_0	串行输入信号
9	VDDIO	接口类型选择
10	QSPI_M2_CLK	串行接口时钟
11	VDDIO	电源VDDIO(default 1.8 V)
12	QSPI_M2_IO_2	QSPI的位数据总线/输入数据总线
13	TP_RESET/GPIO29	TP硬件复位输入
14	QSPI_M2_IO_1	数据/命令选择信号
15	TP_SCL/GPIO30	TP模块SPI时钟输入
16	QSPI_M2_IO_3	数据/命令选择信号
17	TP_SDA/GPIO31	TP SPI数据输入
18	QSPI_M2_CSN	片选信号输入
19	TP_INT/GPIO32	TP从机中断端口
20	LEDK_PWM/GPIO33	-

3.8 Audio模块与板载MIC

GR5526 SK集成了Audio模块以及2个板载MIC,可支持PDM、I2S接口调试/测试,进行简单的语音输入和音乐播放调试/演示等。

图 3-13 Audio模块与板载MIC的原理图

3.9 AoA/AoD多天线接口

GR5526 SK板预留了AoA/AoD多天线接口(复用Decode芯片的I2S接口),可支持AoA/AoD应用验证。

🛄 说明:

AoA/AoD多天线接口复用 $MSIO_0 \sim MSIO_3$ 功能接口。

G@DiX

4 性能测试

本章主要介绍如何使用GR5526 SK板测试GR5526芯片的射频性能以及电流功耗。

4.1 射频性能测试

GR5526 SK板预留了一个小型射频连接器(SMA接口J2),可连接频谱分析仪或Bluetooth LE测试仪 (如TLF3000、CMW500),测试GR5526芯片的射频(RF)性能。

通过配置电容C91和C14,可实现SMA接口与板级PCB天线输出的切换。

- C91开路, C14为18 pF, RF电路信号默认直接连接到板级天线。
- C14开路, C91为18 pF, RF电路信号将断开和板级天线的连接,直接连接SMA测试头。

🛄 说明:

- 测试射频性能时,需使用射频同轴线缆连接GR5526 SK板与测试仪器。GR5526 SK中未包含该线缆,需用户 自行准备。
- 板级PCB天线为非全向性天线,不同角度可能会导致增益差异。因此,建议板级天线仅用于功能性的连接 测试,不适合做性能测试。
- 如要做高吞吐率、长距离等性能测试,则需通过SMA接口外接全向天线。

以使用TLF3000测试为例,GR5526 SK板与TLF3000的硬件连接,如图 4-2所示。

图 4-2 GR5526 SK板与TLF3000的连接示意图

硬件连接后,用户可在PC端,使用测试软件进行射频测试操作。

图 4-3 射频参数测试示意图

🛄 说明:

射频测试的详细操作说明,请参考《GR5526 DTM测试指南》。

4.2 电流功耗测试

在GR5526 SK板上,连通开关S1的针脚2、3,设置VBAT通过跳线J1为GR5526芯片的VBATL、VBATT_RF供电,再通过J1连接测试仪器进行电流测量。

图 4-4 功耗测量接口J1

用户可根据实际需求,选择合适的电流测试仪器(如万用表、示波器、功耗分析仪)进行电流功耗测 试。

万用表

•

万用表可用于测试静态或平均电流。

将万用表设置为电流mA/μA档,再将黑、红表笔分别接触J1的针脚1、2,即可读取静态或平均电流 值。

由于蓝牙芯片在工作时,电流可从μA级变化至mA级。因此,所使用的万用表的动态测量范围需要覆 盖1μA ~ 15 mA。建议使用具备真有效值电流测试功能的万用表,否则测试结果可能有较大误差。

示波器

示波器可用于测量一段时间的平均电流或捕获单个Bluetooth LE事件的电流曲线。

先将GR5526 SK板上的FB1焊接一个10Ω电阻;然后设置示波器为差分测量模式,再将示波器的两个 探头连接至FB1的两个引脚进行测量。

瞬时电流穿过10Ω电阻时,会在两个探头上产生一定的电压降,且该电压降正比于电流。用户可在 示波器的显示屏上直观地查看电流变化曲线,还可将测量的数据取平均值或积分来分析一段时间内 的电流的功耗。

由于蓝牙事件电流变化范围较宽,这种方式很难兼顾µA级的精度以及mA级串接电阻的电压差对电路 的影响,所以无法保证测试结果的精度。

• 功耗分析仪

为保证BLE事件功耗测试的准确度以及精度,用户可使用专业的功耗分析仪设备(如Keysight N6705c)进行测量。

使用功耗分析仪测量GR5526芯片电流功耗时,需先将分析仪的电源端口连接至J1的针脚1。在Bluetooth LE事件中,功耗分析仪会自动保存并显示当前的电流曲线。

关于功耗分析仪的具体使用方法,请参考其使用说明书。

G@DiX

5 尺寸规格

图 5-1 GR5526 SK板尺寸图(顶视图)

6 常见问题

6.1 J-Link连接失败, GR5526 SK板无法连接/烧录

• 问题描述

使用Keil/GProgrammer烧录固件文件到GR5526 SK板时,J-Link连接失败,GR5526 SK板无法连接/烧录。

• 问题分析

烧录固件文件时,GR5526芯片可能处于睡眠状态(即开启了睡眠模式的工程正在运行),导致J-Link无法与PC端正常交互,GR5526 SK板无法连接或者正常烧录固件。

• 处理方法

先按下GR5526 SK板的"RESET"键,并间隔1秒左右重新烧录固件文件。

7 术语与缩略语

表 7-1 术语与缩略语

名称	描述
AMOLED	Active-Matrix Organic Light-Emitting Diode,有源矩阵有机发光二极管
AoA	Angle of Arrival,蓝牙到达角
AoD	Angle of Departure, 蓝牙出发角
Арр	Application,应用
Bluetooth LE	Bluetooth Lowe Energe,低功耗蓝牙
CDC	Communication Device Class,通信设备类
DMIC	Digtital Microphone,数字麦克风
125	Integrated Interchip Sound,集成电路内置音频总线
IDE	Integrated Development Environment,集成开发环境
J-Link OB	J-Link On-board,板载J-Link调试器
LED	Light-Emitting Diode,二极管
LDO	Low Dropout Regulator,低压差线性稳压器
MCU	Microcontroller Unit,微控制器
PDM	Pulse Density Modulation,脉冲分时复用
PSRAM	Pseudo Static Random Access Memory,伪静态SRAM存储器
PC	Personal Computer,计算机
RF	Radio Frequency,射频
RX	Receive,接收
SMA	Small A Type, 一种典型的微波高频连接器
ТХ	Transmit,发射
USB	Universal Serial Bus,通用串行总线
UART	Universal Asynchronous Receiver/Transmitter,通用非同步收发传输器