

GR5xx Throughput示例手册

版本: 3.1

发布日期: 2023-11-06

版权所有 © 2023 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX 和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址:深圳市福田保税区腾飞工业大厦B座12-13层

电话: +86-755-33338828 邮编: 518000

网址: www.goodix.com

前言

编写目的

本文档介绍如何使用和验证GR5xx SDK中的Throughput示例,旨在帮助用户快速进行二次开发。

读者对象

本文适用于以下读者:

- 芯片用户
- 开发人员
- 测试人员
- 开发爱好者
- 文档工程师

版本说明

本文档为第3次发布,对应的产品为低功耗蓝牙GR5xx系列。

修订记录

版本	日期	修订内容
1.0	2023-01-10	首次发布
3.0	2023-03-30	新增支持多款芯片的相关描述
3.1	2023-11-06	更新GProgrammer、GRUart、GRToolbox获取方式。

目录

前言	
1 简介	
2 Profile概述	3
2.1 设备角色	
2.2 吞吐服务(Throughput Service)	
3 初次运行	
3.1 准备工作	
3.2 固件烧录	
3.3 测试验证	
3.3.1 开发板与手机间测试	
3.3.2 Server和Client开发板间测试	
4 应用详解	14
4.1 THS Server工程目录	14
4.2 THS Client工程目录	14
4.3 运行流程	14
5 串口设置THS参数	16
5.1 扫描设备	
5.2 连接参数更新	
5.3 MTU设置	
5.4 PDU设置	17
5.5 PHY设置	
5.6 测试模式设置	
5.7 TX Power设置	
5.8 测试启停	18

1 简介

本文中的GR5xx Throughput示例演示了链路参数如何影响Bluetooth LE(Low Energy)连接的数据吞吐性能,如连接间隔(Connection Interval)、最大传输单元(MTU)、传输包大小(Data Length)、传输频率(PHY)和发射功率(TX Power)等链路参数。该示例也可验证在各传输模式(Notify、Write或Notify & Write)下,GR5xx芯片的Bluetooth LE数据吞吐性能。

本文将介绍如何使用GR5xx SDK中的Throughput示例对GR5xx芯片的Bluetooth LE数据吞吐性能进行验证。 在进行操作前,可参考以下文档。

表 1-1 文档参考

名称	描述
GR5xx应用及自定义Sample Service	介绍实现自定义Service的相关知识
对应芯片开发者指南	介绍GR5xx SDK以及基于SDK的应用开发和调试
Bluetooth Core Spec	Bluetooth官方标准核心规范
Bluetooth GATT Spec	Bluetooth Profile和Service的详细信息查看地址: www.bluetooth.com/specifications/gatt
J-Link用户指南	J-Link使用说明: www.segger.com/downloads/jlink/UM08001_JLink.pdf
Keil用户指南	Keil详细操作说明: www.keil.com/support/man/docs/uv4/

2 Profile概述

2.1 设备角色

Goodix Throughput Profile定义了以下两种设备角色:

- Throughput Server: 发起广播,等待Throughput Client连接,接收来自Client的数据并以Notify方式发送数据至Client。
- Throughput Client:发起连接请求,连接Throughput Server,以Write Without Response方式发送数据至Server并接收来自Server的数据。

2.2 吞吐服务(Throughput Service)

Throughput Server和Throughput Client之间进行Throughput Service的交互,如图 2-1所示。

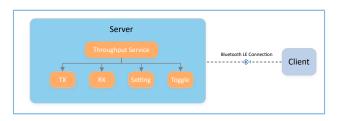


图 2-1 Server和Client之间THS交互

吞吐服务(Throughput Service,THS)是Goodix自定义的Service,用于Bluetooth LE吞吐测试数据传输与参数设置,其专用128位UUID为A6ED0301-D344-460A-8075-B9E8EC90D71B。

THS Characteristic包括:

- TX Characteristic: 发送数据至Client端。
- RX Characteristic:接收来自Client端的数据。
- Setting Characteristic:接收吞吐测试参数设置信息,如MTU、PHY、TX Power、Connection Interval以及Data Length等,并将设置结果通知Client。
- Toggle Characteristic: 开始或停止吞吐测试。

THS Characteristic的说明如表 2-1 所示。

表 2-1 THS Characteristic

Type Suppo

Characteristic	UUID	Туре	Support	Security	Properties
тх	A6ED0302-D344-460A-8075- B9E8EC90D71B	128 bits	Mandatory	None	Notify
RX	A6ED0303-D344-460A-8075- B9E8EC90D71B	128 bits	Mandatory	None	Write without Response
Setting	A6ED0304-D344-460A-8075- B9E8EC90D71B	128 bits	Mandatory	None	Notify, Write without Response

Characteristic	UUID	Туре	Support	Security	Properties
Togglo	A6ED0305-D344-460A-8075-	120 hita	Mandatani	None	Write without Becomes
Toggle	B9E8EC90D71B	128 bits	Mandatory	None	Write without Response

Bluetooth LE吞吐性能测试有以下三种传输模式:

- Server端单向发送: Server端以Notify方式将TX Characteristic Value发送至Client端。
- Client端单向发送: Client端以Write Without Response方式将RX Characteristic Value发送至Server端。
- Server、Client端双向传输:即以上两个方向数据传输同时存在。

在上述三种传输模式中,Server端接收来自Client端的Setting Characteristic Value进行吞吐性能测试参数设置,并将设置结果通知Client。

3 初次运行

本章介绍如何使用GR5xx SDK中的Throughput(Server端、Client端)示例。

🛄 说明:

SDK Folder为对应芯片SDK的根目录。

3.1 准备工作

运行GR5xx Throughput示例之前,需要完成以下准备工作。

• 硬件准备

表 3-1 硬件准备

名称	描述
开发板	对应芯片Starter Kit开发板(以下简称"开发板")2块
连接线	USB Type-C(GR551x系列使用Micro USB 2.0连接线)
Android Phone	操作系统Android 5.0(KitKat)及以上版本的手机

软件准备

表 3-2 软件准备

名称	描述
Windows	Windows 7/Windows 10操作系统
J-Link Driver	J-Link驱动程序,下载网址: www.segger.com/downloads/jlink/
Keil MDK5	IDE工具,支持MDK-ARM 5.20 及以上版本,下载网址: www.keil.com/download/product/
GRToolbox (Android)	Bluetooth LE调试工具,下载网址: www.goodix.com/zh/software_tool/grtoolbox
GProgrammer (Windows)	Programming工具,下载网址: www.goodix.com/zh/software_tool/gprogrammer_ble
GRUart (Windows)	串口调试工具,下载网址: <u>www.goodix.com/zh/download?objectId=64&objectType=software</u>

3.2 固件烧录

GR5xx Throughput Server和Client示例工程的源码分别位于:

- SDK_Folder\projects\ble_peripheral\ble_app_throughput
- SDK_Folder\projects\ble\ble_central\ble_app_throughput_c

用户可使用GProgrammer直接将*ble_app_throughput.bin*和*ble_app_throughput_c.bin*分别烧录至开发板A作为Throughput Server和开发板B作为Throughput Client。

GProgrammer烧录固件的具体操作方法,请参考《GProgrammer用户手册》。

🛄 说明:

- ble_app_throughput.bin位于SDK_Folder\projects\ble\ble_peripheral\ble_app_throughpu t\build。
- ble_app_throughput_c.bin位于SDK_Folder\projects\ble\ble_central\ble_app_throughput_c\build。

3.3 测试验证

在本文中Bluetooth吞吐性能测试包括两个场景:

- 场景一: 开发板A与手机之间的吞吐性能测试。
- 场景二: 开发板A和B之间的吞吐性能测试。

3.3.1 开发板与手机间测试

本章节介绍作为THS Server的开发板A与作为THS Client的Android手机间进行Bluetooth LE THS测试验证。 开发板与手机间测试的具体步骤如下:

- 1. 开启蓝牙功能。 开启手机的蓝牙开关,并给开发板A上电。
- 2. 扫描Goodix THS设备。

打开手机的GRToolbox APP,点击"应用 > THS"。

手机扫描发现广播名为"Goodix_THS"的开发板,如下图所示。

图 3-1 手机端发现Goodix_THS

🛄 说明:

本文中GRToolbox的截图仅供用户了解操作步骤,实际界面请参考最新版本GRToolbox。

3. 连接Goodix_THS设备。

选中并连接"Goodix_THS",进入Throughput测试界面,如图 3-2所示。

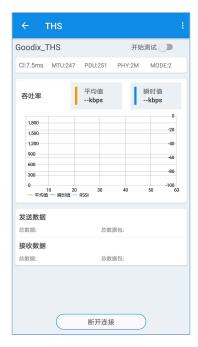


图 3-2 Throughput测试界面

4. 设置测试参数。

在Throughput测试界面,点击右上角 12 按钮进入测试参数设置界面,并配置参数,如图 3-3所示。

图 3-3 测试参数设置界面

5. 开启THS测试。

点击 ● 按钮开始测试,在统计图中显示手机与开发板之间Bluetooth LE数据吞吐率的平均值和瞬时值,如图 3-4所示。

图 3-4 开启THS测试

3.3.2 Server和Client开发板间测试

作为THS Server的开发板A与作为THS Client的开发板B之间的Bluetooth LE THS测试验证。

GR5xx THS测试验证的操作步骤为:

1. 将开发板A和B上电。

Server开发板A上电后, 开始广播。

Client开发板B上电后,等待扫描Server开发板。串口调试工具GRUart的界面上会显示"Throughput Service Client example started",如图 3-5所示。

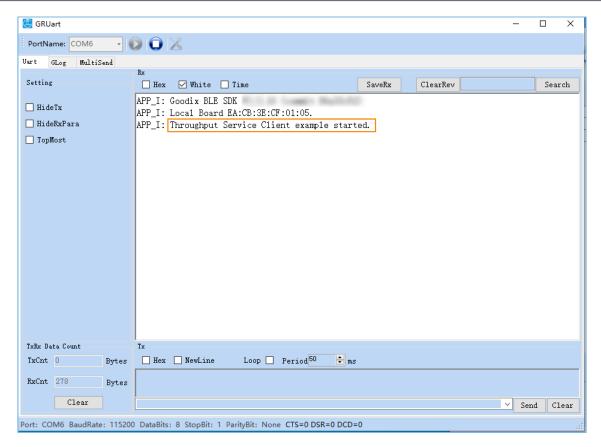


图 3-5 等待扫描

2. 扫描并连接设备。

当用户通过GRUart发送SCAN扫描设备指令时,开发板B开始扫描(如图 3-6所示),直至扫描到Server开发板A的广播,并自动发起连接请求。

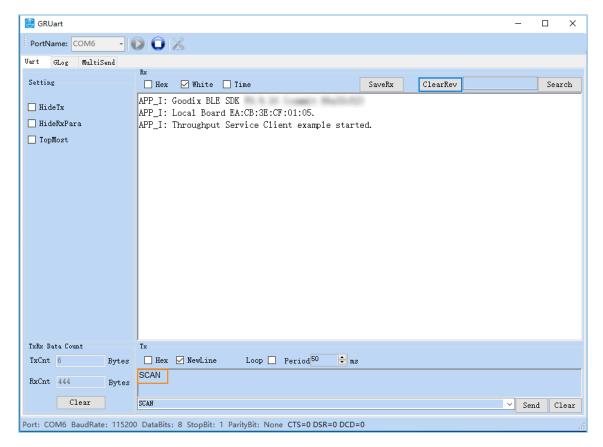


图 3-6 扫描对端设备

Client开发板B成功与Server开发板A建立起连接,GRUart的界面上会显示"Throughput Service discovery completely",开始所有的THS参数串口指令设置,如图 3-7所示,串口指令格式请参考5 串口设置THS参数。

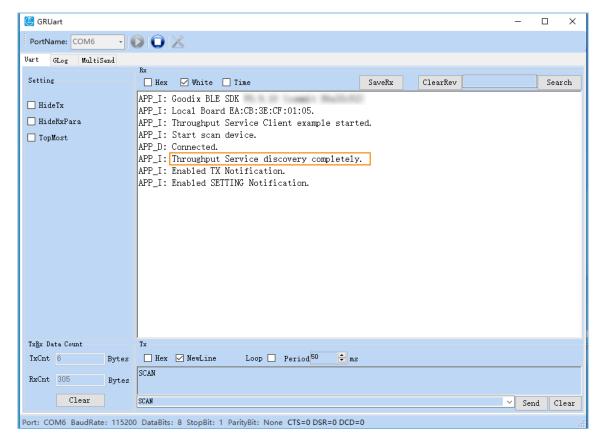


图 3-7 成功连接界面

3. 设置THS参数。

通过GRUart输入对应的THS参数设置指令(如PHY:0)并发送。SET PHY界面如图 3-8所示。

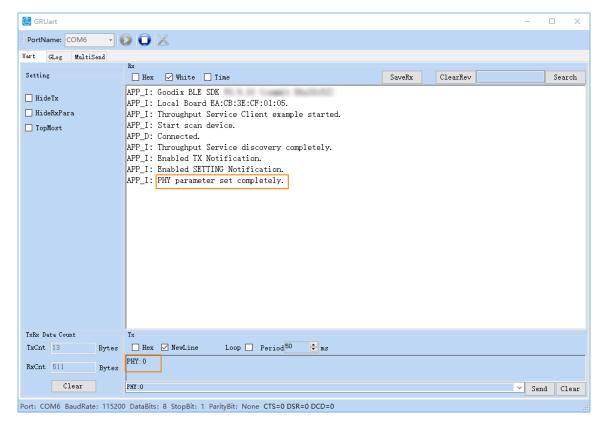


图 3-8 PHY设置界面

4. 开启THS测试。

待所有THS参数设置完成,通过GRUart发送TOGGLE SET:1测试开启指令,如图 3-9所示。

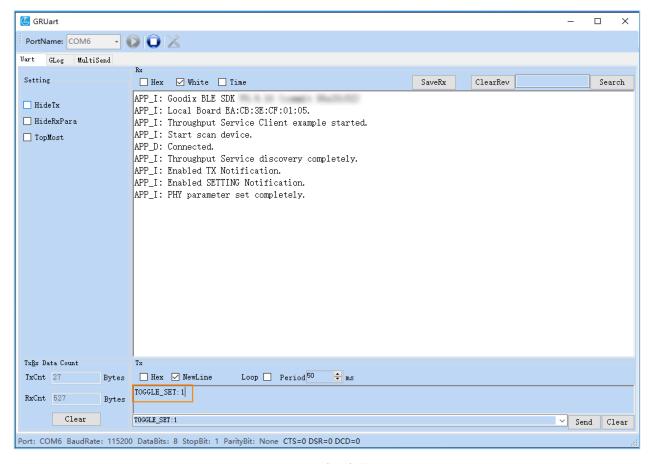


图 3-9 测试开启界面

Server开发板A的THS测试结果界面,如图 3-10所示。

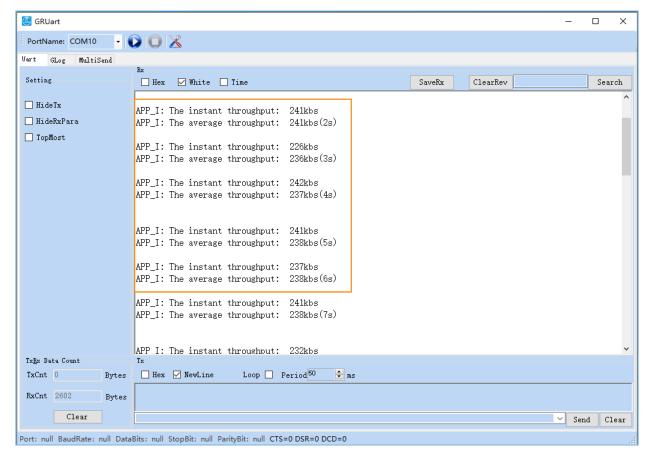


图 3-10 THS测试结果

THS的测试结果的参数说明,如表 3-3 所示。

表 3-3 THS测试结果的参数说明

参数	说明
instant throughput	吞吐率的瞬时值
average throughput	吞吐率的平均值

在测试过程中,若想更新测试参数,则需先通过GRUart发送TOGGLE_SET:0暂停测试指令后再重新发送设置参数的指令。

4 应用详解

本章主要介绍THS示例(包括Server端和Client端)的工程目录、运行流程。

4.1 THS Server工程目录

THS Server示例的源代码和工程文件位于: SDK_Folder\projects\ble\ble_peripheral\ble_ap p throughput,其中工程文件位于Keil_5文件夹。

双击打开*ble_app_throughput.uvprojx*工程文件,在Keil中查看THS Server示例的ble_app_throughput工程目录结构,相关文件说明如表 4-1 所示。

Group	文件	描述	
gr_profiles	ths.c	Throughput Service实现	
user_platform	user_periph_setup.c	App Log、设备地址和电源管理模式的配置	
	main.c	main()入口函数	
user_app	user_app.c	Throughput Server应用Profile注册及逻辑处理	
	throughput.c	Throughput Service事件处理	

表 4-1 ble_app_throughput文件说明

4.2 THS Client工程目录

Throughput Client示例的源代码和工程文件位于: SDK_Folder\projects\ble\ble_central\ble_app throughput c,其中工程文件位于Keil_5文件夹。

双击打开*ble_app_throughput_c.uvprojx*工程文件,在Keil中查看THS Client示例的ble_app_throughput_c工程目录结构,相关文件说明如表 4-2 所示。

Group	文件	描述	
gr_profiles	ths_c.c	Throughput Service Client Profile实现	
user platform	user_periph_setup.c	设备串口、设备地址和设备按键的配置	
usei_platioiiii	user_interrupt.c	串口中断处理函数	
	main.c	main()入口函数	
user_app	user_app.c	Throughput Client应用Profile注册及逻辑处理	
	throughput_c.c	Throughput Service Client事件处理和吞吐信息统计	

表 4-2 ble app throughput c文件说明

4.3 运行流程

Throughput Server与Client之间的交互运行流程如图 4-1所示:



图 4-1 运行流程图

5 串口设置THS参数

两块开发板之间进行GR5xx THS测试时,Client开发板可接收串口输入指令进行相关参数测试。所有指令输入均以回车换行('\r\n')结尾,其中具体指令格式定义如下。

5.1 扫描设备

表 5-1 扫描设备指令

指令	SCAN
参数说明	无
注意	无
示例	SCAN
响应	串口输出结果为:扫描、连接、发现服务、使能通知

5.2 连接参数更新

表 5-2 连接参数更新指令

指令	CI: <conn_interval_min>:<conn_interval_max>:<latency>:<timeout></timeout></latency></conn_interval_max></conn_interval_min>
	<conn_interval_min>: 连接间隔最小值(单位: 1.25 ms)</conn_interval_min>
参数说明	<conn_interval_max>: 连接间隔最大值(单位: 1.25 ms)</conn_interval_max>
少奴 阮明	<latency>: 连接延迟</latency>
	<timeout>: 连接超时(单位: 10 ms)</timeout>
	如设置固定的连接间隔值,则应将最大值、最小值设置为相等。
注意	测试最佳吞吐率,则应将latency设置为0。
	Timeout > (1 + latency) * conn_interval* 2
示例	CI:12:12:0:100
响应	串口输出设置结果

5.3 MTU设置

表 5-3 MTU设置指令

指令	MTU: <mtu_value></mtu_value>
参数说明	<mtu_value>: MTU,取值为: 23~512</mtu_value>
示例	MTU: 247
响应	串口输出设置结果

5.4 PDU设置

表 5-4 PDU设置指令

指令	PDU: <payload_octets>:<time></time></payload_octets>
参数说明	<pre><payload_octets>: 有效载荷字节</payload_octets></pre>
	<time>: TX Time</time>
注意	无
示例	PDU:251:2120
响应	串口输出设置结果

5.5 PHY设置

表 5-5 PHY设置指令

指令	PHY: <tx_phy>:<rx_phy>:<phy_opt></phy_opt></rx_phy></tx_phy>
参数说明	<pre><tx_phy>: Preferred transmit PHYs • 1: 1M PHY • 2: 2M PHY • 4: Coded PHY </tx_phy></pre> <pre><try_phy>: Preferred receive PHYs • 1: 1M PHY • 2: 2M PHY • 4: Coded PHY • 4: Coded PHY • Ophy_opt >: Options for PHY • 0: Host has no preferred coding when transmitting on the LE Coded PHY • 1: Host prefers that S=2 coding be used when transmitting on the LE Coded PHY • 2: Host prefers that S=8 coding be used when transmitting on the LE Coded PHY</try_phy></pre>
注意	无
示例	PHY:1:1:0
响应	串口输出设置结果

5.6 测试模式设置

表 5-6 测试模式设置指令

指令	TRANS_MODE: <mode></mode>
参数说明	<mode>: 测试模式</mode>
	0: 仅Server端发送数据(notify)
	1: 仅Client端发送数据(write)
	2: Server端与Client端同时发送数据
注意	无

示例	TRANS_MODE:2
响应	串口输出设置结果

5.7 TX Power设置

表 5-7 TX Power设置指令

指令	TX_PWR: <tx_power_value></tx_power_value>
参数说明	<tx_power_value>: TX Power值,可选值"-20","-4","0","2","4","7"</tx_power_value>
注意	无
示例	TX_PWR:2
响应	串口输出设置结果

5.8 测试启停

表 5-8 测试启停指令

指令	TOGGLE_SET: <start_or_stop></start_or_stop>
	< start_or_stop >: 测试启停
参数说明	0: 停止测试
	1: 开始测试
注意	无
示例	TOGGLE_SET:1
响应	串口输出设置结果