

GR5xx Serial Port Profile示例手册

版本: 3.1

发布日期: 2023-11-06

深圳市汇顶科技股份有限公司

版权所有 © 2023 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的 适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址:深圳市福田保税区腾飞工业大厦B座12-13层

电话: +86-755-33338828 邮编: 518000

网址: <u>www.goodix.com</u>

前言

编写目的

本文档介绍如何使用和验证GR5xx SDK中的Serial Port Profile(SPP)示例,旨在帮助用户快速进行二次开发。

读者对象

本文适用于以下读者:

- 芯片用户
- 开发人员
- 测试人员
- 开发爱好者
- 文档工程师

版本说明

本文档为第3次发布,对应的产品为低功耗蓝牙GR5xx系列。

修订记录

版本	日期	修订内容
1.0	2023-01-10	首次发布
3.0	2023-03-30	新增支持多款芯片的相关描述
3.1	2023-11-06	更新GProgrammer、GRUart、GRToolbox获取方式。

目录

前言	I
1 简介	1
2 Profile概述	2
3 初次运行	4
3.1 准备工作	4
3.2 固件烧录	4
3.3 测试验证	4
4 应用详解	9
4.1 运行流程	9
4.2 关键代码	9
4.2.1 开启数据发送特性和数据流控特性通知	9
4.2.2 接收数据并发送至串口	10
4.2.3 接收串口数据并传输至发起设备	11
5 常见问题	13
5.1 手机多次收到小于等于20 bytes的数据	13
5.2 数据发送为字符串但接收为十六进制	14
6 附录:吞吐率测试结果	17

1 简介

Serial Port Profile(SPP)定义了如何使用Bluetooth LE(Low Energy)技术,将虚拟串行端口中的数据透传 到对端低功耗蓝牙设备中。

Bluetooth SIG(Bluetooth Special Interest Group,蓝牙技术联盟)未定义标准的基于Bluetooth LE的串口透 传Profile。为方便用户使用Goodix自定义SPP,本文将介绍如何使用以及验证GR5xx SDK提供的Goodix SPP示例。

在进行操作前,可参考以下文档。

名称	描述
GR5xx应用及自定义 Sample Service	介绍实现自定义Service的相关知识
对应芯片开发者指南	介绍GR5xx SDK以及基于SDK的应用开发和调试
Bluetooth Core Spec	Bluetooth官方标准核心规范
Bluetooth GATT Spec	Bluetooth Profile和Service的详细信息查看地址: <u>www.bluetooth.com/</u> specifications/gatt
J-Link用户指南	J-Link使用说明: www.segger.com/downloads/jlink/UM08001_JLink.pdf
Keil用户指南	Keil详细操作说明: www.keil.com/support/man/docs/uv4/

表 1-1 文档参考

2 Profile概述

Goodix SPP定义了两种设备角色:

- 发起设备(Initiator):主动发起连接请求,连接另一台设备。
- 接收设备(Acceptor):等待其他设备的主动连接。

两者之间连接建立和数据透传的过程如图 2-1所示。

图 2-1 发起设备与接收设备交互流程图

Goodix SPP中仅定义了GR5xx数据透传服务(Goodix UART Service, GUS)。该服务由Goodix自定义,专属128位UUID为A6ED0201-D344-460A-8075-B9E8EC90D71B,用于传输数据以及更新Bluetooth LE数据流控制状态。

GUS包含三个特征:

- RX Characteristic: 接收发起设备写入的数据。
- TX Characteristic: 发送来自串口的数据至发起设备。
- Flow Control Characteristic:更新接收和发起设备的接收Bluetooth LE数据能力状态(0x00:无法接收 更多Bluetooth LE数据; 0x01:能够继续接收Bluetooth LE数据)。

Characteristic的具体描述如表 2-1 所示:

表 2-1 GUS Characteristic

Characteristic	UUID	Туре	Support	Security	Properties
RX	A6ED0202-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Write
ТХ	A6ED0203-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Notify
Flow Control	A6ED0204-D344-460A-8075-B9E8EC90D71B	128 bits	Mandatory	None	Notify, Write

3 初次运行

本章介绍如何快速验证GR5xx SDK中的SPP示例。

🛄 说明:

SDK_Folder为对应芯片SDK的根目录

3.1 准备工作

验证并测试Goodix SPP示例之前,请完成以下准备工作。

硬件准备

表 3-1 硬件准备

名称	描述
J-Link工具	SEGGER公司推出的JTAG仿真器,如需更多了解,请访问 <u>www.segger.com/products/debug-</u> probes/j-link/
开发板	对应芯片Starter Kit开发板(以下简称"开发板")
连接线	USB Type-C(GR551x系列使用Micro USB 2.0连接线)

• 软件准备

表 3-2 软件准备

名称	描述
Windows	Windows 7/Windows 10操作系统
J-Link Driver	J-Link驱动程序,下载网址: <u>www.segger.com/downloads/jlink/</u>
Keil MDK5	IDE工具,支持MDK-ARM 5.20 及以上版本,下载网址: <u>www.keil.com/download/product/</u>
GRToolbox (Android)	Bluetooth LE调试工具,下载网址: www.goodix.com/zh/software_tool/grtoolbox
GRUart (Windows)	串口调试工具,下载网址: www.goodix.com/zh/download?objectId=64&objectType=software
GProgrammer (Windows)	Programming工具,下载网址: www.goodix.com/zh/software_tool/gprogrammer_ble

3.2 固件烧录

SPP示例工程的源码位于SDK_Folder\projects\ble\ble_peripheral\ble_app_uart。

用户可通过GProgrammer将SPP示例的*ble_app_uart.bin*固件烧录至开发板。GProgrammer烧录固件的具体操作方法,请参考《GProgrammer用户手册》。

🛄 说明:

ble_app_uart.bin位于SDK_Folder\projects\ble\ble_peripheral\ble_app_uart\build。

3.3 测试验证

准备好开发板、GRToolbox和GRUart后即可开始测试,测试步骤如下:

1. 通过GRToolbox与开发板建立连接。

启动手机GRToolbox扫描设备,发现广播名为"Goodix_UART"的设备(广播名可在*user_app.c*文件中进行修改)。

设备			1	
SCANNER				
	Goodix_UART A:CB:3E:CF:00:13 50dBm	连接		~
8 5 -(I/A B:2B:A1:91:60:17 60dBm	连接		~
8 7 -(I/A D:FE:0C:C1:31:B4 56dBm	连接		~
8 1 -t	I/A 2:22:F6:09:A6:CE 52dBm			~
8 6	I/A 1:3E:DC:D3:24:36 70dBm			~
الم الم الم الم	Goodix_DFU A:CB:3E:CF:00:16	连接	〇 设置	~

图 3-1 手机端扫描到 "Goodix_UART" 设备

🛄 说明:

本文中GRToolbox的截图仅供用户了解操作步骤,实际界面请参考最新版本GRToolbox。

点击"Goodix_UART > 连接",手机界面显示Goodix UART Service相关信息,包括TX Characteristic、RX Characteristic和Flow Control Characteristic,如图 3-2所示。

图 3-2 在手机端发现Goodix UART Service

2. 采用GRToolbox发送数据。

在GRToolbox中使能对端设备上GUS的TX Characteristic通知(Notify)和Flow Control Characteristic通知 (Notify),完成后如图 3-3所示:

设备			开连接 :			
SCANNER	Goodix_UART EA:CB:3E:CF:00:13	~				
连接成功						
Goodix U UUID:a6e PRIMARY	ART Service d0201-d344-460a-80 SERVICE	075-b9e8ec90d71b	^			
Tx Cha	racteristic		8			
UUID:a6 Propert	5ed0202-d344-460a- ties:NOTIFY	8075-b9e8ec90d71b				
Desc	riptors:					
Clien	t Characteristic Con	figuration	R			
VUID	:0x2902 e:Notification is ena	bled				
Rx Cha	racteristic		W			
UUID:a6 Propert	5ed0203-d344-460a- ties:WRITE, WRITE N	8075-b9e8ec90d71b O RESPONSE				
Flow Co	ontrol Characteristic		🛛 🔊			
UUID:a	6ed0204-d344-460a-	8075-b9e8ec90d71b				
Propert	ies:WRITE, NOTIFY					
Desc	riptors:	Germation	•			
LILID						
Value	Value:Notification is enabled					
B	٢		ത			
设备	例程	应用	设置			

图 3-3 使能TX Characteristic通知和Flow Control Characteristic通知

向对端RX Characteristic写入数据,例如输入"12345678",点击"发送"。

图 3-4 输入RX特征值

GRUart的"Receive Data"区域将显示GRToolbox发送的数据"12345678",如图 3-5所示。

🖲 GRUart				- [) ×
PortName: COM29 - D 💫					
Uart GLog MultiSend					
Setting	Rx Clarking Clarking Clarking	Court	(1) and Party		Count
☐ HideTx ☐ HideFxPara ☐ TopMost	APP_I: Goodik BLE SDK APP_I: Local Board EA:CB:3E:CF:00:13. APP_I: Goodix UART example started. APP I: Connected with the peer 55:DC:5F:E3:09: 12345678	45.			Jaron
TxRx Data Count	Tx				
TxCnt 0 Bytes	Hex NewLine Loop Period 50 💠 ns				
RxCnt 183 Bytes					
Clear				✓ Send	Clear
Port: COM29 BaudRate: 11520	00 DataBits: 8 StopBit: 1 ParityBit: None CTS=0 DSR=0 DCD	=0			

图 3-5 GRUart中显示GRToolbox发送的数据

3. 采用GRUart发送数据。

在GRUart的"Send data"区域输入"abcdefgh",点击"Send"。

在GRToolbox中,TX Characteristic的Value将显示GRUart发送的数据,如图 3-6所示。

图 3-6 GRToolbox中显示GRUart发送的值

若实际情况符合上述说明,则Goodix SPP示例运行成功。

4 应用详解

本章将介绍Goodix SPP示例的运行流程和关键代码。

4.1 运行流程

Goodix SPP示例被发起设备扫描、连接之后,主要流程如图 4-1所示:

图 4-1 Goodix SPP示例主要流程

4.2 关键代码

下文介绍了发起设备与接收设备交互过程中的关键代码。

4.2.1 开启数据发送特性和数据流控特性通知

当发起设备发出开启接收设备上GUS的TX Characteristic通知的指令后,GUS解析该指令以"GUS_EVT_TX_P ORT_OPENED"事件上报至应用层,开启TX Characteristic的通知。此时接收设备可以将来自串口的数据传输到发起设备。

当发起设备发出开启接收设备上GUS的Flow Control Characteristic通知的指令后,GUS解析该指令并以 "GUS_EVT_FLOW_CTRL_ENABLE"事件上报至应用层,开启Flow Control Characteristic的通知。此时接收设备可以将接收Bluetooth LE数据能力的状态通知到发起设备。

路径: 工程目录下的user app\user app.c

名称: gus_service_process_event();

```
static void gus_service_process_event(gus_evt_t *p_evt)
{
    switch (p_evt->evt_type)
    {
        case GUS_EVT_TX_PORT_OPENED:
            transport_flag_set(GUS_TX_NTF_ENABLE, true);
            break;
        case GUS_EVT_FLOW_CTRL_ENABLE:
            transport_flag_set(BLE_FLOW_CTRL_ENABLE, true);
            break;
        ...
    }
}
```

4.2.2 接收数据并发送至串口

当接收设备接收到来自发起设备的Bluetooth LE数据后,GUS以 "GUS_EVT_RX_DATA_RECEIVED"事件上报 至应用层,应用层调用ble_to_uart_push()把数据存放在对应环形缓存区中。

路径: 工程目录下的user_app\user_app.c

名称: gus_service_process_event();

```
static void gus_service_process_event(gus_evt_t *p_evt)
{
    switch (p_evt->evt_type)
    {
        ...
        case GUS_EVT_TX_DATA_RECEIVED:
            ble_to_uart_push(p_evt->p_data, p_evt->length);
            break;
        ...
    }
}
```

transport_schedule()函数运行在main()的while循环中,负责执行轮询环形缓存区的任务。若其检测到环形缓存区存有新的数据,则调用transport_uart_data_send()从环形缓冲区取出数据并将数据发送至串口。

路径: 工程目录下的user_app\transport_scheduler.c

名称: transport_uart_data_send()

```
static void transport_uart_data_send(void)
{
    uint16_t read_len;
    uint16_t items_avail;
    items avail = ring buffer items count get(&s ble rx ring buffer);
```

4.2.3 接收串口数据并传输至发起设备

接收设备从串口接收完数据后,将在串口事件处理函数uart_evt_handler()中暂存数据至环形缓存区。

```
路径: 工程目录下的user_platform\user_periph_setup.c
```

名称: uart_evt_handler();

```
static void uart_evt_handler(app_uart_evt_t *p_evt)
{
    if (APP_UART_EVT_RX_DATA == p_evt->type)
    {
        uart_to_ble_push(s_uart_rx_buffer, p_evt->data.size);
        app_uart_dma_receive_async(APP_UART_ID, s_uart_rx_buffer, UART_RX_BUFFER_SIZE);
    }
    else if (APP_UART_EVT_TX_CPLT == p_evt->type)
    {
        update_ble_flow_ctrl_state();
    }
}
```

当没有Bluetooth LE数据发送任务时,transport_schedule()函数将调用transport_ble_data_send()函数轮询环形缓存区。如果环形缓冲区存有待传输数据,则执行Bluetooth LE数据发送任务。

路径: 工程目录下的user_app\transport_scheduler.c

```
名称: transport_ble_data_send();
```

.

当一次Bluetooth LE数据发送完成后,GUS将向应用层上报 "GUS_EVT_TX_DATA_SENT"事件,应用层调用 transport_ble_continue_send()函数查询环形缓存区。如果环形缓冲区还存有待传输数据,则继续取出数据传输 至发起设备。

```
路径: 工程目录下的user app\transport scheduler.c
```

名称: transport_ble_continue_send();

```
void transport ble continue send(void)
{
    •••
    transport_flag_set(BLE_SCHEDULE_ON, true);
    // Read data from m uart rx ring buffer and send to peer via BLE.
    if (transport_flag_cfm(BLE_TX_FLOW_ON))
    {
        items avail = ring buffer items count get(&s uart rx ring buffer);
        if (items avail > 0)
        {
            read len = ring_buffer_read(&s_uart_rx_ring_buffer, s_ble_tx_data,
                                         s_mtu_size - 3);
            transport_flag_set(BLE_TX_CPLT, false);
            transport_flag_set(BLE_SCHEDULE_ON, false);
            gus_tx_data_send(0, s_ble_tx_data, read_len);
        }
    }
}
```

GODIX

5 常见问题

本章描述了在使用Goodix SPP示例时,可能出现的问题、原因及处理方法。

5.1 手机多次收到小于等于20 bytes的数据

• 问题描述

当通过GRUart串口助手输入数据长度超过20 bytes时,手机会分若干次接收到数据。

• 问题分析

在双方未进行最大数据单元(MTU)更改交换时,都使用默认MTU为23 bytes,其中操作码为1 byte,属性句柄为2 bytes,因此,单次发送数据长度为20 bytes。 当需要发送至手机端数据超过20 bytes时,会拆分为若干小于等于20 bytes字节有序发送。

可通过更改MTU值的方式解决。

处理方法

在GRToolbox右上角,点击":>设置最大数据单元",如图 5-1所示。

图 5-1 选择"设置最大数据单元"

输入自定义MTU值,如 "400" bytes,并点击 "确定"进行更新(MTU的取值范围为23~512 bytes)。

图 5-2 设置最大数据单元

5.2 数据发送为字符串但接收为十六进制

问题描述

串口发送数据为字符串,如"abcdefgh",但GRToolbox接收数据显示为十六进制(字节)数据。

• 问题分析

未设置正确的数据显示格式。

处理方法

GRToolbox在数据(包括接收数据和发送数据)显示时,均可设置数据显示格式为字符串和字节。如图 5-3所示,接收数据显示为字节格式。

设备				
CANNER	Goodix_UART >	<		
连接成功				
Goodix U UUID:a6e PRIMARY Tx Chai UUID:a6 Propert Value:0 Olien UUID Value	ART Service d0201-d344-460a-80 'SERVICE racteristic Sed0202-d344-460a-1 ies:NOTIFY x616263646566676i riptors: t Characteristic Com 'ox2902 e:Notification is enal	075-b9e8ec90d71b 8075-b9e8ec90d71b 8 figuration Died	^ ®	
Rx Char UUID:a6 Propert Value:1	racteristic 5ed0203-d344-460a- ies:WRITE, WRITE NO 2345678	8075-b9e8ec90d71b D RESPONSE	0	
Flow Control Characteristic () () (UID: a6ed0204-d344-460a-8075-b9e8ec90d71b Properties:WRITE, NOTIFY Descriptors: Client Characteristic Configuration UUID: 0x2902 Value:Kottification is enabled				
》 设备	会 例程		〇 设置	

图 5-3 接收数据字节格式显示

此时,点击"Value",即可弹出数据显示格式选择菜单。

	NNER Goodi EA:CB:	x_UART 3E:CF:00:13	<		
连接	成功				
ł	选择显示	示方式			
ľ	HEX				
l	ASCII				
l	UTF-8				
l	UNICODE				
l	GB2312				
I.					
	Descriptors:			0	
	UUID:0x290: Value:Notifi	cteristic Con 2 cation is enab		R	
	》 设备	会 例程	四日	() 设置	

图 5-4 选择数据显示格式

选择数据格式为"ASCII"后,点击"确定",则显示为字符串"abcdefgh",如图 5-5所示。

设备						
SCANNER	Goodix_UART >	<				
连接成功						
Goodix U UUID:a66 PRIMAR Tx Cha UUID:a Proper Value:a Desc	IART Service ed0201-d344-460a-80	75-b9e8ec90d71b	^			
Clier UUIE Valu	nt Characteristic Con 0:0x2902 e:Notification is enal	iguration R				
Rx Cha UUID:a Proper Value:1	Rx Characteristic (V) UUID:a6ed0203-d344-460a-8075-b9e8ec90d71b Properties:WRITE, WRITE NO RESPONSE Value:12345578					
Flow Control Characteristic () () () UUID:a6ed0204-d344-460a-8075-b9e8ec90d71b Properties:WRITE, NOTIFY Descriptors: Client Characteristic Configuration () UUID:0x2902						
Valu	e:Notification is enab	oled				
び 设备	例程	百百 (9) 应用 设置				

图 5-5 显示为字符串 "abcdefgh"

6 附录: 吞吐率测试结果

基于开发板,使用Goodix SPP示例进行了Bluetooth LE吞吐率测试。

以下测试结果包括:115200 bps、230400 bps、460800 bps串口波特率,以及1 M、2 M PHY不同条件下,不同透传模式下的吞吐率。

波特率(bps)	透传模式	1M PHY	2M PHY
115200	接收设备→发起设备	10.032 KB/s	10.246 KB/s
	接收设备←发起设备	10.015 KB/s	10.167 KB/s
	接收设备 ↔ 发起设备	19.534 KB/s	19.758 KB/s
230400	接收设备→发起设备	20.329 KB/s	21.011 KB/s
	接收设备←发起设备	20.009 KB/s	19.907 KB/s
	接收设备 ↔ 发起设备	40.069 KB/s	41.01 KB/s
460800	接收设备→发起设备	37.38 KB/s	37.826 KB/s
	接收设备←发起设备	37.38 KB/s	37.648 KB/s
	接收设备 ↔ 发起设备	70.243 KB/s	71.141 KB/s

表 6-1 不同模式下的吞吐率