

GRPLT Lite配置工具自定义固件加密及应用介绍

版本: 1.5

发布日期: 2023-08-30

深圳市汇顶科技股份有限公司

版权所有 © 2023 深圳市汇顶科技股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得对本手册内的任何部分擅自摘抄、复制、修改、翻译、传播,或将其全部或部分用于商业用途。

商标声明

G@DiX和其他汇顶商标均为深圳市汇顶科技股份有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人持有。

免责声明

本文档中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。

深圳市汇顶科技股份有限公司(以下简称"GOODIX")对这些信息不作任何明示或暗示、书面或口 头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的 适用性的声明或担保。GOODIX对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经GOODIX书面批准,不得将GOODIX的产品用作生命维持系统中的关键组件。在GOODIX知识产权保护下,不得暗中或以其他方式转让任何许可证。

深圳市汇顶科技股份有限公司

总部地址:深圳市福田保税区腾飞工业大厦B座12-13层

电话: +86-755-33338828 邮编: 518000

网址: <u>www.goodix.com</u>

前言

编写目的

本文档介绍如何通过Goodix FAE/代理提供的固件加密示例工程修改自定义加密算法,实现自定义固件加密,并启动对应加密流程,以便客户深入了解GRPLT Lite配置工具自定义固件加密应用及其流程。

读者对象

本文适用于以下读者:

- 芯片用户
- 开发人员
- 测试人员
- 文档工程师

版本说明

本文档为第6次发布,对应的产品为低功耗蓝牙GR5xx系列。

修订记录

版本	日期	修订内容
1.0	2021-06-28	首次发布
1.1	2022-02-20	更新软件界面截图
1.2	2022-06-27	更新软件名称
1.3	2023-01-10	更新导入自定义加密固件的界面图片
1.4	2023-03-30	新增支持多款芯片的相关描述
1.5	2023-08-30	完善加密示例工程ble_enc_app_template的获取途径和自定义加密流程的启动操作更新软件界面截图和ISP硬件连接示意图

GODiX

目录

前言	1
1 简介	1
2 应用自定义加密固件	2
2.1 修改加密算法	2
2.2 编译自定义加密示例工程	2
2.3 启动自定义加密流程	2
3 自定义加密烧录流程及相关错误信息	5
4 自定义加密指令ENC_DEAL	6
4.1 GU发送数据	6
4.2 DUT回应数据	6

GODIX

1 简介

GRPLT Lite配置工具自定义加密固件相较于Goodix加密方式,用户能够采用自定义加密算法,并将该算法 生成的密钥写入芯片,实现加密逻辑的独立控制;应用时用户可根据加密算法反推密钥正确性,推动加密固件 的顺利运行,为用户产品提供安全保障。

在进行操作前,可参考以下文档。

表 1-1 文档参考

名称	描述
GRPLT Lite配置工具用户手册	介绍GRPLT Lite配置工具的安装和使用方法
GR5xx固件升级开发指南	介绍低功耗蓝牙GR5xx芯片系列的固件升级原理和应用

2 应用自定义加密固件

自定义加密固件的整体应用流程如下:

- 1. 基于Goodix提供的加密示例工程ble_enc_app_template(联系FAE/代理提供),生成用户自定义加密 固件。具体操作,详见2.1 修改加密算法和2.2 编译自定义加密示例工程。
- 2. 启用自定义固件加密流程。具体操作,详见2.3 启动自定义加密流程。

🛄 说明:

- 对于GR551x芯片系列,GRPLT Lite配置工具自定义加密功能暂只支持特定的1.6.02 SDK版本,如为其他SDK版本,因与烧录配置不匹配,可能造成自定义加密失败。对于其他芯片系列,使用该功能无SDK版本限制。
- GU(Golden Unit)是指已经校准过的Bluetooth LE(Low Energy)模块。

2.1 修改加密算法

加密示例工程中的custom_enc_info()函数传入16字节chip_uid,通过自定义加密算法生成32字节 加密信息,从而将enc_key写入User Region区域。用户需要根据加密信息待写入区域,修改加密示例工 程ble_enc_app_template中的对应算法函数:

- 若加密信息需写入eFuse的User Region区域(前32字节): 修改*enc_key.c*文件中自定义加密方式相关的加密算法custom_enc_info()函数。
- 若加密信息需写入NVDS或其他Flash区域: 修改*enc_key.c*文件中的custom_enc_info()函数 和*custom_enc.c*文件中的custom_enc_process()函数。

2.2 编译自定义加密示例工程

修改加密算法后,用户可直接编译工程;编译完成后,将在示例工程的Keil_5\build目录下生成自定 义加密固件*ble_enc_app_template_fw.bin*。

2.3 启动自定义加密流程

- 1. 实现自定义加密指令ENC_DEAL, GU通过ENC_DEAL指令与DUT交互, 写入加密信息。ENC_DEAL加密 指令介绍, 详见4 自定义加密指令ENC_DEAL。
- 2. 下载自定义加密固件。
 - (1) 将编译生成的加密固件*ble_enc_app_template_fw.bin*拷贝至GRPLT Lite配置工具软件包中的对应文件夹。

🛄 说明:

加密固件需放入的文件夹,请参考《GRPLT Lite配置工具用户手册》。

 (2) 运行GRPLT Lite Config Tool.exe,进入"可选功能配置>加密算法配置"面板,勾选"用 户自定义加密方式"后,点击"导入bin文件",导入拷贝至软件包中的自定义加密固 件ble_enc_app_template_fw.bin。

GRPLT Lite配置工具	- 🗆 🗙
配置索引页 基础功能配置 可选功能配置 Flash 配置 eFuse/	OTP操作 其他 并联配置 关于
「烧录开始方式配置	蓝牙地址配置
☑按建启动	□ 烧录蓝牙地址 □ 写NVDS
□ □ chip_en高电平启动 (选择启动IO) (选择IO状态)	◎ 设置范围方式(16进制)
□ GPIO_XX状态检测启动 GPIO_2 ~ 上升沿 ~	起始蓝牙地址 12 34 56 78 90 AB
检测间隔(ms) 1500 (500~5000)	末尾蓝牙地址 12 34 56 FF FF FF □ 地址去重 导入ini文件
	│ NVDS烧录配置
	起始地址:(0x) 010FF000 NVDS区大小: 1 (以4K为单位)
(选择输出IO) (选择10状态)	□焼录NVDS
	NVDS文件路径: 导入json文件
□ DUT掉电延时(s) 20 (10进制)	加密算法配置
	│使用Goodix加密方式 (无需配置,选择加密测试固件时则赋认使用Goodix加密方式)
□ wDT使能	□ 円/〒日222,0027154 自定义算法固件导入: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
初始状态 高电平 🗸	Memory检测配置
周期(ms) 2000 (1000ms-30s)	□ Memory检测使能
└ 蜂鸣器配置	检测小固件导入: sram_test_PLT_V3_fw.bin
□产测成功输出 持续时间(s): 3	重试设置
□产测失败输出 持续时间(5): 3 < (10进制)	☑ 重试使能 重试次数: 5 重启阈值: 4
下 载 配 置 - 并联	中断下载 下载配置进度 0%

图 2-1 导入自定义加密固件

- (3) 点击GRPLT Lite配置工具左下角的"下载配置-并联"按钮,启动配置下载。 配置下载完成后,关闭GRPLT Lite配置工具。
- 3. 运行加密固件,启动离线烧录。

GODIX

连接离线板和DUT,并单击离线板下方的K2或K5按键,开始自定义加密固件的离线烧录流程。关于K2和K5按键的区别,请参考《GRPLT Lite配置工具用户手册》。

图 2-2 ISP硬件连接示意图

GU检测自定义加密固件正常运行后,将发送指令ENC_DEAL(0x0401)操作固件对DUT进行加密并写入加密密钥。

🛄 说明:

- 整机应用时,可根据加密方式反推密钥是否正确。例如加密示例工程ble_enc_app_template的加密方 式为:将chip_uid拷贝2份写入eFuse的User Region区域。整机应用时,可先读取芯片的chip_uid和User Region区域,判断User Region区域内容是否为拷贝的2份chip_uid。
- DUT (Device Under Test,待测模组),本文特指焊接了GR5xx芯片的PCB。
 - 写入成功且回读正确: DUT通过串口发送成功状态给GU。
 - 写入失败:返回失败状态。

自定义加密具体流程及相关错误信息,请参考3自定义加密烧录流程及相关错误信息。

3 自定义加密烧录流程及相关错误信息

选用自定义加密方式,并启动离线烧录后,自定义加密流程将对应开启。自定义加密流程执行成功,则 自动执行后续流程,反之则会在离线板显示屏上显示对应错误信息并停止量产烧录。

在离线量产烧录流程中,自定义加密环节的具体执行流程如下:

- GU通过串口将自定义加密固件下载至DUT。此时离线板将显示"StartDown ENC FW"。
 GU下载自定义加密固件的流程如下:
 - (1) GU检查加密固件格式。

若检测到img_info的pattern有误或boot_info的load_addr未对齐,离线板将显示"Down ENC FW Img Check Fail",提示加密固件格式错误。

(2) 基于DFU协议, GU将加密固件写入DUT。

🛄 说明:

下文DFU指令(PROGRAM_START、PROGRAM_FLASH、 PROGRAM_END、 OPERATE_REG)的详细介绍,可参 考《GR5xx固件升级开发指南》。

GU发送PROGRAM_START(0x23)指令,写入固件。如果DUT应答失败,离线板会显示"Down ENC FW Start Error",提示加密固件启动信息写入失败。

- (3) GU发送PROGRAM_FLASH(0x24)指令,写入固件数据的头信息。如果DUT应答失败,离线板会显示 "Down ENC FW Program Error",提示加密固件编程失败。
- (4) GU发送PROGRAM_END(0x25)指令,完成固件的写入。如果DUT应答失败,离线板会显示 "Down ENC FW End Fail",提示加密固件校验失败。

🛄 说明:

如果在自定义加密固件下载的整个流程中,操作Flash、操作寄存器复位、更新img_info、加密回应或擦除Flash等指令超时无响应,则会报错"Down ENC Info Timeout",提示写入用户加密信息超时。

- 加密固件成功下载后,GU会发送OPERATE_REG(0x2C)指令操作DUT寄存器,进行加密前的芯片复位,确保加密固件成功运行。
 若DUT应答失败,则会报错"Down ENC Info Fail",提示写入用户加密信息失败。
- 3. 加密固件下载完成并成功运行后,GU将发送ENC_DEAL(0x0401)指令写入用户自定义加密信息。此时,DUT将判断加密流程是否成功执行。
 - 未成功执行: DUT将回应写入失败(0x02),并报错"DownENC Info Error",提示写入用户加密信息错误。
 - 成功执行:继续执行后续的烧录流程。

4 自定义加密指令ENC_DEAL

GU通过发送自定义加密ENC_DEAL指令启动写入用户自定义加密信息,DUT在收到此命令后启动加密流程,并判断是否执行成功,对应响应DUT。

4.1 GU发送数据

字节序号	描述	有效值	说明
0 - 1	帧头	0x4744	以字符'G'和'D'的ASCII码值0x47和0x44表示
2 - 3	帧类型	0x0401	下载用户自定义加密固件,启动对应加密流程
4 - 5	数据长度	0x0000	
6 - 7	和校验	0x0000 - 0xFFFF	帧类型和数据长度的16位和校验

表 4-1 GU端发送的数据

4.2 DUT回应数据

字节序号	描述		有效值	说明
0 - 1	帧头		0x4744	以字符'G'和'D'的ASCII码值0x47和0x44表示
2 - 3	帧类型		0x0401	启用自定义加密固件,并执行对应加密流程
4 - 5	数据长度		0x0002	
6		应答	0x03	0x03: DUT回应0x0401
7	数据内容	执行结果	0x01或0x02	0x01: 成功
/				0x02: 失败
8 - 9	和校验		0x0000 - 0xFFFF	帧类型、数据长度、数据内容(应答及执行结果)
				的16位和校验

表 4-2 DUT端回应的数据