

GR55xx HRS RSCS Relay示例手册

版本: 1.9

发布日期: 2021-04-26

深圳市汇顶科技股份有限公司

版权所有 © 2021 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的 适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址: 深圳市福田保税区腾飞工业大厦B座2层、13层

电话: +86-755-33338828 传真: +86-755-33338099

网址: <u>www.goodix.com</u>

前言

编写目的

本文档介绍如何使用和验证GR55xx SDK中的HRS RSCS Relay示例,旨在帮助用户快速进行二次开发。

读者对象

本文适用于以下读者:

- GR55xx用户
- GR55xx开发人员
- GR55xx测试人员
- 开发爱好者
- 文档工程师

版本说明

本文档为第7次发布,对应的产品系列为GR55xx。

修订记录

版本	日期	修订内容
1.0	2019-12-08	首次发布
1.3	2020-03-16	更新文档中页脚的时间
1.5	2020-05-30	调整"应用详解"章节中代码的缩进格式
1.6	2020-06-30	基于SDK刷新版本
1.7	2020-11-09	更新"测试验证"章节图片
1.8	2020-12-15	更新GRToolbox软件界面截图
1.9	2021-04-26	优化"初次运行"和"应用详解"章节

目录

前言	I
1 简介	1
2 Profile概述	2
3 初次运行	4
3.1 支持平台	
3.2 固件烧录	4
3.3 测试验证	4
4 应用详解	9
4.1 运行流程	9
4.2 关键代码	9
4.2.1 接收来自GRToolbox的指令	9
4.2.2 连接HRS传感器指令	
4.2.3 开启HRS通知指令	10
4.2.4 获取HRS传感器设备位置的指令	11

G@DiX

1 简介

HRS RSCS Relay(Heart Rate Sensor & Running Speed and Cadence Sensor Relay)示例演示了如何将GR55xx芯 片应用于多角色(Peripheral和Central)、多连接的场景,实现了心率传感器和跑速与步频传感器中继设备功 能。HRS RSCS Relay设备可同时作为采集器和传感器。

采集器

作为GATT客户端,接收来自心率传感器、跑速与步频传感器的测量数据。

传感器

作为GATT服务端,将接收测量数据发送至其他采集器设备(例如手机APP "GRToolbox")。

本文将介绍如何使用和验证GR55xx SDK中的HRS RSCS Relay示例。

在进行操作前,可参考以下文档。

名称	描述		
应用及自定义GR55xx Sample Service	介绍实现自定义Service的相关知识		
对应GR55xx系列的开发者指南	GR55xx软硬件介绍、快速使用及资源总览		
Bluetooth Core Spec	Bluetooth官方标准核心规范		
Bluetooth GATT Spec	Bluetooth Profile和Service的详细信息查看地址: www.bluetooth.com/		
bletooth GAT Spec	specifications/gatt		
J-Link用户指南	J-Link使用说明: www.segger.com/downloads/jlink/UM08001_JLink.pdf		
Keil用户指南	Keil详细操作说明: www.keil.com/support/man/docs/uv4/		

表 1-1 文档参考

GODiX

2 Profile概述

HRS RSCS Relay示例实现的Profile如下:

- 标准Profile: Heart Rate Profile、Running Speed and Cadence Profile,由蓝牙技术联盟(Bluetooth SIG)定义。
- 自定义Profile: Goodix HRS RSCS Relay Control Point Profile,由Goodix自定义。

以GRToolbox作为HRS RSCS Relay的采集器为例,应用场景如图 2-1所示。

图 **2-1** 应用场景图

作为采集器,HRS RSCS Relay注册以下Profile:

- Heart Rate Client Profile: 接收心率传感器的测量数据。
- Running Speed and Cadence Client Profile:接收跑速与步频传感器的测量数据。

作为传感器, HRS RSCS Relay注册以下Profile:

- Heart Rate Server Profile:将接收心率传感器的测量数据中继至GRToolbox。
- Running Speed and Cadence Server Profile:将接收跑速与步频传感器的测量数据中继至GRToolbox。
- Goodix HRS RSCS Relay Control Point Profile:接收来自GRToolbox的控制指令,并返回执行结果。

Goodix HRS RSCS Relay Control Point Profile 包括HRRCPS(HRS RSCS Relay Control Point Service),其专 用128位UUID为A6ED0601-D344-460A-8075-B9E8EC90D71B。

HRRCPS包含两个特征:

- HRR Control Point Characteristic:接收Relay采集器的控制指令。
- HRR Control Point Response Characteristic: 回应指令执行结果至Relay采集器。

Characteristic的具体描述如下表所示:

Characteristic	UUID	Туре	Support	Security	Properties
HRR Control Point	A6ED0602-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Write

Characteristic	UUID	Туре	Support	Security	Properties
HRR Control Point		129 hite	Mandatory	Nono	Indicato
Response	AULD0003-D344-400A-8073-B9L8LC50D71B	120 0115	ivianuator y	None	mulcate

3 初次运行

本章介绍如何快速验证GR55xx SDK中的HRS RSCS Relay示例。

🛄 说明:

SDK_Folder为用户当前所使用的GR55xx系列SDK的根目录。

3.1 支持平台

HRS RSCS Relay示例支持下列开发平台。

表 3-1	支持开发平台
-------	--------

硬件平台	开发板型号
GR551x开发套件	GR5515-SK-BASIC

3.2 固件烧录

HRS RSCS Relay示例工程的源码位于SDK_Folder\projects\ble\ble_multi_role\ble_app_hrs_ rscs_relay。

用户可通过Gprogrammer依次将*ble_app_hrs_rscs_relay_fw.bin、ble_app_hrs_fw.bin和ble_app_rscs_fw.bin*烧 录至三块开发板,这三块开发板分别作为Relay设备、HRS传感器设备和RSCS传感器设备。GProgrammer烧录固件的具体操作方法,请参考<u>《GProgrammer用户手册》</u>。

🛄 说明:

- *ble_app_hrs_rscs_relay_fw.bin*位于SDK_Folder\projects\ble\ble_multi_role\ble_app_hrs_r scs_relay\build。
- *ble_app_hrs_fw.bin*位于SDK_Folder\projects\ble\ble_peripheral\ble_app_hrs\build。
- *ble_app_rscs_fw.bin*位于SDK_Folder\projects\ble\ble_peripheral\ble_app_rscs\build。
- GProgrammer位于SDK_Folder\tools\GProgrammer。

3.3 测试验证

测试HRS RSCS Relay示例所需软硬件如下表所示。

表 3-2 测试所需软硬件

名称	描述
GRToolbox (Android)	BLE调试工具,位于SDK_Folder\tools\GRToolbox

🛄 说明:

本文中GRToolbox的截图仅供用户了解操作步骤,实际界面请参考最新版本GRtoolbox。

HRS RSCS Relay设备、HRS传感器设备、RSCS传感器设备和GRToolbox准备完毕,即可进行HRS RSCS Relay示例的测试验证,具体步骤如下:

1. 扫描HRS RSCS Relay设备

打开GRToolbox,选择"应用 > RELAY"。

手机扫描发现广播名为"Goodix_HRS_RSCS_RELAY"的设备(广播名可在*user_app.c*文件中修改),如图 3-1所示。

图 3-1 在手机端发现Goodix_HRS_RSCS_RELAY

🛄 说明:

设备全名若超出14个字符,名称中间将以省略号显示。

2. 连接HRS RSCS Relay设备

选中并连接"Goodix_HRS_RSCS_RELAY",进入HRS RSCS RELAY界面。

14:07 🖉 🖬 🙆 🖨		0.0K/s \$ %	ý z 🛜 🚥
← 中继示	例		
Goodix_HRS_R	SCS_RELAY		
<i>⊒</i> ;	((p))	(~
	使能RS	C数据通知	•
	使能HR	S数据通知	
RSCS			
速度	0		km/h
距离	0		km
总距离	0		km
HRS			
心率	0		次/分钟
传感器位置	N/A		获取
	断开连接		

图 3-2 HRS RSCS RELAY界面

3. 连接传感器设备

点击连接 ♂ 按钮,控制HRS RSCS Relay设备扫描、连接HRS和RSC传感器设备。Relay设备连接成功后 如下图所示。

15:48 🛛 🖉 🖬 🔍		0.0K/s 🕏 🕸 🗵 🛜 🚥
← 中继示	例	
Goodix_HRS_R	SCS_RELAY	
<i>=3</i> ;-	((ŗ))	
🔗 断开RSC	使能RS	C数据通知
\begin{split} 断开HRS	6 使能HR	S数据通知
RSCS	•	
速度	0	km/h
距离	0	km
总距离	0	km
HRS		
心率	0	次/分钟
传感器位置	N/A	获取
	断开连接	

图 3-3 连接传感器设备

4. 开启传感器通知

使用通知 <
按钮,控制HRS RSCS Relay设备通知HRS和RSC传感器上报采集的数据。

完成后即可接收HRS RSCS Relay设备中继出的心率、跑速与步频相关信息。

图 3-4 开启HRS传感器通知

5. 读取HRS传感器位置

点击"获取"按钮,控制HRS RSCS Relay设备读取HRS传感器位置信息。

图 3-5 读取HRS传感器位置

若实际情况符合上述说明,则HRS RSCS Relay应用示例运行成功。

4 应用详解

本章将介绍HRS RSCS Relay示例的运行流程和关键代码。

4.1 运行流程

HRS RSCS Relay示例开始运行后,将依次执行初始化外设和BLE协议栈、添加Profiles以及开启广播等操作。 当GRToolbox扫描到该示例的广播并建立连接后,运行流程如图 4-1所示:

图 **4-1** 运行流程图

4.2 关键代码

下文以HRS传感器设备为例,详细介绍GRToolbox、Relay设备以及HRS传感器设备交互过程中的关键代码。

4.2.1 接收来自GRToolbox的指令

当HRR Control Point Characteristic Value接收到GRToolbox的控制指令数据时,会解析出相应的事件上报至应用层,并执行相应的指令。

```
路径: 工程目录下user_app\user_app.c
```

名称: hrrcps_evt_process()

G@DiX

```
static void hrrcps evt process (hrrcps evt t *p evt)
{
    ...
        switch (p evt->evt type)
       {
           case HRRCPS_EVT_CTRL_PT_IND_ENABLE:
               APP LOG DEBUG("HRR Control Point Indication is enabled.");
               break;
           case HRRCPS_EVT_CTRL_PT_IND_DISABLE:
               APP LOG DEBUG("HRR Control Point Indication is disabled.");
               break;
           .....
           default:
              break;
       }
    •••
}
```

4.2.2 连接HRS传感器指令

HRRCPS解析该指令并以"HRRCPS_EVT_SCAN_HRS"事件上报至应用层,然后开启扫描、过滤HRS传感器 设备。当Relay设备扫描到广播后,通过app_adv_report_handler()判断发出该广播的设备是否为目标设备,判断 方法为检查广播数据中是否含有HRS UUID。当确定其为目标设备后停止扫描,通过app_scan_stop_handler()与 其建立连接,再通过app_connected_handler()发现Heart Rate Service(上述函数均位于*user_app.c*中)。

路径: 工程目录下user_app\user_app.c

```
名称: hrrcps_evt_process()
```

```
static void hrrcps_evt_process(hrrcps_evt_t *p_evt)
{
    .....
    case HRRCPS_EVT_SCAN_HRS:
        .....
    error_code = ble_gap_scan_start();
    g_hrs_active_state = SCAN_DEV_STATE;
    break;
    .....
}
```

4.2.3 开启HRS通知指令

HRRCPS解析该指令并以"HRRCPS_EVT_ENABLE_HRS_NTF"事件上报至应用层,开启HRS传感器通知,然 后将接收到心率数据中继至GRToolbox。

```
路径: 工程目录下user_app\user_app.c
```

名称: hrrcps_evt_process()

G**@D**jX

```
static void hrrcps_evt_process(hrrcps_evt_t *p_evt)
{
    ...
    case HRRCPS_EVT_ENABLE_HRS_NTF:
        error_code = hrs_c_heart_rate_meas_notify_set(s_conn_idx_hrs_c, true);
        s_user_write_id = USER_WR_HRS_NTF_EN;
        break;
    ...
}
```

路径: 工程目录下user_app\user_app.c

名称: hrs_c_evt_process ()

```
static void hrs c evt process(hrs c evt t *p evt)
{
    .....
    case HRS C EVT HR MEAS VAL RECEIVE:
       for (rr intervals idx = 0; rr intervals idx < p evt-
>value.hr meas buff.rr intervals num; rr intervals idx++)
       {
           hrs rr interval add(p evt->value.hr meas buff.rr intervals[rr intervals idx]);
       }
       hrs sensor contact detected update(p evt-
>value.hr_meas_buff.is_sensor_contact_detected);
       hrs_heart_rate_measurement_send(s_conn_idx_collector,p_evt-
>value.hr_meas_buff.hr_value, p_evt->value.hr_meas_buff.energy_expended);
       break;
    .....
}
```

4.2.4 获取HRS传感器设备位置的指令

HRRCPS解析该指令并以"HRRCPS_EVT_HRS_SENSOR_LOC_READ"事件上报至应用层,然后读取HRS传感器 位置,并将读取数据中继至GRToolbox。

```
路径: 工程目录下user_app\user_app.c
```

```
名称: hrrcps_evt_process()
```

```
static void hrrcps_evt_process(hrrcps_evt_t *p_evt)
{
    .....
    case HRRCPS_EVT_HRS_SENSOR_LOC_READ:
        error_code = hrs_c_sensor_loc_read(s_conn_idx_hrs_c);
        break;
    .....
}
```

```
路径: 工程目录下user_app\user_app.c
   名称: hrs_c_evt_process ()
static void hrs_c_evt_process(hrs_c_evt_t *p_evt)
{
     . . .
    case HRS_C_EVT_SENSOR_LOC_READ_RSP:
       hrs sensor location set((hrs sensor loc t)p evt->value.sensor loc);
       rsp_val.cmd_id = HRRCPS_CTRL_PT_HRS_SEN_LOC_READ;
       rsp_val.rsp_id = HRRCPS_RSP_ID_OK;
       rsp val.is inc prama = true;
       rsp_val.rsp_param = p_evt->value.sensor_loc;
        error_code = hrrcps_ctrl_pt_rsp_send(s_conn_idx_collector,&rsp_val);
       APP_ERROR_CHECK(error_code);
       break;
     ...
}
```

🛄 说明:

GRToolbox控制HRS RSCS Relay设备与RSCS传感器设备交互流程,与上述流程类似,此处不再赘述。